
Clark et al. Journal of Cheminformatics  (2015) 7:9 
DOI 10.1186/s13321-015-0057-7
RESEARCH ARTICLE Open Access
Machines first, humans second: on the
importance of algorithmic interpretation of
open chemistry data
Alex M Clark1*, Antony J Williams2 and Sean Ekins3,4
Abstract

The current rise in the use of open lab notebook techniques means that there are an increasing number of scientists
who make chemical information freely and openly available to the entire community as a series of micropublications
that are released shortly after the conclusion of each experiment. We propose that this trend be accompanied by a
thorough examination of data sharing priorities. We argue that the most significant immediate benefactor of open
data is in fact chemical algorithms, which are capable of absorbing vast quantities of data, and using it to present
concise insights to working chemists, on a scale that could not be achieved by traditional publication methods. Making
this goal practically achievable will require a paradigm shift in the way individual scientists translate their data into
digital form, since most contemporary methods of data entry are designed for presentation to humans rather than
consumption by machine learning algorithms. We discuss some of the complex issues involved in fixing current
methods, as well as some of the immediate benefits that can be gained when open data is published correctly using
unambiguous machine readable formats.
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Background
The increasing availability of freely accessible data for
chemical compounds and their associated properties and
web links is driving a significant shift in the way research
is carried out. The multitude of public databases [1-6],
freely distributed vendor compound librariesa and directly
shared lab notebooks [7] make it possible for scientists to
prospectively gather together a large knowledgebase. The
data may be useful to test a hypothesis in the laboratory
or to build computational models. Traditionally this
process involved scouring the peer reviewed literature,
either online through paywalls or physically within the
walls of a library, and in some cases perusing privately col-
lected data on the subject [8]. The reuse of such data may
require data licensing and we have suggested some rules
that could be helpful [9].
Despite the major shift that is trending right now,

there is an important caveat: many of the hosts of online
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data do not necessarily give proper consideration to what
may well be the most important consumer of their data,
namely software algorithms, especially at a time when the
ongoing development of the semantic web is hyperdepen-
dent on algorithms and mappings. A scientific publication
is typically downloaded and perused by hundreds or per-
haps thousands of humans, but the number of people who
carefully study the data content, by carefully examining
the constituent chemical structures, physical properties,
reaction schemes, spectral assignments, etc., is usually just
a handful. The inherently low scalability of scientists’ time
is in stark contrast with the ever increasing ability of soft-
ware algorithms to assimilate vast quantities of data and
deliver meaningful insights that could not have been
observed by more traditional means. The ability for a
well-designed informatics platform to productively use
as much data as can be made available means that in
principle every publicly available scientific data point that
is relevant to a machine learning algorithm’s domain
should be injected into the training set. Were this ideal
state of affairs to be achieved, it would mean that every
hard-won experimental result would have its chance to
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inform future experiments, rather than languishing in ob-
scurity. Chemists would be able to benefit from all prior
art within the field, and the quality of insights would im-
prove over time as the volume of data increases and algo-
rithms are improved.
While there have been many efforts to extract such

data from the literature, there are major flaws with the
methods used for extraction. The root cause is that the
data entry is seldom being done by the scientists who were
responsible for the experiment: for the most part, machine
readable data from the published literature is created by
paid curators or algorithms designed to extract informa-
tion from the intractable formats used by the primary
literature and patents [10]. A mistake made by a human
curator, or an algorithmic extraction method, is unlikely
to ever be verified by an expert familiar with the original
experiment, which means that even if the provenance of
the data is recorded (i.e. a citation to the original source),
it is statistically improbable that it will be verified once it
is incorporated into a database.
The reality of machine readable data in 2015 is that most

collections of chemical structures and properties have been
laundered through a number of data entry sources, few of
which record the original pre-digital origin, and even
fewer of which were created by scientists who are both
connected with the research and have a personal vested
interest in ensuring that the digitally represented version
is correct. While scientists take great pains to ensure that
graphical figures in their manuscripts are free of error,
since it is a career-affecting embarrassment to publish
incorrect data for cognition by other humans, there is
no such community-enforced covenant for data that is
intended for consumption by algorithms.
The disconnect between human- and machine-readable

content also gets to the heart of the notion of scalability
of scientific data. In most parts of the contemporary tech-
nology industry, software scalability refers to the ability to
handle larger numbers of bytes, whether it be by ramping
up database storage from gigabytes to terabytes to peta-
bytes, or by serving millions of web page views per unit
time. For the experimental sciences, the critical limitation
is the evaporation of context. For example, a scientist who
has been working on a project for a few weeks could have
each experiment written down in shorthand notation in a
paper notebook, and easily recall the remaining details
from memory. After a year, shorthand notes and abbrevi-
ated sketches may be insufficient; once the lab notebooks
start to pile up, other scientists start making use of the
recorded processes, and eventually the original scientist
moves on to another project or leaves the institution, an
experimental record is seriously deficient without detailed
explanation. It is all too often the case that there is insuffi-
cient context to recreate what was once institutional
knowledge: the science is now effectively lost. This notion
of scalability across time and personnel is a consistent en-
tropic trend within experimental research groups, which
is managed to some extent by executively curating the
information that is deemed most worth preserving, and
documenting it in more detail. This is formalised when
preparing a manuscript for publication, or writing a thesis
or research report. For releasing open data directly to
the Internet, however, these mechanisms are stripped
away: data that can be consumed in real time by a
complete stranger on the other side of the world, or by a
software algorithm, is completely dependent on whatever
context was contained within the electronic document at
the moment it was released. Scientific data with incom-
plete context can be corrected by an expert, who can infer
missing information from personal knowledge, from the
literature, or by conducting additional experiments in
order to obtain the missing information. But these steps
are the very definition of an unscalable process, and in-
deed this is the very problem that open data is attempting
to solve.
Formats such as PDF files, HTML pages, word proces-

sor documents, and bitmapped or vector graphics are ef-
fectively dead formats, as far as machine interpretation
of chemistry is concerned. There are efforts to extend
the formats using chemistry enabled capabilities, exam-
ples being Chem4Word [11] but this has limited reach
and capability relative to the overall needs for data ac-
cess. While there has been significant success in many
fields regarding the interpretation of human readable
text, the obvious example being Internet search engines,
the same cannot be said for chemical structures, which are
a fundamental datatype in chemistry. Because chemical
structures, and meta-groups of structures such as reaction
schemes, are represented using opaque formats intended
only for visual display, it means that almost all published
chemical information is essentially dark data. Noble ef-
forts to extract this information by text mining of chem-
ical names [12-15] or optical structure recognition [16-18]
have resulted in an error rate that is so high that it is
arguably making the data scarcity problem worse. Inject-
ing such data into the overall knowledgebase without
provenance degrades the ability of any efforts to use
this information. On the other hand, efforts to encourage
scientists to publish quasi-formatted data, such as Excel
spreadsheets, online collaborative documents, or comma
separated text files with SMILES or InChI hash codes,
are problematic. While these formats have a much higher
degree of machine interpretability than those designed
only for visual presentation, they are highly flawed due
to a combination of incompleteness of description and
high degrees of freedom, which join forces to ensure that
such data sources are rarely meaningful to software with-
out an expert scientist on hand to provide the missing
context.
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The thesis of this article is that chemical data in gen-
eral, and freely available open data in particular, needs to
undergo an inversion of priorities: whether explicitly or
not, when scientists publish chemical information, their
first and most important customer base is software algo-
rithms, while their secondary audience is human beings
familiar with the subject material. The justification for this
ranking is quite simple: machines are difficult to please.
They have no ability to acquire context, and whenever
they are required to make a judgment call, they are only
as good as the foresight of their programmer, who needs
to have anticipated any possible form of ambiguity and
preemptively designed a foolproof solution for resolving it.
Since this is almost never completely the case for unsuper-
vised algorithms, it is generally appropriate to assume that
when handing over data with more than one possible in-
terpretation, the algorithm will end up guessing which is
correct, and frequently guessing wrong. And, to make
matters worse, the results of these interpretation guesses
are often stored in persistent form, which happens every
time a format interconversion occurs, meaning that data
that was initially flawed and incomplete becomes even
more so as it is propagated. This is, in a nutshell, why
most chemical data is inaccurate [19-23]. The solution to
this problem is to bring the originating scientist directly
into the loop, and ensure that they are involved in making
sure that the data is meaningful to software, and by induc-
tion, therefore can also be made meaningful to other
scientists. While much of the burden for this transform-
ation will be dependent on greater awareness and training
of the experimental scientists who create the data, the ex-
pectation of progress is only realistic if it can march in
lock-step with improvement of the standard tools that
chemists use for data entry, as well as improvements to
the data submission standards mandated by those in
charge of data collection (e.g. publishers, librarians, data-
base curators, etc.). This parallels an increasing need,
especially in academia and early career immersion, in
routine procedures regarding structure representation
and searching.
An effective workflow for the creation and distribution

of chemical data is:

1. The scientist (who was directly involved with
the research) enters the data, which typically
includes structure diagrams, numbers, and other
annotations;

2. The data is sent to an algorithm which attempts to
parse the data, and in the event that any data has 0
or >1 possible interpretations, the problem is
reported or warnings issued, and the data is rejected;

3. The scientist views the data as rendered according
to the interpretation of the algorithm; once this is
consistent with the scientist’s original assertion, it
can be released openly, in its raw, machine-
interpretable form;

4. A service can be conveniently invoked to turn the
machine-friendly data into diagrams that can be
viewed in a form that is most convenient to any
scientist who wishes to view the data, and can be
easily embedded within a common manuscript
format.

We are at this point particularly concerned with chem-
ical structure representations, their composition within
larger schemes such as reactions, and their association
with measurement data such as physical properties. This
approach can be extended to analytical data including,
where feasible, validation checking between spectra and
their associated compounds [24,25], or CIF checking [26].
In the greater scheme of things, the amount of detail and
nuance contained in any scientific experiment involves far
more context than just molecules and corresponding data,
but chemical structures and simple properties are a good
place to start, since they are so fundamental: without
representing these well, there is little hope for any of the
remaining data. The status quo for data entry and repre-
sentation of structures and properties leaves considerable
room for improvement.
In the remainder of this article, we will discuss some of

the existing services that are working towards this idea-
lised workflow, some of the common pitfalls, and practical
methods for working around them.

Methods
Public databases
A number of public databases are currently available, but
there are three prominent examples which represent im-
portant data quality approaches: PubChem, ChemSpider
and ChEBI [27]. PubChem is the largest of the three, and
like ChemSpider, it provides a method for user-driven re-
lease of chemical structures and associated data. ChEBI,
on the other hand, makes use of a careful data curation
process, which greatly increases the odds of an individual
record being accurate, but it also keeps the data size much
smaller, and passes on a significant expense to the data
maintainer. PubChem and ChemSpider both aspire to
be comprehensive databases, but differ in their quality
strategies: PubChem relies primarily on upstream data
correction, while ChemSpider is novel in that it has in-
corporated a significant post-upload “crowd curation”
component. While both of these strategies are sound in
principle, and have worked well in many other fields,
they have met with modest success with regard to keep-
ing quality high for millions of chemical compounds. In
the case of PubChem, the problem is that many data de-
positors provide content that they have no immediate re-
sponsibility for, i.e. it had already been laundered through
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many error prone curation techniques and lost all proven-
ance, and the depositor has no motivation to correct prob-
lems. Figure 1 shows a portion of the PubChem search
results for aspirin and cholesterol respectively, where each
of the vendor-supplied links to product pages is marked in
red for unavailable links. Whether the broken links indi-
cate that the submitting vendor is no longer in business,
no longer selling the product, or has changed the identi-
fier without resubmitting a new one, is not known. It
should be noted that this issue of “link decay” is a general
issue for all data aggregators.
In the case of ChemSpider, many tens of thousands of

erroneous data contained within large depositions have
been edited out by pre-filtering routines using desktop
software [28] and there are many examples where known
molecules have been fixed by users of the service, but this
approach runs into issues with scale: there are tens of
millions of records, and the number of end users mo-
tivated to report problems numbers only in the low hun-
dreds [29]. More troublesome, though, is that the crowd
curation approach is generally only effective for spotting
errors that are either obvious or popular. For example, a
search for deuterated ammonium in ChemSpider reveals a
problematic result: Figure 2(a) shows the result when it is
discovered using the ChemSpider Mobile app [30], which
acquires the structure via the public API [31], which de-
livers a structure representation that lacks the isotope in-
formation for the 4 deuterium atoms. Figure 2(b) shows
the same result using the web browser, which renders a
structure that correctly identifies the isotopes, but omits
the negative charge on the bromine atom. Given the con-
text information, most importantly the name and list of
synonyms, it is quite obvious to a chemist that it is the
structure that is wrong, and a solution can easily be pro-
posed. This is an example of where crowd sourced quality
improvement works quite well, because no contextual
Figure 1 Vendor links for PubChem records of aspirin (a) and cholest
(October 2014).
expertise is required to identify both the mistake and the
correct answer, and indeed the data may well have been
corrected by the time this manuscript is published.
The second example, shown in Figure 2(c) and (d) for

mobile and web results respectively, shows a structural
representation of a drug material: aminophylline. It is
not immediately obvious that there is anything wrong
with the structure, given that the active ingredient is
drawn correctly, and the adduct is present. However, the
synonyms that have been imported for the record are
quite explicit about the adduct ratio being 2:1, which
makes the structure inconsistent with the primary name
and all of the synonyms. It is not necessarily clear to
most chemists whether the structure should be modified,
or the name, or whether the distinction is important. In
this case a resolution is quite likely to be obtained, be-
cause the compound in question is a well studied drug,
and there is a fair chance that an expert with specific
knowledge will encounter the datum and be able to pro-
vide an authoritative correction. However there are tens
of millions of compounds that are much more obscure,
and any of them could have an accidental extra methylene,
an incorrect chiral centre, or any number of errors that
encode for molecules that are valid drawings. A structure
that is valid, but represents the wrong molecule, will never
be corrected by an algorithm, and will probably never be
encountered by the handful of scientists who were in-
volved in its use or synthesis. In these large majority of
cases, the mechanism by which the corrupted data was
injected into the greater corpus of knowledge has created
a permanent stain.

Vendor catalogs
One of the major factors behind the increasing availabil-
ity of chemical structure data is the business value that
is associated with a vendor of chemicals making their
erol (b). Links shown in red were unavailable or broken when verified



Figure 2 Two ChemSpider search results: deuterated ammonium bromide, (a) and (b), and aminophylline, (c) and (d). Examples (a) and
(c) show the result as accessed by the ChemSpider Mobile app using the public API, while examples (b) and (d) show the web browser result page.
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wares as easy as possible to find. Making it simple for
anyone to incorporate structures and product identifiers
into a generic chemical searching service is a clear value
proposition, and an additional encouraging feature of
these data sources is that a company that is responsible
for selling a physical package with a particular chemical
compound has a high degree of liability, and is hence
motivated to make a reasonable effort to correctly repre-
sent the data.
Unfortunately these primary sources are diluted by

providers of large scale high throughput screening
data, who prime their customers to expect a certain
degree of noise, and the potentially poor state of the
informatics component is just one of the many failure
modes for experiments that are designed to use quan-
tity to compensate for lack of quality. And, perhaps more
problematic, are the large number of companies that col-
late vendor catalogues from many other sources, losing
much of the provenance along the way, and introducing
layers of errors that cannot be traced back to a single
source. Many of these repackaged vendor libraries have
been submitted to public databases such as PubChem and
ChemSpider, and many of the companies are no longer
contactable, and for whom there is no business value prop-
osition to propagate error corrections. It should be noted
that the hosts of the ChemSpider database developed
more stringent acceptance criteria regarding vendor cata-
logues soon after the initial release of the database [28].
Coupled with their pre-filtering efforts and providing dir-
ect feedback to the vendors themselves to encourage
clean-up of their data has resulted in improved data qual-
ity not only in later depositions into ChemSpider but
likely also for the community in general, but this is an on-
going effort.
Open notebooks
From a data quality perspective, the most promising prop-
erty of open lab notebooks is their directness. The term
refers to a specific kind of electronic lab notebook that is
made openly available to the scientific community shortly
after the experiment writeup is complete, circumventing
the usual lengthy publication cycle and any proprietary ac-
cess restrictions. Typically a data unit, whether it be a re-
action, a measurement, or a characterisation analysis, is
prepared and released directly by the scientist who per-
formed the experiment, and in some cases a second opin-
ion is provided by a principal investigator or reviewer
(albeit with a much faster turnaround time than for con-
ventional publication, and also foregoing the requirement
of novelty). This means that not only is it possible to find
out the individual and organisation responsible for the
contribution, but it also introduces the opportunity for the
experimental scientist, whose knowledge at that point ex-
ceeds that of anyone else on this specific piece of data, to
verify that the transmission of the data was carried out
correctly.
A pertinent example is ChemSpider SyntheticPages (CSSP)

[32], which is an online “micro-publishing” site serving
chemists interested in chemical syntheses. Chemists are
encouraged to publish the details of their experiments in
order to communicate the details of their work. CSSP uses
a template-based entry form and multimedia support
including interactive display of various types of analytical
data. The articles are reviewed by the CSSP editorial
board, made up of university professors, as well as then
being peer-reviewed by the incorporation of public com-
mentary post-publication. The pre-publication peer re-
view is generally very fast (24–48 hours) and even
post-publication edits can be made as CSSP is a hybrid
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publication-database. Each micro-publication includes a
digital object identifier (DOI) making the CSSP contribu-
tion a citable object on a CV.
It is the scientist-to-Internet transmission step that we

believe is in most need of attention. Most chemists work-
ing to produce new knowledge in experimental laborator-
ies are not trained cheminformaticians, and have a strong
tendency to follow currently accepted best practices for
documenting their results. At the present time, this typic-
ally involves using off-the-shelf documentation software,
such as the ubiquitous Microsoft Word and Excel, and
software such as ChemDraw or ChemDoodle that is spe-
cially designed to help chemists create graphics for incorp-
oration into such general purpose packages. Unfortunately
the use of these software tools all too often makes correct
machine interpretation of the data impossible: even in
cases where data from drawing packages is available, the
reality is that these tools are designed for creation of dia-
grams, not machine interpretable data, and there is no
guidance as to which visual aids are completely and un-
ambiguously meaningful to an algorithm. There are docu-
mented standards for visual representation [33,34], but
there has been little effort to implement these for the pur-
pose of lossless interconversion between presentation and
informatics.
Much attention of late has been given to modern on-

line collaborative tools, such as using Google Docs to
coauthor and share content, and for using electronic lab
notebooks (ELNs) with a blog-like interface [35]. While
excellent for sharing data in real time, they do nothing
to solve the problem of machine interpretability of
chemical data. Freeform text and uploading of arbitrary
supporting files gives the maximum scope for scientists
to describe their experiments, but it is also the worst
case scenario for creating a fully automated script to
gather diverse data into a single collection of relevant
content in order to provide actionable intelligence. Some
progress in terms of checking data formats is being
made by the utilisation of chemistry specific components
into the Labtrove platform [36].
There are other approaches, such as disciplined use of

spreadsheets for the purpose of producing comma/tab-
delimited text files, where structures are represented as
SMILES or InChI strings, or database identifiers. Con-
sider the example shown in Figure 3, which shows sev-
eral molecules from a series of molecules created as
potential tuberculosis inhibitors, all of which are based
on a common scaffold template, shown in 3(a). The
structures used in the dataset, shown in 3(b), are drawn
in a way that makes the common structure evident to a
chemist. Were these structures to be converted into a
line format, such as SMILES or InChI, in order to cram
the data into a text file or spreadsheet, the nuances of
layout and orientation would be lost: the re-depicted
structures, shown in 3(d), are oriented randomly and do
not reveal their commonality to the perceiving chemist,
at least not without some careful study. For certain
purposes, the structures in 3(b) and 3(d) are the same
(e.g. looking up in a database or calculating properties),
but for purposes of communicating the information to
chemists, they are quite different when considered as a
collection. Re-derivation of scaffolds and orientation can
be attempted after the fact, but it is far more advisable to
avoid destroying the information in the first place [37-39].
Also, changes in atom order, Kekulé/resonance form,
treatment of implicit hydrogens, standardisation of func-
tional groups or tautomers, and failure cases when using
molecular bonding arrangements that are outside of the
domain of the representation, means that often what
should have been a commutative operation results in a
structure that has many more points of difference than
just layout.
The pitfalls of using line notation for structures also

apply when using database references in lieu of struc-
ture, which is an option when all of the entries are
known to already be in the database, e.g. using Chem-
Spider ID codes, but this is equally destructive of data. A
public database will typically have one globally preferred
structure representation which has been normalised and
drawn in some preferred manner which is not necessar-
ily most appropriate for the task at hand. Using exter-
nal identifiers also introduces a slew of additional issues,
e.g. if access to the Internet resource is interrupted, the
data becomes unusable until it is restored. Also, records
can be changed or deleted, and there is always the possi-
bility that the database provider may one day cease to pro-
vide the service at all.
Besides issues with structures, there are many other

reasons to avoid using an overly simplified text represen-
tation when properties are being included. For example,
a comma delimited text file might contain a heading col-
umn described as “IC50”, and for which each following
row has a number. It is pervasive practice to omit any
further information such as units, errors, target, sample
size, conditions, etc., which means that data stored in these
files contains an enormous amount of implied context. If
the data is being shared between two scientists working on
the same project this may not be an issue, but if it is being
uploaded into an aggregate dataset for purposes of ma-
chine learning or database reference, it is worse than use-
less, due to its lack of provenance and context.

Data formatting
When releasing open chemical data in a format intended
to be parsed by both humans and machines, there are
many options for file format encodings, but few that
meet all the necessary requirements. Data that is being
associated with one or more chemical structures needs



Figure 3 A selection of compounds (b) based on a common scaffold (a). Canonical SMILES strings are shown in (c), and their re-depicted
structures shown in (d).
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to begin by taking into consideration the ability of the
selected file format to preserve all of the relevant nu-
ances of a chemical drawing. There are many details to
consider, but at the most basic level, there are two im-
portant questions that should be asked:

1. Can an algorithm correctly and unambiguously
determine the molecular formula?

2. Is it possible for software to use the representation
to create a diagram that reflects what the scientist
originally drew?

There are surprisingly many chemical structure for-
mats that are unable to guarantee that an algorithm can
determine the correct molecular formula from the draw-
ing. These shortcomings have mostly to do with implicit
hydrogen atoms and inline abbreviations. The implicit
hydrogen problem is a side effect of chemists’ shorthand,
and works well in simple cases, but poorly defined
valence rules for unusual bond types, and the absence of
a common method for overriding the default formula,
means that many nontrivial molecules cannot be drawn
using the most popular cheminformatics file formats,
such as MDL Molfile [40]. Abbreviations are also a per-
sistent problem, since many structures are difficult to
represent in a human-readable way without abbreviating
certain groups, but since there is no universal repository
for abbreviations, and many research groups invent their



Table 1 Atom and bond properties, and currently reserved
extensions, used by the SketchEl molecule format

Atom core properties

Element An arbitrary string, which typically matches one of the
symbols from the periodic table. If not an element, and
there is no inline abbreviation for the atom, then the
overall representation does not encode a molecule, but
rather a template or query.

x, y 2D layout positions, in quasi-Angstrom units, with the
idealised bond length being 1.5.

Charge Formal atomic charge for the chemical species: must be
an integer.

Unpaired Number of unpaired electrons: a whole number. This is
used to help calculate the valence, and is primarily
relevant only for main block elements.

Virtual
hydrogens

By default, implicit hydrogen atoms are calculated
automatically for C, N, O, P and S, and zero for all other
elements. Non default values allow the number of extra
hydrogens to be specified explicitly, as 0 or more.

Extensions An arbitrary list of strings associated with the atom, some
of which have prefixes that are reserved (see below).

Bond core properties

from, to The two connecting atoms for the bond.

Order Bond order: a whole number, which is typically one of 0,
1, 2, 3, 4 or 5. Values of 4 and 5 are extremely rare, while
values of 0 are used extensively for bonding arrangements
that do not follow the simple Lewis octet rule.

Stereo type Flat by default, but can also be inclined or declined
(so-called wedge bonds) or non-stereospecific (usually
drawn as squiggly lines).

Extensions An arbitrary list of strings associated with the atom, some
of which have prefixes that are reserved (see below).

Atom reserved extension properties

z Optional third dimension: the existence of z-coordinates
implies that the molecule is not a flat 2D depiction but
rather a 3D conformation.

Isotope Specific isotope enrichment, where the default value of 0
implies a natural isotope distribution.

Mapping
number

Integer mapping number associated with the atom. This
can be used for any purpose, but is often for correlating
atoms in a series or a reaction.

Query Query properties used to specify how to match a variety
of atom types.

Abbreviation Inline abbreviation, containing a terminal substructure
fragment that defines the entire molecular species that
the placeholder atom represents. Can be recursive, i.e. the
abbreviation can contain its own abbreviations.

Bond reserved extension properties

Query Query properties used to specify how to match a variety
of bond types.
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own overlapping sets for localised use, it is necessary to
have a way to define these internally as part of the struc-
ture definition. Additional problems are introduced
when using drawing software designed for diagram cre-
ation, which offers a large variety of drawing primitives
that have no meaning at all (e.g. circles, symbols, free
form text, etc.). These file formats are a superset of the
collection of meaningful objects, and they cannot be
used unless the operator has a strong understanding of
which objects are valid and which are not. This informa-
tion is not generally known to experimentalists, and not
communicated by the drawing software.
The need to recreate a diagram with the original lay-

out, orientation, wedge-bonds, resonance patterns and
various other nuances rules out the use of any popular
line-based formats that exclude atomic coordinates.
There are many advocates of the use of SMILES or
InChI codes for raw structure representation [41],
mainly because they are convenient for storing in
spreadsheets or text files, and have intrinsic canonical
properties. Both of these features enable limited use of
chemical data by general purpose software that has no
cheminformatics capabilities, which is often a necessary
evil for data manipulation. However, the amount of data
destruction involved in converting a 2D sketch into a
short canonical string is highly detrimental to data integ-
rity. As long as chemically aware software is available,
there are no advantages to using canonical strings to
represent structures, since these can be derived on de-
mand from the original representation, which creates a
break-even-or-lose scenario: for this reason it should not
be done unless there is no alternativeb.
One of the chemical structure formats that meets the

objectives of data integrity more effectively than most is
that used by the SketchEl [42] open source chemical
structure editor. The format is designed to capture 2D
sketches, but takes an extreme minimalist approach to
its core datastructure [43] which enumerates a list of
atoms, and a list of bonds, as indicated in Table 1. Not-
able features are the inclusion of the zero-order bond
and the option to control the number of virtual hydro-
gen atoms associated with each actual atom [40]. Using
these simple additions, it is possible to describe any
molecular species and ensure that the molecular for-
mula is correct, regardless of how exotic its bonding
arrangements are, and for the most part it is possible
to devise a reasonable representation of the atom valence
states.
In spite of its minimalism, the format is also extensible

in a way that is both forward- and backward-compatible.
A number of properties are optional: these, properties
that will be defined in the future, and custom properties
that are not a part of the formal specification, are stored
in a way that preserves the read/modify/write integrity
for algorithms that do not care to implement them. This
is in contrast to formats like MDL Molfile: if a software
package writes a molecule that makes use of a property
that is not part of the lowest common denominator sub-
set that most implementations can handle, or defines its
own extensions, the extra data will be either deleted or
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corrupted if it is submitted to a software algorithm that
does not implement the property correctly.
One of the optional extensions that can be imple-

mented is the inclusion of inline abbreviations. For most
cheminformatics formats, if the user wishes to represent
a common abbreviation, e.g. the use of Ph to represent
phenyl, the atom name is simply given the text “Ph” in-
stead of a valid element. If all goes well, the cheminfor-
matics software that is interpreting the structure will
have its own special lookup list which recognises this
shorthand notation. This approach is haphazard at best,
and the SketchEl format solves the problem by defining
abbreviations inline. Figure 4 shows two approaches to
representing bromobenzene: in (a) the 7 heavy atoms are
drawn out in full, while in (b) the phenyl (C6H5) frag-
ment is written as a single node with a text abbreviation.
If the abbreviation atom is created in the same way as
for an ordinary element symbol, saving the structure as
an MDL Molfile would be equivalent to the text shown
in (c). (It should be noted that while the MDL Molfile
specification does include a specification referred to as
“S-groups” which can be used to achieve a similar effect
as inline abbreviations, this file format suffers from the
fact that it has literally thousands of implementations in
current use across the industry, and that most of these
implementations only make use of a small lowest com-
mon denominator subset. Because the format is defined
in a way that makes the the load/modify/save workflow
destructive of unsupported properties, any property that
is outside of the commonly implemented subset is fre-
quently at risk of being deleted or corrupted. Making
use of features such as S-groups substantially reduces
the number of software packages that are compatible
with the data). This encodes for a 2-node structure, of
which just one is an element symbol, and so the chem-
ical meaning would be invalid to any parser that did
not implement special meaning for the “Ph” symbol.
A well specified SketchEl file is shown in (d), which
uses the inline abbreviation form to explicitly include
Figure 4 Bromobenzene, drawn in full (a) and with an abbreviation (b
the SketchEl representation with the abbreviation encoded inline is shown
the fragment to which “Ph” corresponds, i.e. the phenyl
ring itself, and the attachment point. The sub-fragment
definition contains all of the information necessary to dis-
play or recreate the fragment, and hence represent the
structure with all of its atoms, and infer the correct overall
molecular formula.
The name of the abbreviation is defined in lieu of the

element symbol, and the structural fragment is defined
completely within the extension field. Software that does
not implement the abbreviation mechanism can read,
view, modify and write SketchEl molecules without
destroying information, while abbreviation-aware soft-
ware can provide value added functionality, such as op-
tionally showing the full structural definition by request,
or providing convenient ways to select from currently
available abbreviations, or subsuming existing structural
fragments as new abbreviations or molecular formulae
(e.g. Ph could also be represented as C6H5). Abbrevia-
tions can also be nested, e.g. a fragment defined as Et3Si
may expand out initially to a silicon atom with 3 ethyl
“atoms”, which are themselves abbreviations for C2H5.
Figure 5 illustrates the levels of abbreviation: (a) is drawn
out in full, with each heavy atom represented as its own
node, encoding for the molecular formula of C6H16Si;
(b) collapses each of the ethyl groups into a single abbre-
viated composite fragment, each node of which has the
implied molecular formula C2H5; (c) represents the whole
silyl fragment as an abbreviation-of-abbreviations, compil-
ing the 3 ethyl groups and the silicon atom from (b) into a
single meta-abbreviation.
While the SketchEl format cannot intrinsically represent

many higher orders of metadata, e.g. mixtures of com-
pounds with different stereochemistry or constitutional
isomers, these definitions are difficult to pinpoint with a
single proto-structure in a way that is not ad hoc: a more
rigorous approach is to define a higher layer of abstraction,
which either enumerates the different molecular species
explicitly, or in complex but regular cases such as Markush
collections, defines its own enumeration formula.
). The Molfile with the plain text abbreviation is shown in (c), while
in (d).



Figure 5 Three different representations of triethylsilane, using
different degrees of abbreviation.
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Assembling collections of molecular structures brings
a similar capability wish list: a format should be minima-
listic, simple to define, easy to implement, and most im-
portantly it should be forward and backward compatible,
so any implementation of the specification can read,
view, modify and write the data with reasonable assur-
ance that important content will not be destroyed or
corrupted. Since the most common use case scenario for
multiple structures and data involves representation in a
tabular format, roughly analogous to a spreadsheet with
a molecular datatype, it makes sense to define the core
data format in this way, whereby more exotic data ar-
rangements are mapped onto the table with higher order
metadata.
These characteristics are implemented by the data-

sheet XML format, which is also used by the SketchEl
package, for editing collections of structures and data.
At its core it is a very simple tabular format, where each
column is strongly typed, and is one of molecule, string,
integer, real number, or boolean. Molecules are embed-
ded using the SketchEl molecule format. For many data
collections, e.g. lists of molecular structures with their
associated identifiers (name, link, database ID, etc.) and
properties (activity, solubility, melting point, etc.), the
core format is quite adequate.
For additional labelling, or for higher order organisa-

tion such as arranging multiple structures into reaction
schemes, the datasheet header allows for extensions,
which contain arbitrary content that is generally not
shown to the end user. Extensions that follow a specific
protocol are described as aspects. The principle of the
aspect extension mechanism is that if a software applica-
tion implements the aspect, it should provide additional
capabilities, such as alternate viewing modes, specialised
editors or additional classification information. An as-
pect is required to be as tolerant as possible of disruptive
external modifications, e.g. if one of its necessary col-
umns is deleted, it will recreate the column using default
values. If the software application does not recognise the
aspect, it should still be able to load the datasheet,
present it to the user in its default tabular form, allow
cells to be edited, rows to be added or deleted or moved,
and in some cases modification of column names and
types, without necessarily disrupting the higher order
markup. For example, if an aspect defines the default
units for a given column, loading the datasheet with an
unaware editor and modifying the quantity values pre-
serves the read, view, modify, save integrity, as long as
the user is aware of what the numbers represent. If an
aspect defines a chemical reaction, where a number of
molecule columns are used to define the various compo-
nents, it is possible to use a minimal editor to change
some of the molecular structures, and still preserve the
reaction definition.
Figure 6 shows several examples of datasheet aspects

that are currently in use. Figure 6(a) demonstrates the
Solvent aspect, rendered using the Green Lab Notebook
app [44]. The aspect definition is quite minimal, and
merely suggests more visually informative ways to display
several environmental and physical properties. Molecular
datasheets containing this aspect can be effectively viewed
and edited with a tabular spreadsheet-like editor that does
not implement the aspect, which is shown in Figure 7.
Figure 6(b) shows an example of the SARTable aspect,
as rendered by the eponymous SAR Table app [45]. This
aspect definition adds explicit definitions to distinguish
columns of scaffolds and substituents, and the composite
molecule that is formed by grafting them together, as well
as additional information about properties regarding their
units and operating range. As with the Solvent aspect, an
unaware molecular datasheet editor can be used to effect-
ively view and modify such data, as long as the operator
takes some care to respect the column layout, but will not
benefit from some powerful editing capabilities, such as
scaffold detection or automatic recomposition of the mol-
ecule each time the fragments are changed.
Figure 6(c) and (d) both show renditions of aspects

that encode for chemical reactions. The Reaction as-
pect, shown in (c) rendered by the Mobile Molecular
DataSheet app [46], combines a number of columns con-
taining molecules, text and numbers into a single reaction
step, which is ideally rendered as a single graphical object
representing multiple components. The Experiment as-
pect, shown in (d) rendered by the Green Lab Notebook
app, is a subclass of Reaction, which augments the defini-
tions with additional information such as quantities and
component roles, and also allows for multiple steps. While
datasheets containing the Reaction or Experiment aspects
can be viewed and edited by software that does not rec-
ognise the aspects, the meaning of the content is less
clear to the viewer, since a spreadsheet-like represen-
tation is quite different to the reaction component layout
algorithms used by the software that implements these
aspects.
Chemical data that is stored using the datasheet XML

format, with embedded SketchEl molecules, conforms to
a very well defined, easy to implement core specification
for data purity. Both molecules and datasheets can be
extended as necessary to describe more complex concepts,
which are often necessary to ensure machine readability,



Figure 7 Using the open source SketchEl editor to view and modify a datasheet that has an embedded Solvent aspect, which can be
done safely and conveniently even though the SketchEl application does not implement the aspect.

Figure 6 Some of the datasheet aspects currently in use: (a) Solvent aspect (displayed by the Green Lab Notebook app), (b) SARTable
aspect (displayed by the SAR Table app), (c) Reaction aspect (displayed by the Mobile Molecular DataSheet app) and (d) Experiment
aspect (displayed by the Green Lab Notebook app).
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Figure 8 (a) Original drawing of ferrocene carboxylic acid
using a limited alphabet of bond types (CASRN 1271-42-7);
(b) modified structure after automated processing (PubChem
ID 11986122).
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but their core definitions are highly functional, and gener-
ally safe to edit without specific knowledge of higher order
markup.

Data entry
One of the valuable properties of open data is the close
connection between the scientist and the content, which
can be treated as an opportunity to solve some of the
most pernicious data quality issues in chemistry. When
it comes to aggregated collections of molecular struc-
tures, there are two main kinds of problems: structure
representations that are demonstrably wrong in the ab-
solute sense, and those which could be correct, but in
the given context, the wrong chemical species is being
described.
A significant amount of work has been invested in the

former category, for example the ChemSpider Validation
and Standardization Platform (CVSP) [47] (also see:
Karapetyan K, Williams AJ, Batchelor C, Sharpe D,
Tkachenko V: The Chemical Validation and Standardization
Platform (CVSP). Large-scale automated validation of
chemical structure datasets, accepted for publication to
Journal of Cheminformatics). This tool embodies chemical
knowledge that can search for a number of common
structure mistakes, or representations that do not follow a
protocol, such as covalently bound salts (Na-Cl) or penta-
valent nitro groups. Many of these examples are common
and easy to fix, but there are many more examples that
cannot be corrected without knowledge of context. Fur-
thermore, there is no way to ascertain whether a molecule
is the right one when there are multiple reference points.
For example, a data record that provides a bioactivity
measurement for a molecule named “aspirin”, for which
the structure given is salicylic acid, even a smart algorithm
that is able to find out that aspirin is the acetylated form
cannot know whether the data record provided the wrong
structure or the wrong name, unless the provenance is
somehow recorded. Whether the molecule or the name
should be trusted preferentially, and if there are conflicts
within either of these, which source has precedence,
means that each data collection needs a complex and elab-
orate policy for judging data quality. These challenges
have directly influenced some of the approaches associ-
ated with the Open PHACTS semantic web project [48]
where a “chemical lenses” approach has been utilised to
focus the user in on various forms of the chemical [49].
Proactive “fixing” of structures is capable of doing more

harm than good. Consider the ferrocene derivative shown
in Figure 8: this compound has been imported into
PubChem from several sources, one of them being the
NIST WebBook [50]. The structure representation used
by the NIST source is shown in 8(a): it is an admirable at-
tempt to work within the constraints of the commonly
implemented subset of the MDL Molfile format, using
only simple bonding types. While the rendition fails to
capture the aromaticity of the cyclopentadienyl ligands, or
the oxidation state of the metal, it successfully represents
all of the points of connection between the metal and the
organometallic fragments, and does so in such a way that
the valence states of the carbon atoms add up to the cor-
rect number, which means that even the most trivial im-
plicit hydrogen counting algorithm will infer the correct
molecular formula. Consider, however, the post-processed
structure that is incorporated into PubChem, shown in
Figure 8(b), which is obviously broken. The PubChem
molecular structure representation has a larger alphabet
of bond types than that which is in common use by most
software, which can in principle be used to good effect,
but in practice this is not necessarily the case. As can
be seen, the processed form adds 6 negative charges to a
molecule that was (and should be) overall neutral, and
produces a seemingly arbitrary single/double bond pattern
within the 5-membered rings. While it may seem unfair to
use an example of a molecule that is difficult to represent
using fundamental cheminformatics primitives, the point
is that using an automated structure correction algorithm
is not a same-or-better proposition: such algorithms can
and do break structures that were originally correct.
Nonetheless, the tools for ensuring that a molecule is

both valid and standardised according to a set of rules is
extremely valuable when incorporated into the editing
workflow, i.e. at the source of entry when user interven-
tion is still an option, rather than using automated scripts
further downstream. Violations can be highlighted during
the editing of a molecular structure, and flagged again if
the user attempts to submit the entry to a database.
The adherence to hard rules for structure validity is

often appropriate for processing large databases with
preexisting quality issues, but a heavy-handed approach
is not appropriate for original data entry. For example,
when a chemist draws a pentavalent carbon atom, it is
usually a mistake, and software that can call attention
to this likely mistake as early as possible is beneficial.
Nonetheless, there are real reasons for representing such
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species (e.g. carboranes [51]), which raises an important
point that is sometimes lost in software: the originating
scientist is always the final arbiter. There is usually at that
time nobody in the world who knows more about the par-
ticular unit of research being described, and the rule set
designed for a particular software package is far down the
list of contenders.
Besides calling attention to what appear to be actual

problems with structures, the advice that an editing tool
should be providing is real time feedback on how the
structure would be interpreted by an algorithm in its
current state. The number of drawing conventions in
common use by chemists, which are enabled by many
chemical drawing packages, but have no broadly ac-
cepted cheminformatics interpretation, is enormous. Ex-
amples can be found throughout all kinds of synthetic
chemistry literature. Figure 9 shows two common exam-
ples with simple organic compounds: in (a) the chiral
centers are denoted using the (R) and (S) labels, which
chemists often draw using plain text labels when prepar-
ing manuscripts. These annotations are meaningless to
machine algorithms, and so the structure would be
interpreted as having two unresolved chiral centers,
which is not what is being represented. In (b), a com-
mon shortcut for pictures is used: the X and R abbrevia-
tions together encode for a total of 4 different chemical
species. Even if the cheminformatics software were able
to ascertain that the non-element labels are placeholders
for fragments, the way in which the ortho/para isomerism
is drawn makes the direct interpretation of the template a
mixture of two separate connected components - C6H5X
and CH3R - which happen to have an overlapping bond.
An algorithm would have to not only use text mining to
find out the composition of the fragments, but also further
interpret the label and other contextual clues in order to
determine that the intended connectivity is quite different
to what is literally stated.
While such underappreciated problems with organic

compounds are prevalent throughout the literature, the
problems become far worse when venturing into inor-
ganic and organometallic chemistry. One of the
Figure 9 Two descriptions of organic compounds that are
unlikely to be understood by cheminformatics algorithms:
(a) plain text annotation of chiral centers; (b) mixture of
compounds with varied connectivity.
archetypical examples of the failures of cheminformatics
software is the case of tin (II) chloride. Most chemists
would expect to be able to draw the structure shown in
Figure 10(a), and to be able to rest assured that any soft-
ware algorithm would understand that this represents a
species with the molecular formula of SnCl2. There is,
however, a very high likelihood that an interpretation al-
gorithm will apply valence rules to calculate the number
of implied hydrogens and, knowing that tin is in group 14,
treat it the same way as for silicon or carbon, which means
that the perceived structure is as shown in Figure 10(b):
H2SnCl2. This is most likely incorrect, but the hydroge-
nated form is still a legitimate structure, albeit difficult to
handle in the laboratory. One might be tempted to solve
the problem by not automatically adding hydrogen atoms
to tin, but this runs the risk of breaking interoperability
with other software. For example, if the user had drawn
methyl groups instead of chlorine atoms, the most prob-
able structure that was being referred to is (CH3)2SnH2, i.
e. the organotin (IV) compound, for which implicit hydro-
gens should be added. This is a pertinent example, be-
cause for tin halides, the divalent forms tend to be stable
compounds, and the hydrogen-saturated form is generally
highly reactive, whereas this pattern is reversed for orga-
notin analogs, for which carbene equivalents are usually
only observed as fleeting intermediates. This kind of
chemical knowledge that can often be assumed of human
chemists is almost never taken into account by cheminfor-
matics algorithms, and nor should it be, given that the
scope for complexity is effectively infinite. As with all such
ambiguities, the solution is to properly define the rules,
and include ways to explicitly indicate any exceptions. Fig-
ure 10(c) uses 3 different ways to solve the ambiguity for
tin (II) chloride: indicating that there are 2 valence elec-
trons not used for bonding; specifying the oxidation state;
and explicitly marking the number of virtual hydrogens as
being zero. Any one of these methods will suffice in this
example.
Figure 11 shows a structure that is difficult to draw by

any definition: an iron dimer of a commonly used syn-
thetic fragment. The drawing in 11(a) shows a chemist-
friendly graphical representation, which is suitable for
publication in manuscripts [52]. As drawn with most
chemical structure drawing tools, this has a number of
problems. The cyclopentadienyl ring is drawn with a
Figure 10 Tin (II) chloride, (a) drawn naively; (b) interpreted
incorrectly; (c) redundantly over-specified.



Figure 11 Two representations of cyclopentadienyldicarbonyliron
dimer: (a) diagram style preferred by chemists; (b) a more
fundamental representation that does not mislead
cheminformatics algorithms.
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ring, which is a graphical object that has no meaning to
cheminformatics, so rather than defining the fragment
as C5H5 (with an extra electron), it is literally interpreted
as cyclopentane, i.e. C5H10. The line emanating from the
metal to the center of the ring is interpreted as a methyl
ligand, rather than an η5 multicentre attachment. The
use of the wedge bond to denote a 3D effect does in this
case conflict with its use in cheminformatics to denote
chirality, and may be stripped out or used in some way
to label a chiral center that is not real. The terminal car-
bonyl ligands are encoded as “CO” and “OC” respectively,
which are not elements, and so are meaningless. All of
these issues are quite unimportant for human-to-human
communication, since the mapping between these draw-
ing conventions and the corresponding claim about the
chemical reality are well understood by organometallic
chemists, but the absence of a corresponding mapping
from graphics-to-cheminformatics means that these dia-
grams are unsuitable for use by machines. Figure 11(b)
shows an alternative representation of the same structure,
which is restricted to use of a graph containing only atom
nodes and bond edges. The use of zero-order (dotted)
bonds means that the atoms are all represented with a rea-
sonable valence count, all atom-to-atom connections have
an explicit bond edge, and that the structure distinguishes
between dative and anionic ligand types. The atypical
bonding of the terminal carbonyl ligands is represented by
explicitly indicating a carbene-like lone pair on the ligand
atom, which is one way to ensure that implicit hydrogens
are not erroneously added.
While the second structure diagram in Figure 11 is

much less appealing for purposes of manuscript prepar-
ation, this illustrates the primary argument of this article:
imagine two algorithms, one designed to automatically con-
vert from the human-friendly format (a) to the machine-
friendly format (b), and the other to perform the opposite.
If both algorithms have a comparably high but imperfect
success rate for a given domain (e.g. 99%), it is over-
whelmingly preferable to use the machine-friendly format
for the primary repository, because of the asymmetry of
consequences. When a structure drawn for humans is
parsed incorrectly into a machine format and injected into
a database, all too often the error goes unnoticed, and if
the provenance is not retained, then the corrupted data
will surely find its way into the body of scientific know-
ledge and continue on to befoul any and all data process-
ing operations that it comes into contact with. If on the
other hand the data is represented in a machine-friendly
way, and algorithmically converted into a human-friendly
graphical format as needed, the consequences of failure
are minor. For high quality uses such as manuscript prep-
aration, rare flaws will generally be noticed and can be
corrected easily enough, since literature publications are
carefully scrutinised by several reviewers prior to publica-
tion. Even if a sub-optimal drawing is published, as long
as it is correct, the fallout is likely to be manageable. For
low quality uses, like browsing search results from a data-
base query, occasional representation of structures in a
way that is correct but not aesthetically ideal is a small
nuisance, compared to data corruption.
As well as such valence issues, a large category of data

entry issues arise from the use of text. As a general rule,
any text in a structure diagram that does not map to an
element in the periodic table brings with it an additional
burden for ensuring that its meaning is strictly defined.
Free text, e.g. a label that says “chiral” or “cis/trans”, is
clearly not applicable, but as mentioned earlier, abbrevia-
tions can be dealt with by ensuring that they are defined
within the chemical structure - though not with free text
labels such as “L = PPh3”. Other kinds of abbreviations,
such as X, R, R1, R2, etc., serve as element placeholders
and their presence implies that the representation is of a
template, rather than a structure. It is important to ensure
that these structures are never submitted to a database
without some accompanying formula that specifies how
the template should be converted into actual chemical
species, but fortunately this is easy for data curation algo-
rithms to detect, and reject due to missing information.
One of the best visual aids for educating scientists

about what their structure diagrams actually mean to a
machine algorithm is simply to display the computed
molecular formula for particular fragments. This is a
concept that is deeply ingrained for all chemists, regard-
less of their level of affinity for cheminformatics software.
If the example in Figure 11(a) is reported as having a for-
mula of C14H28Fe2[CO][OC], the chemist does not need
to be convinced that there is a problem: this is not the
chemical composition of the molecule, which means that
knowingly submitting this representation to a database is
tantamount to scientific fraud, and therefore something
must be done about it.
The most effective way to ensure that structures are rep-

resented accurately is to use data entry tools that operate
on a fundamental datastructure, such as the SketchEl
molecule format, or an enhanced variant of the industry
standard MDL Molfile [40]. Using graphical diagram
drawing tools is problematic, because the functionality
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they provide is a superset of what is valid for cheminfor-
matics purposes, and there are no algorithms that can
transform an aesthetically styled structure into a machine
readable valid equivalent with a success rate that is accept-
able. In principle, though, it may be effective to create a
plugin for such software to show the machine interpret-
ation and structural formula breakdown, updated in real
time, in order to ensure that users are aware of when their
stylistic choices result in misleading content, but such
tools are not currently available. This represents a poten-
tial unmet need.

Case studies
Direct data hosting
There are many services that store user-provided chem-
ical data in a fundamental cheminformatics format, in-
cluding the aforementioned ChemSpider and PubChem
databases. These services make use of elaborate content
aggregation features, which involves a large amount of
automated correction. For most organic structures that
conform to simple Lewis octet rules this can be trusted
to leave a well-drawn structure unmolested, but prob-
lems arise when leaving this domain.
The molsync.com site [53] provides an example of a

service that openly hosts chemical data, in its most pure
form, and allows it to be consumed in a variety of differ-
ent downstream formats, for either humans or machines.
We describe some of the properties of this service, be-
cause it differs from most ad hoc Internet sharing facil-
ities in that it provides interpretation and visualisation
of raw chemical data. It demonstrates several key proof
of concept features that should be standard for chemical
data hosting, and can be incorporated into open lab
notebook software.
Data can be uploaded using a simple REST-based API,

after which point it is stored in a database and assigned
an identifier. The data is typically uploaded as either a
SketchEl molecule or datasheet XML document, but
other related formats such as MDL Molfiles will be
automatically converted. From the identifier, a URL can
be constructed, which allows anyone with an Internet
connection to be open the page in a browser.
In browser mode, a standard HTML5 page is created.

The web service fetches the underlying raw data, and
creates the tabular structure shown to the user, as shown
in Figure 12(a).
The outline of the browser presentation uses simple

HTML and CSS. Individual molecular structures, and
some of the higher order metadata specified by aspects
that are implemented by the server - such as chemical
reactions - are drawn using a high grade rendering lay-
out algorithm [54] and passed to the front end as vector
drawing instructions, which means that the page can be
rendered to any resolution, and also can be sent to a
printer or converted into a PDF file without any loss of
quality.

Data exporting
There are two main use cases for data conversion: migrat-
ing to a different cheminformatics format to be consumed
by a specific software application, and the generation of
graphics for presentation or publication purposes.
When raw data is stored in a rigorously minimalistic

and unambiguous format, it is generally effective to con-
vert this data into the lowest common denominator subset
of a less rigorous format, with some potential for informa-
tion loss, which may remain theoretical for a reasonable
domain of use cases. For example, converting a structure
into a V2000 MDL Molfile that is readable by the large
majority of software that can parse the format can be ex-
pected to preserve all of the pertinent information in
many molecule types. For nonorganic structures that can-
not be properly represented with the V2000 format, or for
structures that use inline abbreviations, the conversion
cannot survive a round trip intact, and so the conversion
is an irreversible downstream one. For information that is
pertinent to the destination format, but does not exist in
the core specification of a SketchEl molecule, the extensi-
bility mechanism holds the door open for future improve-
ment, in a backward and forward compatible way. For
example, MDL Molfiles provide a number of capabilities
for specifying chemical queries [55] as atom and bond an-
notations. The SketchEl molecule format can optionally
incorporate analogous extensions, and if the data hosting
service is subsequently upgraded so that it can convert the
overlapping subset of functionality to the MDL Molfile
equivalent, then this capability can be introduced at any
time. The operation is commutative to the extent that the
definitions match.
Similarly with collections being exported as MDL

SDfiles, a significant amount of metadata is lost, particu-
larly regarding the columns and types, and so it cannot
always be assumed that an upstream conversion will pre-
serve all of the original data. Other destination formats
have more interesting caveats. For example, the Chemical
Markup Language (CML) [56] is for all practical purposes
a superset of all possible chemical formats, since add-
itional tags can be introduced by any writer without af-
fecting validity, which passes the interpretation problem
down the line: there is no guarantee that other software
will understand the choice of properties, meaning that
interoperability is very low.
Converting a rigorous, minimalistic cheminformatics

format into manuscript quality graphics is not a simple
task. Because high level aesthetic style information has
no place being stored in the core definition of a datas-
tructure that is intended to describe the chemistry in a
way that is understandable to machines, it means that



Figure 12 Sharing chemical data using the molsync.com service, which stores the raw datasheet with any applicable aspects. The
default (a) view is an HTML5 page, using resizable vector graphics, which can be downloaded in a variety of informatics or customised graphics
formats (b).
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the rendering process involves the creation of a lot of
additional information, namely the positioning for each
of the labels, bonds and various other annotations [54].
While the loss of layout cues in the core datastructure is
unfortunate in the case of structures that were originally
imported from a drawing program that allowed the user
to specify such preferences, it does mean that all struc-
tures are created equal as far as visualisation is concerned,
as long as the 2D coordinates and wedge bonds for each
of the non-virtual atoms are chosen to suit. Since many
structures are partially or completely composed using al-
gorithms, rather than being hand drawn, it is highly bene-
ficial to be able to create high quality diagrams without
additional user intervention. One alternative to insisting
on algorithmic recreation of aesthetic properties is to store
layout hints (e.g. atom colours, charge positions, etc.) as
optional non-fundamental extension properties.
As with cheminformatics formats, there are a number of

graphics formats to choose from, and the most appropri-
ate of these varies depending on the destination. The most
universally recognised format is the Portable Network
Graphics (PNG) format, which is a bitmapped format.
Until recently this was the only practical method for
displaying custom graphics on a web page, but has major
limitations, e.g. the resolution has to be selected prior to
generating the page, as well as a litany of other inconve-
niences. All too often manuscripts created with wordpro-
cessing software incorporate bitmapped graphics, and
these need to be generated at a much higher resolution
than what is suitable for screen viewer. A document with
screen-resolution bitmapped graphics appears shoddy
when zoomed to a non-default resolution, and frequently
almost illegible when printed or converted into a PDF file,
which describes both of the primary use cases for manu-
script preparation. Since molecular structures are inher-
ently vector diagrams, being originally composed by the
software using a small dictionary of shapes: lines, circles,
curves, etc., it is strongly preferable to represent the draw-
ings in a vector format, which ensures that they can be
rendered as perfectly as the device allows, whether it be a
screen, a printer, or a print-ready file format like PDF.
There are a number of vector graphics formats to choose
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from, and these include Scalable Vector Graphics (SVG),
Encapsulated PostScript (EPS), and embedded graphics
formats like DrawingML, which can be used to com-
pose vector diagrams inside Microsoft Word, Excel or
PowerPoint documents.
The reason for taking the approach of storing chemical

data in the most rigorous cheminformatics format, and
converting it on demand, is that functionality can be
provided as it is needed. Because the data is stored in a
format that is understandable to an algorithm at a fun-
damental level, it can be converted into any format that
the service is currently capable of creating, and taking
into account the needs of any aspects that have currently
been implemented by the service. Figure 12(b) shows the
dialog that is presented when requesting the downloading
of a datasheet with an embedded Experiment aspect. The
list of available formats includes several informatics for-
mats, and number of different ways to render the content
as graphics which can subsequently be used by other pres-
entation packages, including Microsoft Word format with
embedded vector diagrams. The combination of machine-
readable raw data and a chemistry aware service has two
clear advantages over storing pre-prepared files in several
formats: additional output formats can be added at any
time, and the user is also given the option to customise
the output, e.g. by selecting the resolution and colour
scheme for molecular graphics. This approach satisfies the
needs of machines and humans.

Sharing
The Internet provides a seemingly limitless menu of ways
to share information across the globe, and most of them
can be adapted to chemistry in some way, but other than
approaches such as that taken by molsync.com, these sel-
dom have the ability to form a strong association between
the machine interpretable data and the human viewable
Figure 13 The Open Drug Discovery Teams app showing some of the
obtained relating to the Ebola virus, in particular several structures o
rendering thereof. For example, a user can easily use
Twitter to share a graphical picture of a molecular struc-
ture, but since this is just a bitmapped image, to a ma-
chine it is largely indistinguishable from a photograph of
a kitten. The data only regains its full value if an individ-
ual human redraws the structure using a chemical drawing
package (or attempts to parse it with a bitmap-to-structure
conversion tool).
On the other hand, if a user posts chemical data using

molsync.com, or links to a verified entry in a database
like ChemSpider or PubChem, or any other link that can
be resolved to a download that advertises a chemical
MIME type [57] it may well be crawled by information
extraction services. For example, the Open Drug Discovery
Teams (ODDT) project [58] continuously scours Twitter
feeds looking for specific hashtags that relate to its col-
lection of topics, which mostly pertain to rare and neglected
diseases, and other precompetitive scientific topics
(e.g. green chemistry and drug repurposing). Tweets with
links are harvested and added to a database, but those
which have resolvable chemical data are treated specially,
as shown in Figure 13.
Sharing of machine interpretable data is leveraged from

within the ODDT app, and it is easy to obtain it and in-
corporate it within a cheminformatics workflow. The data
is acquired in its pure state, and there is no need to reen-
ter it, because no information was lost during the transi-
tion. We have described how mobile technologies can be
used for secure sharing of data prior to open sharing in
ODDT [59]. In addition we have shown how ODDT can
be used to surface structure activity relationship (SAR)
data from behind paywalls [60] and raise awareness of spe-
cific topics [61,62]. Twitter is also a valuable tool for real-
time microblogging from scientific conferences [63]: there
are an increasing number of scientists who routinely “live
tweet” what they learn during conferences, and there is no
covered topics (a) and a detail view of some of the content
f FDA approved drugs (b).
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reason why digitally accessible data cannot be incorpo-
rated into this stream.
Another novelty feature that the molsync.com service

provides is the display of a molecular glyph, which is the
equivalent of a chemical QR code: its role is equivalent
to a URL, except that when it is printed out on paper,
e.g. on a poster or a label, it is possible to use the
Living Molecules mobile app [64] to photograph the glyph.
Once the payload is extracted, the app is able to go dir-
ectly to the source of the data, and download it in its pure
form, i.e. it is now loaded into the app itself, and from
there it can be viewed, exported, re-shared or used in any
other way that raw cheminformatics data can. We have
shown how this glyph could be used practically to encode
chemical ingredients in consumer products [65].
Conclusion
The increasing importance of data-intensive cheminfor-
matics algorithms, the growing recognition of problems
with existing data collections, and the rising prominence
of open lab notebook data means that the community
has an opportunity to correct some of the persistent data
quality problems that have plagued the field ever since
large datasets began to be made publicly available on the
Internet. Addressing these problems will require a signifi-
cant amount of effort from all participants, starting with
the creators of chemical software tools used for data entry.
Alongside the improvement of available user-facing tools,
an increased awareness is required of individual experimen-
talists who provide the raw data, and the cheminformati-
cians who build systems for collecting and assimilating it.
Some of the data entry tools in current use can already be
used to generate high quality machine readable data, but in
many cases only if there is a significant educational push to
ensure that scientists use them correctly, and this is un-
likely to happen in isolation, unless the tools themselves are
greatly improved. Software creators need to ensure that
their products evolve to make it easier for chemists to oper-
ate them in a way that satisfies the requirements for presen-
tation and digital interpretability.
The need to improve the quality of public data, which is

growing in volume at a very fast pace, is an urgent action
item for the cheminformatics community, but the intro-
duction of open lab notebooks is an opportunity to make
a profound change, because unlike most other sources,
the data is produced by the scientists who conduct the ex-
periments. This immediacy removes the most intractable
problems with correct data representation. That being
said, if we miss this opportunity to train scientists to pro-
duce machine readable data, or fail to deliver adequate
tools form to do so without an unreasonable amount of
extra effort, we will end up in the unenviable position of
having an ever increasing quantity of bad data.
Should we be successful in rising to this challenge, the
outlook for cheminformatics is exciting, since this rela-
tively young industry was incubated during a regime of
scarce data, then came of age in an era of very noisy and
low quality data. It is hard to know for sure how many
of the common techniques in our industry provide
chemical intelligence of middling quality, simply because
the available training data is so poor, and requires so
much effort to extract information from inappropriate
data structures. As the available data simultaneously be-
comes more open, more abundant and of better quality,
we can expect to see improvements to all kinds of chem-
ical algorithms, and new use cases that were previously not
viable due to data problems. We can also expect more
democratisation of chemical data, since the combination of
micropublications with digitally coherent content means
that experimental results will often be published regardless
of whether they are suitable for inclusion in a full length
research article, and it also means that this data will actu-
ally be used. As long as the provenance of the data is
retained, the data collation services that are exposed to any
particular source can make their own decisions about level
of trust. This is in contrast to the current situation, which
more often than not can be described as blind.
The combination of these trends with use of publicly

accessible social networks, such as Twitter, already has
some proof of concept technology, such as the Open
Drug Discovery Teams project. We anticipate that aggre-
gation and evaluation of quality will become a highly
active area of research unto itself, likely with a large crowd-
sourcing component.
In this article we have concentrated primarily on chem-

ical structures, since these are most urgently in need of at-
tention in the field of cheminformatics, but there are
numerous other kinds of metadata that can and should be
incorporated into digital research publications. Allowing
for different kinds of provenance is an important consider-
ation, especially when integrating with the current open
data options, e.g. whether a fact was directly provided as
the result of an experiment carried out by a particular sci-
entist, reentered from another source, text-mined from an
earlier document, etc. For physical properties and activity
determinations, it is useful to know more than just the
units and standard errors: information about the experi-
ment setup, calibration, the target organism, which meas-
urement run the results were obtained from, etc., are all
important. The emergence of standards for capturing this
kind of high level metadata in a semantic form [66] is an
essential step toward enabling the construction of algo-
rithms that can mine the Internet for available knowledge,
and create robust models that are based on something
other than noise.
In short, the solution to the problem of open notebook

science data quality is to apply the same level of rigour
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to the machine readability of the data as would normally
be applied to a printable manuscript. A published paper
is not considered viable until it can be understood un-
ambiguously by chemists, and so exported digital con-
tent should not be released until a machine algorithm
can interpret it without loss or corruption of essential
information. Accomplishing this goal begins with the
improvement of software tools for data entry and use of
the most rigorously complete and well defined data for-
mats, and culminates in changes to the culture of data
publication. This culture shift requires a recognition of
the primacy of machine readability: database maintainers
and journals must do their best to ensure that digital con-
tent makes sense (e.g. chemical structures can be resolved
to a distinct molecular formula, properties have units,
etc.). The experimentalists who submit this content must
be provided with better tools for avoiding common mistakes
(e.g. segregating sketcher tools for creating non-chemical
objects like free text or circles), and have an increased
awareness of the importance of doing so. In the event of
errors in digital content, the traceability of open lab note-
books leads back to the experimentalist who created it,
and it must be understood that releasing flawed digital
content is as much of a scientific faux pas as publishing an
incorrect or misleading figure.
As cheminformaticians, these issues are our domain: it

is up to us to build the tools, and ensure that they are
understood and used correctly by experimentalists, so that
we can leverage the full potential of open science.

Endnotes
aThe number of sellers and resellers of chemical com-

pounds who make their catalogs available to download in
an accessible format, such as MDL SDfile, is large. Specific
instances are not listed in this article for timeliness pur-
poses, since additions and deletions are frequent.

bIt should be noted for completeness though that
InChI does include an AuxInfo layer which can option-
ally encode the coordinates for a structure (http://www.
inchi-trust.org/technical-faq/#11.1) but few are aware of
this capability and it is rarely used.
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