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Abstract. T cells play an important role in adaptive immu‑
nity. Mature T cells specifically recognize antigens on major 
histocompatibility complex molecules through T‑cell receptors 
(TCRs). As the TCR repertoire is highly diverse, its analysis 
is vital in the assessment of T cells. Advances in sequencing 
technology have provided convenient methods for further inves‑
tigation of the TCR repertoire. In the present review, the TCR 
structure and the mechanisms by which TCRs function in tumor 
recognition are described. In addition, the potential value of the 

TCR repertoire in tumor diagnosis is reviewed. Furthermore, 
the role of the TCR repertoire in tumor immunotherapy is intro‑
duced, and the relationships between the TCR repertoire and 
the effects of different tumor immunotherapies are discussed. 
Based on the reviewed literature, it may be concluded that the 
TCR repertoire has the potential to serve as a biomarker for 
tumor prognosis. However, a wider range of cancer types and 
more diverse subjects require evaluation in future research to 
establish the TCR repertoire as a biomarker of tumor immunity.
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1. Introduction

Cancer develops due to a series of genetic changes in normal 
cells, which causes them to become malignant (1) with the 
ability to invade surrounding normal tissues and metastasize. 
Immunotherapy is a promising treatment method for tumors. 
The most studied immunotherapy involves immune check‑
point inhibitors (ICIs). ICIs function by targeting specific 
proteins expressed on immune or cancer cells, thereby allevi‑
ating inhibitory signals that prevent the immune system from 
attacking cancer cells and augmenting the immune response 
against these cells (2). Key checkpoint proteins, including 
cytotoxic T‑lymphocyte‑associated protein 4 (CTLA‑4), 
programmed cell death protein 1 (PD‑1) and programmed 
cell death ligands (PD‑Ls), serve as primary targets for ICIs. 
By inhibiting these checkpoint proteins, ICIs enhance the 
immune‑mediated attack on malignant cells (3). Additionally, 
various other immunotherapies, including sipuleucel‑T, have 
been clinically employed for cancer treatment. Sipuleucel‑T is 
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an immunotherapy that was approved in 2010 for the treatment 
of advanced prostate cancer. It is a personalized treatment 
designed to stimulate the immune system of the patient, 
causing it to target and attack prostate cancer cells (4).

It is important to determine the effect of treatment and the 
prognosis after treatment, and biomarkers can help to achieve 
these goals. Due to some patients with cancer being unable to 
undergo surgery or biopsy, the identification of non‑invasive 
cancer biomarkers is urgently necessary.

A number of studies have focused on the characteristics 
of T cell receptor (TCR) repertoires, and have demonstrated 
that they differ among cancer tissues, adjacent tissues and 
peripheral blood (5) and may be different after treatment than 
they were before (6). As the characteristics of certain TCR 
repertoires are associated with prognosis (7), TCR reper‑
toires have potential as biomarkers. Therefore, it is important 
to understand the characteristics of the TCR repertoire in 
different locations in the body and at different time points in 
patients with cancer.

2. TCR structure

The immune system comprises adaptive and innate compo‑
nents. The innate immune system protects the body from 
general pathogenic factors, whereas the adaptive immune 
system targets and is able to remember specific pathogens (8).

T cells are key components of the adaptive immune system 
that recognize pathogens or abnormal peptides and specifically 
initiate adaptive immunity. T cells function by either directly 
killing infected cells (9) or releasing cytokines to attract other 
immune cells. This activity is triggered when T cells recognize 
foreign antigens displayed on the surface of antigen‑presenting 
cells through the major histocompatibility complex (MHC) (10). 
This display allows TCRs on T cells to identify specific peptides 
or antigen epitopes, which initiates the T‑cell response (Fig. 1A). 
TCRs are highly diverse heterodimers composed of α and β 
chains, or γ and δ chains, encoded by TRA, TRB, TRG and TRD 
genes, respectively (Fig. 1B). The ab heterodimers constitute the 
majority of these TCRs, accounting for ~95% of the total number 
of TCRs, and can identify MHC‑presented antigen peptides or 
antigen epitopes. By contrast, the γδ TCRs are less abundant, with 
only 1‑5% of T cells expressing them; moreover, they are involved 
in the innate immune response and are not restricted to antigens 
presented by MHC molecules. However, the ligands to which γδ T 
cells bind are unclear (11). TCR genes contain variable regions (V 
regions) and constant regions. The variable region is assembled by 
variable (V), diversity (D) and joining (J) gene fragments through 
an orderly process known as V(D)J recombination, in which one 
allele of each gene fragment is randomly recombined with other 
gene fragment alleles to form a functional antigen recognition 
region (12,13) (Fig. 1C). The V region of each TCR chain consists 
of three highly variable complementary determining regions 
(CDRs), namely CDR1, CDR2 and CDR3, CDR3 has the highest 
variability of these CDRs and is the most important region for 
specific antigen recognition (14) (Fig. 1B).

The CDR3 region is responsible for binding antigenic 
peptides presented by MHC molecules (15,16). Due to its 
direct interaction with antigenic peptides and high variability, 
which enables the recognition of diverse antigens, the CDR3 
region provides a wealth of knowledge about TCR specificity.

3. TCR repertoire analysis

The development of next‑generation sequencing (NGS) has 
revolutionized the characterization of immune libraries, 
allowing for large‑scale parallel TCR sequencing. A wide 
range of computing and mathematical tools has been created 
to model and describe the diversity of these libraries. NGS 
is advantageous in that it has greater sequencing depth and 
quantifies TCR clonal abundance with markedly higher 
accuracy than is possible by spectratyping, in which the 
number of clonotypes is determined based on the number of 
different CDR3 lengths (17). Compared with single‑cell TCR 
sequencing, population TCR sequencing is more commonly 
used in the study of TCR diversity, and facilitates the analysis 
and comparison of different repertoires in tumors.

The TCR repertoire may be analyzed using both genomic 
DNA (gDNA) and RNA (18). Although DNA is highly stable, 
its analysis has low sensitivity and the presence of alleles may 
affect sequencing accuracy. By contrast, although RNA is 
less stable than DNA, RNA analysis is more sensitive and can 
eliminate allele interference (15). Following the selection of 
the analyte for TCR analysis, a library must then be prepared. 
Commonly used library preparation methods include multiplex 
polymerase chain reaction (PCR) and 5' rapid amplification of 
cDNA end (5'‑RACE) (19).

gDNA and RNA are both suitable starting materials for 
multiplex PCR, and can be used for multiple rounds of PCR. 
These multiple rounds of PCR may introduce sequencing bias 
and error, potentially leading to some alleles being more easily 
amplified, thus affecting the accuracy of the results (20,21). 
However, this can be corrected, e.g., by changing primer 
concentrations (22). RNA can also be analyzed using 
5'‑RACE (23), which uses a reverse transcriptase with 
terminal transferase activity to reverse transcribe RNA while 
untemplated sequences, mainly including deoxycytidine 
triphosphate are added at the 3' end. A template switch oligo‑
nucleotide containing a complementary poly(G) strand binds 
to the 3'‑terminal sequence of the first strand and initiates the 
chain reaction (24). Almost all the cDNA fragments that are 
obtained via this method remained intact. Therefore, only a 
pair of primers are required for subsequent template amplifica‑
tion to achieve complete amplification of the possible V gene.

In the analysis of the TCR diversity index, metrics such as 
Shannon entropy and clonality are commonly used to quantify 
TCR diversity and the expansion of specific TCR clones within 
a sample. Shannon entropy effectively quantifies the complexity 
and breadth of the TCR repertoire by evaluating how uniformly 
the different TCR variants are distributed within the T‑cell 
population. The formula introduces the TCR diversity index, 
H(X), as a measure of TCR diversity, as follows: 

In the formula, P(xi) denotes the relative frequency or probability 
of occurrence for TCR variant i in the sample. In this context, 
P(xi) indicates the proportion of a specific TCR variant relative 
to the entirety of distinct TCR variants, where n represents the 
aggregate count of unique TCR variants that are identified. 
Consequently, Shannon entropy serves as an indicator of TCR 
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diversity; specifically, a higher Shannon entropy value signifies 
a greater level of diversity within the TCR repertoire (25,26). 
Clonality, as evaluated through standardized Shannon entropy, 
is delineated by the following formula: 

In this formula, the variable C is a metric for the assessment 
of TCR clonality, which is confined to the range of 0 to 1. 
Essentially, TCR clonality is the extent of proliferation exhib‑
ited by specific TCR variants within a sample relative to 
others. A higher value of C signifies elevated clonality, which 
is concomitant with diminished diversity (27).

4. Application of TCRs in tumor diagnosis

Numerous studies have demonstrated that the TCR repertoire 
diversity in the peripheral blood or tumor tissues of patients 
with cancer has its own specific characteristics compared with 

that in healthy individuals, and may be useful in the diagnosis 
of various cancers.

Changes in TCR diversity in peripheral blood. In the study 
by Wang et al (5), the characteristics of the TCR repertoire 
in the peripheral blood of patients with hepatocellular carci‑
noma (HCC) were detected using high‑throughput TCR 
sequencing. The TCR repertoire diversity in peripheral blood 
was demonstrated to be significantly greater than that in tumor 
and peritumoral tissue. In addition, it was found that patients 
with HCC have a unique peripheral blood TCR repertoire 
compared with that of healthy individuals.

However, contrasting with the findings in HCC, 
Cui et al (28) reported that the diversity of the circulating TCR 
repertoire in patients with cervical cancer (CC) was lower 
than that in healthy women and gradually decreased during 
tumor development. Similarly, the TCR repertoire diversity 
in the peripheral blood of patients with pancreatic ductal 
adenocarcinoma (PDAC) was shown to decline compared with 
that in healthy controls in a study performed by Pan et al (29) 

Figure 1. TCR classification, rearrangement and MHC interaction. (A) Interaction between the TCR and MHC. (B) On the T‑cell surface there are α‑chain 
and β‑chain paired TCRs and γ‑chain and δ‑chain paired TCRs. The V region of a TCR comprises three highly variable complementary determining regions: 
CDR1, CDR2 and CDR3. (C) Recombination of the α and β chains. During VDJ recombination of the β chain (left panel), a D fragment is randomly recom‑
bined with a J fragment, after which the D‑J fragment is recombined with a random V fragment. The complete variable region is connected to the C region to 
encode a normally functioning β chain. During VJ recombination of the α chain (right panel), a V fragment is randomly recombined with a J fragment, after 
which the V‑J fragment links to the C region to encode the α chain. Blue, orange, and brown colors represent V, D and J gene fragments, respectively, in the 
variable region. TCR, T‑cell receptor; MHC, major histocompatibility complex; CDR, complementary determining region; V, variable; D, diversity; J, joining; 
C, constant; APC, antigen‑presenting cell.
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involving analysis of the inverse Simpson diversity index. The 
authors speculated that the reduced TCR repertoire diversity 
may be caused by the proliferation of CD8+ T cells.

Changes in TCR diversity in tumor tissues. Through the 
TCRβ sequencing and analysis of cancer tissues and distant 
noncancerous tissues from 15 patients with lung cancer, 
Wang et al (30) demonstrated that the TCR repertoire diver‑
sity in lung cancer tissues was significantly greater than that in 
distant normal lung tissues. However, in patients with non‑small 
cell lung cancer (NSCLC), Song et al (31) found that the 
diversity of the TCR repertoire revealed by high‑throughput 
sequencing was not different from that of adjacent non‑tumor 
tissues. The reason for these inconsistent results may be that 
the tumor microenvironment (TME) in lung cancer tissues 
differs among individuals, thus resulting in differences in the 
TCR repertoire diversity among cancerous tissues.

Changes in the TCR repertoire diversity in tumorous 
or normal tissues have also been observed in other types of 
carcinoma. In a recent study, high‑throughput TCR sequencing 
demonstrated that the TCR repertoire diversity of HCC tumor 
tissues and peritumoral tissues was similar (5). This differed from 
the results of one previous study, in which the TCR repertoire 
diversity in HCC tumor tissues was higher than that in adjacent 
non‑tumor tissues (32), but consistent with another, in which no 
significant difference in TCR repertoire diversity was identified 
between HCC tumor tissues and adjacent normal tissues (33). 
Sherwood et al (34) found that the diversity of the TCR repertoire 
in tumor tissues was much lower than that in peripheral blood 
in a study of patients with colorectal cancer. Similarly, the TCR 
repertoire diversity in bladder cancer tissues (35) and in penile 
squamous cell carcinoma (PSCC) (36) was found to be lower than 
that in adjacent normal tissues. By contrast, the diversity of the 
TCR repertoire in breast cancer tissues has been demonstrated 
to be greater than that in adjacent normal tissues (37). Moreover, 
the TCR repertoire diversity in oesophageal squamous cell carci‑
noma was revealed to be not significantly different from that in 
peripheral blood and adjacent normal tissues (38). Information on 
the changes in TCR repertoire observed in different cancers are 
summarized in Tables I and II.

The TCR repertoire diversity in the peripheral blood or 
tumor tissues of patients with tumors has been shown to be 
inconsistent compared with that in healthy individuals or 
adjacent normal tissues. Whether these characteristics of TCR 
repertoire diversity in tumors have the potential to be used as 
markers for tumor diagnosis requires further validation.

5. Application of TCRs in tumor therapy

Tumor immunotherapy has profoundly advanced cancer 
research and effectively improved the prognosis of patients with 
cancer (39,40), and the success of ICIs underscores the importance 
of the anticancer immune response in patients. The expression of 
biomarkers, such as PD‑Ls, in cancer tissues has been shown to 
have an marked effect on the clinical response to ICIs. However, 
as tumor tissue cannot be biopsied during treatment, new 
biomarkers of the response to ICIs are necessary to determine the 
efficacy of clinical treatment. Blood samples are becoming more 
widely used because they are relatively easy and non‑invasive 
to obtain compared with biopsies of tumor tissue. In addition, 

as numerous studies have shown that the TCR repertoire in the 
peripheral blood can change significantly during tumor treatment, 
such changes may be used as a biomarker of ICI response.

In an early study, it was reported that the TCR repertoire 
diversity increased after anti‑CTLA‑4 treatment and improved 
the survival of patients with metastatic castration‑resistant 
prostate cancer or metastatic melanoma (41). Consistent with 
this, an increase in TCR repertoire diversity was also observed 
after anti‑CTLA‑4 treatment in another study of patients 
with metastatic melanoma (6). This may be attributed to the 
anti‑CTLA‑4 treatment promoting reconstruction of the TCR 
lineage and increasing its diversity (42). By contrast, the diver‑
sity of the TCR repertoire in peripheral blood has not been 
found to change significantly after anti‑PD‑1 therapy (43‑45); 
however, increased TCR clonality has been observed in the 
peripheral blood of patients with melanoma treated with 
anti‑PD‑1 therapy (44,45). In addition, Kato et al (46) reported 
that after anti‑PD‑1 treatment, the clonality of the TCR reper‑
toire in the peripheral blood of patients with advanced renal 
cell carcinoma (RCC) increased; however, the diversity of the 
TCR repertoire decreased.

Changes in the TCR repertoire have been observed after 
other treatments, including radiotherapy and chemotherapy. 
Liu et al (47) reported that the diversity of the TCR reper‑
toire in the peripheral blood of patients with lung cancer 
was significantly lower than that in healthy individuals, with 
the TCR repertoire diversity decreasing after chemotherapy, 
radiotherapy, tyrosine kinase inhibitor therapy and/or antian‑
giogenic therapy. Similarly, the TCR repertoire diversity in the 
peripheral blood was found to decrease after FOLFIRI chemo‑
therapy with bevacizumab or cetuximab in most patients with 
metastatic colorectal cancer (48), and in patients with prostate 
cancer after sipuleucel‑T therapy (49).

The TCR repertoire of tumor‑infiltrating lymphocytes 
(TILs) also undergoes changes. TILs are immune cells located 
in the TME that are crucial in the immune response against 
tumors (50,51). In tumors, high infiltration levels of TILs, 
particularly cytotoxic CD8+ T cells which have the ability 
to kill tumor cells, are often associated with an improved 
prognosis (52). TILs can be used in the assessment of tumor 
response to immunotherapy. Tumors rich in TILs, known as 
‘hot’ tumors, are more likely to respond to immunotherapy than 
are ‘cold’ tumors in which TILs are scarce (53). In a study of 
patients with rectal cancer who responded well to radiotherapy 
and chemotherapy, the TCR repertoire diversity of TILs was 
observed to increase after treatment (54). However, in a study 
of patients with head and neck squamous cell carcinoma, the 
TCR repertoire diversity of TILs was shown to be reduced, 
while the TCR clonotypes in TILs were expanded after 
cetuximab treatment (Table III) (55). Therefore, changes in the 
TCR repertoire of TILs with regard to diversity, clonality or 
clonotypes may serve as predictive therapeutic markers.

A high TCR repertoire diversity in peripheral blood is asso‑
ciated with an improved immune response in numerous types 
of tumors (56). Hopkins et al (57) reported that the diversity 
of the TCR repertoire in the peripheral blood of patients with 
PDAC increased after treatment. Moreover, in patients receiving 
anti‑CTLA‑4 treatment, patients whose TCR repertoire diver‑
sity increased after treatment exhibited an improved therapeutic 
response; however, this was not observed in patients receiving 
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anti‑PD‑1 treatment. In patients with advanced melanoma, a 
highly diverse TCR repertoire in the peripheral blood before 
treatment was found to be associated with an improved thera‑
peutic effect of anti‑CTLA‑4 treatment (58,59). Notably, similar 
findings have also been reported for patients with other types 
of cancer treated with anti‑PD‑1 therapy. For example, in a 
study of gastrointestinal tumors, anti‑PD‑1 treatment exhibited 
improved therapeutic effects in patients with a higher baseline 
TCR repertoire diversity in the peripheral blood (43). In addi‑
tion, patients with NSCLC with high TCR repertoire diversity 
in the peripheral blood exhibited a superior therapeutic response 
to anti‑PD‑1 treatment (60,61). Also, patients with lung cancer 
who had a greater TCR repertoire diversity in the peripheral 
blood before treatment exhibited a more favorable response to 
radiotherapy and chemotherapy (Table IV) (47).

The aforementioned studies demonstrate that a wider 
range of TCR repertoires before ICI immunotherapy is largely 
associated with improved clinical outcomes in patients with 
cancer. This may indicate that increasing the diversity of the 
TCR repertoire is beneficial to patients receiving ICI immu‑
notherapy. This may be due to the increase in the diversity or 
clonality of the TCR repertoire, or due to the expansion of the 

TCR repertoire induced after ICI immunotherapy improving 
existing immunity, thus guaranteeing the effectiveness of 
immunotherapy (62). However, TCR repertoire characteristics 
alone are not sufficient to determine the response to tumor 
immunotherapy. First, tumor cells are genetically hetero‑
geneous and undergo changes as the cancer progresses (63), 
which results in inability of the TCR repertoire to recognize 
all tumor cell variants. In addition, high‑affinity TCRs may 
also recognize antigens expressed in healthy tissues, trigger 
non‑targeted effects and cause autoimmune diseases (64). 
Second, in addition to the TCR repertoire, PD‑1, PD‑Ls, tumor 
mutational burden (65,66) and microsatellite instability (66,67) 
have also been shown to serve as biomarkers for tumor immu‑
notherapy, including ICIs (68,69), chimeric antigen receptor 
(CAR) T‑cell therapies (70), or CAR T cells combined with 
chemotherapy, radiotherapy or angiogenesis inhibitors (71). A 
comprehensive treatment strategy may combine the comple‑
mentary effects of different immunotherapy methods to obtain 
an improved therapeutic effect. Therefore, consideration of 
the characteristics of the TCR repertoire in combination with 
those ICIs or other tumor immunotherapies may promote the 
further development of tumor immunotherapy.

Table I. Changes in the TCR repertoire of patients with various types of cancer, in peripheral blood.

   Mean Shannon entropy,
First author, year TCR repertoire changes Cancer  patients vs. healthy individuals (Refs.)

Wang et al, 2022 Specificity ‑ Clonality ‑ Diversity ↑ HCC  13.390 vs. 10.644 (5)
Cui et al, 2018 Specificity ↑ Clonotypes ↓ Diversity ↓ Cervical cancer 6.830 vs. 9.943 (28)
Pan et al, 2023 Specificity ↑ Clonality ↓ Diversity ↓ Pancreatic ductal  5.965 vs. 6.465 (29)
    adenocarcinoma

HCC, hepatocellular carcinoma; ↑, increase; ↓, decrease; ‑, no change; TCR, T‑cell receptor.

Table II. Changes in the TCR repertoire of patients with various types of cancer, in tumor tissues.

   Mean Shannon entropy,
    tumor tissues vs. adjacent 
First author, year TCR repertoire changes Cancer normal tissues (Refs.)

Wang et al, 2019 Specificity ↑ Clonality ↓ Diversity ↑ Lung cancer  431.37 vs. 166.20a (30)
Chen et al, 2016 Specificity ↑ Clonality ↑ Diversity ↑ Hepatitis B virus‑ 0.65 vs. 0.48b (32)
    associated HCC
Wang et al, 2017 Specificity ↑ Clonality ↓ Diversity ↑ Breast cancer  10.928 vs. 8.870 (37)
Wang et al, 2022 Specificity ‑ Clonality ‑ Diversity ‑ HCC  10.378 vs. 10.234 (5)
Song et al, 2020 Specificity ↓ Clonotype ↑ Diversity ‑ Non‑small cell lung 6.850 vs. 6.737 (31)
    cancer
Sherwood et al,  Specificity ‑ Oligoclonality ↑ Diversity ↓ Colorectal cancer  0.84 vs. 0.88b (34)
2013
Ma et al, 2019 Specificity ↑ Clonality ↑ Diversity ↓ Bladder cancer  0.40 vs. 0.59b (35)
Zhang et al, 2024 Specificity ↑ Clonality ↑ Diversity ↓ Penile squamous cell 95.92 vs. 104.48a (36)
    carcinoma

aInverse Simpson's diversity index; bnormalized Shannon entropy. HCC, hepatocellular carcinoma; ↑, increase; ↓, decrease; ‑, no change; TCR, 
T‑cell receptor.

https://www.spandidos-publications.com/10.3892/ol.2024.14546
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6. Application of TCRs in tumor prognosis

There is evidence to suggest that the diversity of the TCR repertoire 
can be used as a prognostic biomarker of the immune response 
to tumors. For example, an increased TCR repertoire diversity 
in PDAC tissue was found to be associated with an improved 
prognosis (72). However, different findings were reported for 
muscle‑invasive bladder cancer (MIBC); specifically, patients 
with low TCRβ chain diversity, associated with oligoclonal TIL 
expansion, had longer recurrence‑free survival (73). Although 
the patients with MIBC had low TCRβ chain diversity, they also 
exhibited oligoclonal TIL expansion and high number of neoan‑
tigens, which improved their prognosis (73). In patients with 
nasopharyngeal carcinoma, a lower TCR repertoire diversity in 
tumor tissues than in paired adjacent normal tissues was found 
to be associated with a poor prognosis. Lower diversity in the 
tumor may indicate that T cells were hindered from infiltrating 
or inducing apoptosis in the TME, thus suggesting that the 
T‑cell immune response was insufficient, and that the patient 
may benefit from checkpoint blockade treatment (74). In a study 
conducted by Valpione et al (75), an increase in the baseline 
TCR repertoire diversity of tumor‑infiltrating T cells was found 
to be associated with an improved prognosis in patients with 
various cancers, including breast cancer, melanoma, lung cancer 
and RCC.

A number of studies have shown that the diversity of the 
TCR repertoire in peripheral blood is able to predict tumor 
prognosis. In a study of patients with lung cancer, a lower 

diversity of the TCR repertoire in the peripheral blood after 
treatment was found to be associated with a poor prog‑
nosis (47). However, in other studies of lung cancer, those 
patients with a high TCR repertoire diversity in the peripheral 
blood had an improved prognosis (76‑79). In patients with 
gastrointestinal tumors, a high diversity of the TCR repertoire 
in the peripheral blood after anti‑PD‑1 treatment was also 
found to be associated with a good prognosis (43). Similarly, in 
metastatic colorectal cancer, a high TCR repertoire diversity 
in the peripheral blood exhibited an association with a good 
prognosis (48). Also, in patients with melanoma, a low diver‑
sity of the peripheral blood TCR repertoire was associated 
with a poor prognosis (7). Similar findings have been reported 
in patients with breast cancer (80), where a low TCR repertoire 
diversity in the peripheral blood was associated with poor 
overall survival. In addition, Yan et al (81) reported that for 
patients with esophageal squamous cell carcinoma, a greater 
TCR repertoire diversity in the peripheral blood was associ‑
ated with an improved prognosis, while high TCR repertoire 
clonality was associated with a poor prognosis (Table V).

TCR repertoire diversity has been found to be associated 
with prognosis in other tumors. In patients with high‑grade 
serous ovarian cancer (HGSOC), the diversity of the TCR 
repertoire was low in patients who experienced recurrence. 
Therefore, it was speculated that patients with high TCR 
repertoire diversity have an improved prognosis (82). In MIBC, 
basal/squamous‑like and stroma‑rich subtypes exhibited high 
TCR richness and diversity, which were associated with a good 

Table III. Changes in the TCR repertoire after treatment in different cancers.

A, Peripheral blood    

First author/s, year/s Therapy Cancer Changes of the TCR repertoire (Refs.)

Robert et al, 2014 Anti‑CTLA‑4  Melanoma TCR repertoire diversity ↑ (6)
Tumeh et al, 2014;  Anti‑PD‑1  Melanoma TCR repertoire clonality ↑ (44,45)
Roh et al, 2017
Kato et al, 2021 Anti‑PD‑1 Renal cell carcinoma TCR repertoire clonality ↑,  (46)
   TCR repertoire diversity ↓
Liu et al, 2019 Chemotherapy, radiotherapy,  Lung cancer TCR repertoire diversity ↓ (47)
 tyrosine kinase inhibitor therapy 
 and/or antiangiogenic therapy
Chen et al, 2021 Chemotherapy with bevacizumab Metastatic colorectal TCR repertoire diversity ↓ (48)
 or cetuximab cancer
Sheikh et al, 2016 Sipuleucel‑T  Prostate cancer TCR repertoire diversity ↓ (49)

B, Tumor‑infiltrating lymphocytes   

First author/s, year/s Therapy Cancer Changes of the TCR repertoire (Refs.)

Akiyoshi et al, 2021 Radiotherapy, chemotherapy Rectal cancer TCR repertoire diversity ↑ (54)
Ge et al, 2023 Cetuximab  Head and neck TCR repertoire clonotypes ↑,  (55)
  squamous cell  TCR repertoire diversity ↓
  carcinoma

TCR, T‑cell receptor; CTLA‑4, cytotoxic T‑lymphocyte‑associated protein 4; PD‑1, programmed cell death protein; ↑, increase; ↓, decrease.
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prognosis. However, no changes in TCR richness or diversity 
were observed for the luminal subtype (83).

In addition to diversity, other characteristics of the TCR 
repertoire have been found to be prognostically useful. For 
example, in a study of HCC, similarity of the TCR repertoire 
between tumor and adjacent normal tissues was indicated 
to be associated with an improved prognosis (33). However, 

in patients with NSCLC, high TCR repertoire clonality in 
the tumor compared with that in adjacent normal tissues was 
found to be associated with a good prognosis (60,77). A similar 
finding was reported in a study of HGSOC (84). In patients with 
advanced RCC, those with elevated TCR repertoire clonality 
after anti‑PD‑1 treatment exhibited a good prognosis (46), while 
in patients with CC, fewer clonal types in the sentinel lymph 

Table IV. Associations between high TCR repertoire diversity in peripheral blood and therapeutic effect.

First author/s, year/s Therapy Cancer Therapeutic outcome (Refs.)

Hopkins et al, 2018 Anti‑CTLA‑4 Advanced pancreatic cancer Improved (57)
Postow et al, 2015;  Anti‑CTLA‑4 Advanced melanoma Improved (58,59)
Arakawa et al, 2019 
Hopkins et al, 2018 Anti‑PD‑1 Advanced pancreatic cancer None (57)
Ji et al, 2021 Anti‑PD‑1 Gastrointestinal tumors Improved (43)
Han et al, 2020;  Anti‑PD‑1 Non‑small cell lung cancer Improved (60,61)
Dong et al, 2021
Liu et al, 2019 Radiotherapy, chemotherapy Lung cancer Improved (47)

TCR, T‑cell receptor; CTLA‑4, cytotoxic T‑lymphocyte‑associated protein 4; PD‑1, programmed cell death protein.

Table V. Associations between TCR repertoire diversity in tumor tissue or peripheral blood and prognosis in different tumors.

A, Tumor tissues    

First author, year TCR repertoire characteristics Cancer Prognosis (Refs.)

Pothuri et al, 2024 High TCR diversity Pancreatic ductal Improved (72)
  adenocarcinoma
Choudhury et al, 2016 High TCR diversity Muscle‑invasive bladder cancer Worse (73)
Jin et al, 2018 Low TCR diversity Nasopharyngeal Worse (74)
  carcinoma
Valpione et al, 2021 TCR diversity in Breast cancer, melanoma,  Improved (75)
 tumor tissues ↑ lung cancer and renal 
  cell carcinoma

B, Peripheral blood    

First author, year TCR repertoire characteristics Cancer Prognosis (Refs.)

Liu et al, 2019 Diversity of the TCR repertoire ↓ Lung cancer Worse (47)
Reuben et al, 2020;  High TCR diversity Lung cancer Improved (76‑79)
Chen et al, 2022; Wang et al, 
2021; Abed et al, 2023
Chen et al, 2021 High TCR diversity Metastatic colorectal cancer Improved (48)
Yan et al, 2022 High TCR diversity Esophageal squamous cell Improved (81)
  carcinoma
Charles et al, 2020 Low TCR diversity Melanoma Worse (7)
Manuel et al, 2012 Low TCR diversity Breast cancer Worse (80)
Ji et al, 2021 Diversity of the TCR repertoire Gastrointestinal tumors Improved (43)
 increased after PD‑1 treatment

TCR, T‑cell receptor; PD‑1, programmed cell death protein.

https://www.spandidos-publications.com/10.3892/ol.2024.14546
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node TCR repertoire was associated with a poor prognosis (28) 
(Table VI). Notably, TCR convergence, where T cells share 
identical TCRs with an identical amino acid sequence yet have 
different DNA sequences due to codon degeneracy, also has an 
association with tumor prognosis, with a greater TCR conver‑
gence corresponding to an improved prognosis (85). Therefore, 
TCR repertoire diversity is a promising tumor prognostic 
marker. However, the relationships between other characteris‑
tics of the TCR repertoire and prognosis require verification in 
studies involving large numbers of patients.

The diversity distribution of TCR repertoires in peripheral 
blood mononuclear cells (PBMCs) and tumor infiltrates, and 
their association with prognosis is disparate for tumors of 
different types. The diversity of a TCR repertoire is determined 
by the number of different clonotypes (richness) and the relative 
abundance of these clonotypes (evenness) in a sample (86). All 
clonotypes derived from clonal expansion carry an identical CDR3 
in which the V‑region used during V(D)J recombination which 
depends on subnuclear relocation of the rearranging TCR loci (tr), 
DNA methylation status, recruitment of chromatin remodelling 
enzymes, histone modification and germline transcription as well 
as spatial and temporal regulation in different subtypes of cancers, 
and then influence the number and abundance of clonotypes (87). 
Additionally, exposure to certain antigens influences the expan‑
sion of specific TCR clonotypes. Therefore, the TCR repertoires 
of different tissues and tumors are dynamic, and dependent on 
factors such as age and antigen exposure (87). Tumor antigens 
include tumor‑associated and tumor‑specific antigens; the latter 
are only expressed in tumor tissues and activate specific T cells, 
which conditions TCR repertoire diversity. Peripheral blood TCR 
diversity is closely associated with the global transcriptomes of 
peripheral blood and the intratumor microenvironment mainly 
referred to the number of tumor‑specific lymphocytes which 
spread to peripheral blood (88). Additionally, peripheral blood 
TCR diversity decreases while the clonality increases with 
age (89). This may explain the discrepancy between TCR reper‑
toires in PBMCs and tumor infiltrates.

7. Conclusions and prospects

The importance of the TCR repertoire in tumor immunity has 
become increasingly apparent. In the present review, TCR 

structures are summarized. TCR repertoire characteristics 
are potentially useful as tools for the diagnosis of tumors, the 
enhancement of tumor immunity and the prediction of tumor 
prognosis. The TCR repertoire holds promise as a biomarker, 
and patients are expected to benefit from research into this 
repertoire. However, compared with the immunohistochem‑
ical detection of PD‑Ls and targeted sequencing of liquid 
biopsies, which allows for the detection of tumor‑derived 
DNA or circulating tumor cells that are present in the 
bloodstream or other bodily fluids, TCR repertoire analysis 
is complex and expensive. It comprises multiple steps, 
including the preparation of blood or tissue samples, TCR 
sequencing, data analysis and interpretation, which require 
professional and technical personnel, high‑throughput 
sequencing platforms and bioinformatics tools. Moreover, 
the volume of data generated by TCR sequencing is substan‑
tial, and the identification of specific TCRs for cancer 
therapy is time consuming (19). Novel prediction models 
have been developed to identify epitope‑specific TCRs (90). 
In addition, more sensitive and cost‑effective sequencing 
tools have been developed, including characterizing TCR 
repertoires (91), spatially resolved TCR sequencing (92), and 
formalin‑fixed paraffin‑embedded‑suitable unique molecular 
identifier‑based‑TCR sequencing (93). Tools such as these are 
expected to further utilize and maximize the value of TCR 
repertoire analysis. Although TCR analysis indicators, such 
as Shannon entropy and clonality, can help in understanding 
the relationships between TCR clonality and solid tumors, 
the associations between TCR repertoires and clinical 
benefits require further investigation. Nevertheless, the TCR 
repertoire can be used as a tumor immune biomarker, with 
potential clinical significance in the prediction of patient 
prognosis and the monitoring of therapeutic efficacy. In the 
future, more advanced sequencing, database construction 
techniques and comprehensive analysis algorithms are likely 
to be developed to further simplify and clarify the evaluation 
and comparison of TCR repertoires, reduce the cost of TCR 
repertoire analysis, and allow more people to benefit.

In addition, despite the extreme diversity of TCR chain 
pairs, the specific antigens recognized by the TCRs of 
γδ T cells remain largely unknown (94). Therefore, more 
research into γδ T cells is necessary. Studies have shown 

Table VI. Associations between other characteristics of the TCR repertoire and prognosis in tumors.

First author/s, year/s TCR repertoire characteristics Cancer Prognosis (Refs.)

Lin et al, 2018 Similar TCR repertoire in tumor and Hepatocellular carcinoma Improved (33)
 adjacent normal tissues
Han et al, 2020;  High TCR clonality in tumor tissues Non‑small cell lung cancer Improved (60,77)
Chen et al, 2022
Lecuelle et al, 2021 High TCR clonality in tumor tissues High‑grade serous ovarian cancer Improved (84)
Kato et al, 2021 TCR repertoire clonality after Renal cell carcinoma Improved (46)
 anti‑PD‑1 therapy ↑
Cui et al, 2018 TCR repertoire clonality in sentinel Cervical cancer Worse (28)
 lymph nodes ↓

TCR, T‑cell receptor; PD‑1, programmed cell death protein; ↑, increase; ↓, decrease.
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that γδ T cells play an important role in tumor immuno‑
therapy (95‑98) and can directly attack tumor cells without 
relying on MHC for antigen presentation. Therefore, in 
the future, in addition to further study of αβ T cells, more 
attention should be focused on γδT cells. The assessment of 
these cells may promote the further development of tumor 
immunotherapy.

A recent review by Aran et al (86) described the assembly 
and structure of TCRs, the sequencing and analysis of TCRs, 
and the prognostic and predictive values of the TCR reper‑
toire as a biomarker in the treatment of cancer using ICIs. 
In the present study, the potential use of various TCR reper‑
toires as biomarkers for tumor diagnosis are presented, and 
some characteristic changes in the TCR diversity of periph‑
eral blood and tumor tissues are discussed. Furthermore, 
the limitations of the TCR repertoire as a biomarker are 
considered, such as the complexity and high cost of testing; 
the reasons and common clinical countermeasures are also 
briefly discussed. The present review also provides updates 
on recent research advancements in the development and 
application of TCR repertoires in tumors including thyroid 
cancer (98), MIBC (83), HGSOC (82), advanced or meta‑
static NSCLC (79), PDAC (72) and PSCC (36), and their 
associations with tumor immunotherapy, diagnosis and 
prognosis.
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