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Abstract

Tumour heterogeneity plays a large role in the response of tumour tissues to radiation ther-

apy. Inherent biological, physical, and even dose deposition heterogeneity all play a role in

the resultant observed response. We here implement the use of Haralick textural analysis to

quantify the observed glycogen production response, as observed via Raman spectroscopic

mapping, of tumours irradiated within a murine model. While an array of over 20 Haralick

features have been proposed, we here concentrate on five of the most prominent features:

homogeneity, local homogeneity, contrast, entropy, and correlation. We show that these

Haralick features can be used to quantify the inherent heterogeneity of the Raman spectro-

scopic maps of tumour response to radiation. Furthermore, our results indicate that Hara-

lick-calculated textural features show a statistically significant dose dependent variation in

response heterogeneity, specifically, in glycogen production in tumours irradiated with clini-

cally relevant doses of ionizing radiation. These results indicate that Haralick textural analy-

sis provides a quantitative methodology for understanding the response of murine tumours

to radiation therapy. Future work in this area can, for example, utilize the Haralick textural

features for understanding the heterogeneity of radiation response as measured by biopsied

patient tumour samples, which remains the standard of patient tumour investigation.

Introduction

Radiation therapy is a standard treatment for approximately 50% of all cancer patients [1].

While significant improvements in the technological development of radiation therapy have

occurred in the past several decades, a number of challenges in treatment efficacy remain

unmet. Among these challenges, optimizing, or personalizing, radiation therapy remains
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difficult due to the considerable inter- and intra-patient heterogeneity of response to radiation

[2]. Indeed, heterogeneity of radiation response can exist within individual tumours, and can

lead to differential patient response [3–5].

However, the precise mechanisms in which tumours establish radioresistance depend on

numerous factors. For example, in radiation biology, it is well established that oxygen can pro-

vide the cell with a source of reactive species to generate DNA-damaging radicals. Moreover,

oxygen may also contribute to the fixation of DNA damage once the initial insult has been

established. It is fair to say that the complete mechanisms of radiation resistance and response

in tumours is a complex combination of factors, and although differential responses to radia-

tion therapy have been observed in the clinic for decades, the molecular basis of such responses

remains an enigma. For a variety of cancers, recent studies have unequivocally highlighted the

significant molecular heterogeneity that exists in patients’ tumours and in tumour radiation

response [6].

Tumour heterogeneity remains a challenge to measure in any scenario. Although a number

of assays have been proposed in the literature, no one technique has proven to provide a com-

prehensive and clinically viable assessment strategy [7]. In previous investigations, we have

demonstrated that Raman spectroscopy can offer multiplexed, biologically significant molecu-

lar-level information on cellular and tumour radiation response [8]. We have demonstrated

that Raman mapping can be used to, for example, provide spatially resolved information on

glycogen production in murine models of H460 lung tumours post irradiation [9]. However,

the quantification of tumour response heterogeneity is challenging owing to architectural com-

plexity, temporal changes, spatial variation, inherent subpopulations within host that are part

of the tumour environment, and potential inaccuracies in data collection, just to name a few.

To overcome the issue of heterogeneity, it has been suggested that the average spectra be

used as a representative of the target population, [1, 2]. However, such strategies by their very

nature lose information on the spatial origin of given biomolecular components, and is true for

genomic studies in cancer. Textural analysis attempts to quantitatively describe characteristics

of images based on the spatial arrangement of intensity values. While it has been established in

pattern recognition [10], and image processing [11], it more recently has been finding applica-

tion in the biomedical field [12–16]. For instance, textural features of PET scans extracted pre-

and post-treatment from patients with esophageal cancer have been used to differentiate

between nonresponders, partial responders, and complete responders [15]. Moreover, the use

of PET imaging relies on tumor uptake of the radiotracing compound which could be impacted

by the profusion of the microenvironment. In other work, textural measurements (such as het-

erogeneity, contrast, and energy) were observed to correlated with the fracture toughness of

bone tissue [16]. While there is great potential for image analysis to improve our understanding

of complex systems like tumours [4, 5], this remain an active area of research.

Using the techniques described by Haralick [17], this paper calculates several textural fea-

tures on Raman spectral maps. Besides using them to gauge tumour heterogeneity, these quan-

tities are employed to assess dose response in murine models of lung tumours irradiated with

clinically relevant doses of ionizing radiation. The next section outlines the Raman spectros-

copy data, as well as the details on how the spectral maps were generated. Subsequent sections

provide the specific definitions for select Haralick features and explore whether certain charac-

teristics of these tumours change in response to radiation dose and time post irradiation.

Materials and methods

All mouse protocols, tumour growth parameters, irradiations, tumour sectioning, and Raman

analysis were performed as described previously [9]. Briefly, H460 tumours were implanted
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and grown in murine models. Four mice were irradiated to 5 Gy, four mice were irradiated to

15 Gy, and a sham group (four mice) were left as controls, for a total of 12 mice. Tumours

were harvested 3 days post irradiation and sectioned into slices using established protocols [9].

In terms of Raman analysis of resulting tumour sections, each Raman spectrum was collected

utilizing a Renishaw Raman microscope (Renishaw Inc, Chicago, USA) operating at 785 nm

laser excitation, a 100x dry objective, and a 10s acquisition time. Raman maps were collected

on up to 4 separate tumour slices for each of the 12 mice in the study and were acquired on a

15 × 15 μm grid. The slices were selected randomly, as described in our previous work [9] and

shown by way of illustrative example in Fig 1. In all cases 100 × 100 or 200 × 200 micron

regions were studied.

Post-Raman acquisition spectral processing included cosmic ray removal, spectral smooth-

ing, baseline subtraction, and volume normalization as described previously [8]. The only

minor deviation here is within the baseline correction algorithm where we here use the

baseline package for spectra data available in R [18] using the second derivative con-

strained weighted regression [19] (method = “als”) with the second derivative constraint,

lambda, equal to 4. Our complete data set, Xn×p, contain n = 6581 spectra comprised of

74 Raman maps with a grid size of either 8 × 8 (15 μm × 15 μm per pixel) or 14 × 14 pixels

(20 μm × 20 μm per pixel). That is, each map is stored in either 64 or 196 rows in Xn×p, where

Fig 1. White light images of a H460 tumour xenograft, showing two sections from the same tumour. Mapped tissue regions are

outlined by black squares, showing the 100 um x 100 um area analyzed by Raman spectroscopy. Mapped regions were selected at

random.

https://doi.org/10.1371/journal.pone.0212225.g001
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the row names of Xn×p contain the locational information for each spectrum. An example

white light optical map illustrating regions of interest for Raman mapping is shown in Fig 1.

Principal Component Analysis (PCA) [20–22] is a commonly used technique for data

reduction that allows the user to project a high-dimensional data set into a new set of variables

in a lower dimensional space. PCA is an orthogonal transformation which ensures that each

variable, henceforth referred to as principal component, is uncorrelated and ordered such that

the first principal component explains as much of the variability in the data as possible, the sec-

ond component has the second largest possible variance, and so on. Applying PCA to our data

results in a score matrix Yn×q with q� p where each row represents the corresponding Raman

spectrum transformed into the new PC coordinate system. Herein, we concentrate on the first

principle component which explains approximately 55 percent of the variability in our data. In

previous work we have established that PC component 1 in the irradiated H460 tumours used

in the present study corresponds to glycogen production post irradiation [8] (see S1 Fig for a

visual comparison of principal component 1 with the glycogen spectrum).

To generate our 2D Raman images (see Fig 2 for example and S2–S4 Figs in the supplemen-

tary data for the complete collection), we populate the grid matrices described above with PC

component 1 scores (i.e. glycogen production scores) scaled between 0 and 1. In essence, the

gray scale image provides a visual representation of tumour glycogen levels. As an example,

Fig 3 represents how the pixel values for Map 27 relates to the Raman spectra. Spectra having

high and low glycogen production scores are plotting in red and blue, respectively. We remark

that the spectral interpretation in certain areas having a large discrepancy between red and

Fig 2. Example of six gray-scale Raman maps with pixel intensities equal to the scaled and discretized PC1 scores (glycogen

production) obtained from running PCA on Xn×p. Left: Map from non-radiated tumour section. Maps from irradiated mouse

tumour sections are shown for mice irradiated to 5 Gy (middle) and 15 Gy (right). Pixels are 15 × 15 μm. Map numbers refer to

tumour slice region of interest. A representative sample of maps has been shown.

https://doi.org/10.1371/journal.pone.0212225.g002
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blue spectra (eg. 490, 850, 1050 cm−1) correspond to spectral peaks characterized by glycogen

[23].

The original paper by Haralick [17] introduced a total of 14 measurements; however, many

of these values are highly correlated rendering all but five useful in practice [24, 25]. These fea-

tures rely on a gray level cooccurrence matrix (GLCM), denoted here by M, which contains

the textural information of an image. Assuming we have a gray-scale image composed of Ng

gray levels, the ijth element of GLCM, denoted M(i, j), counts the number of times a pixel with

the value of i is neighbouring a pixel with the value of j. Neighbours are defined by a user-spec-

ified distance d and angle θ. Finally, the GLCM is normalized so that the total sum of the ele-

ments sum to 1. We shall denote the elements of this Ng × Ng normalized GLCM by md,θ(i, j),
where we can write md,θ(i, j) as (for the example case of θ = 0˚) [17]:

md;0� ði; jÞ ¼ #fððk; lÞ; ðm; nÞÞ �ðNy � NxÞ � ðNy � NxÞ

jk � mj ¼ 0; jl � nj ¼ d

Iðk; lÞ ¼ i; Iðm; nÞ ¼ jg

ð1Þ

Following the recommendations in [25], we focus on homogeneity (H), contrast (Con), cor-
relation (Cor), entropy (E) and local homogeneity (LH). These texture features are calculated as

follows:

H ¼
XNg

i¼1

ðmd;yði; jÞÞ
2
; ð2Þ

Con ¼
XNg � 1

i¼0

k2

(
XNg

i¼1

XNg

j¼1

dji� jjmd;yði; jÞ

)

; ð3Þ

Cor ¼

XNg

i¼1

XNg

j¼1
ðijÞmd;yði; jÞ � mxmy

sxsy

; ð4Þ

E ¼ �
XNg

i¼1

XNg

j¼1

md;yði; jÞ log ðmd;yði; jÞÞ; ð5Þ

Fig 3. The Raman spectra from Map 27. The light gray bands indicate ± 1 standard deviation while the darker gray indicate the 5th

and 95th percentile.) The spectra corresponding to low and high PC 1 score values are plotted in blue and red, respectively.

https://doi.org/10.1371/journal.pone.0212225.g003
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LH ¼
XNg

i¼1

XNg

j¼1

1

1þ ði � jÞ2
md;yði; jÞ: ð6Þ

where Ng is the number of distinct pixels in the Raman map, and mx ¼
PNg

i¼1

PNg
j¼1 i �md;yði; jÞ,

my ¼
PNg

i¼1

PNg
j¼1 j �md;yði; jÞ and sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PNg

i¼1

PNg
j¼1 ði � mxÞ

2md;yði; jÞ
q

, sy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PNg

i¼1

PNg
j¼1 ðj � myÞ

2md;yði; jÞ
q

. To calculate the GLCM and Haralick features we used the

glcm() and haralick functions available in the R package wvtool [26].

Kumar and Sreekuma, 2014 [27] provide some helpful comments on how interpret the

Haralick texture features. Briefly, homogeneity will be close to 1 when only a few dominant

gray-tones are present. Contrast, will be equal to 0 for a constant image and become larger as

the pixel intensities in a local neighbourhood become more disparate. Correlation ranges from

-1 to 1 and reflects how correlated a pixel is to its neighbours. Entropy reflects the amount of

randomness in intensity of an image and will increase with the images local complexity. Local

homogeneity measures the similarity of pixels and is larger when there are minimal local

changes.

Results

For each of the 2D gray-scale Raman images, the Haralick textural features given in Eqs (2)–

(6) were calculated. Since the correlation between pixels is likely to decrease with distance, we

use q = 1 in accordance with [28]. To avoid any directional dependency, we averaged the val-

ues across four angles θ = 0, 45, 90, and 135˚ [29].

For illustration, we have provided the Haralick features corresponding to the maps dis-

played in Fig 2. Images that appear more monochromatic (eg. Map 10) have higher values of

H and LH than images having more pixel variation (eg. Map 34). Although Map 10 and 39 are

similar in terms of homogeneity, the neighbouring pixels in image 10 are closer in gray-tone

and consequently yield a lower value for contrast. Map 39 and 67 have a higher measure of

gray-tone linear dependencies and consequently produce larger correlation values. On the

contrary, the lack of any discernible linear pattern in Map 28, for example, generates a correla-

tion closer to zero. Finally, images with larger entropy values exhibit more randomness in

pixel intensity. Representative results are summarized in Table 1.

The Haralick features for the complete set of 74 gray-scale images are summarized in the

box-and-whisker plots in Fig 4. Each of the twelve mice have 5—8 associated Raman maps; the

legend provides a key to the mouse identification number. For each pair of box plots within

each plot, a comparison for the difference of means is made using a Kruskal-Wallis test with a

Table 1. Summary of textural results for representative Raman maps of glycogen production in tumour section pre and post irradiation. H = homogeneity,

Con = contrast, Cor = correlation, E = entropy, LH = local homogeneity.

Map Dose H Con Cor E LH

39 0Gy 0.0413 38.0764 0.2254 1.6355 0.4194

10 0Gy 0.0612 14.0903 0.0497 1.4351 0.4505

67 5Gy 0.0199 33.3194 0.1888 1.9419 0.2985

34 5Gy 0.0085 66.8472 -0.1985 2.1559 0.1193

28 15Gy 0.0059 77.1736 -0.1760 2.2696 0.1188

27 15Gy 0.0103 75.7153 -0.0498 2.0736 0.1718

https://doi.org/10.1371/journal.pone.0212225.t001
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significance level of 0.05. Significant p-values are indicated using asterisks (� for values

between 0.025—0.05 and �� for values between 0.001—0.025), while non-significant test are

labeled as ‘n.s’. We shall denote pki j as the p-value for testing if the mean feature values

obtained from Raman maps belonging to dose i is different than that of dose j, where k2 {H,

Con, Cor, E, LH} denotes the Haralick feature.

Among the 74 images considered, a significant difference between non-irradiated and

irradiated groups was uncovered. For instance, the group of non-radiated mice has a signifi-

cantly different mean contrast value than mice treated with 5 Gy and 15 Gy; pcon
05
¼ 0:016,

pcon
015
¼ 0:021. Furthermore, there was no statistically significant difference between mice irri-

tated with 5 Gy and 15 Gy; eg pcon
515
¼ 0:869. This trend, which is prevalent among all Haralick

features considered, indicates that the textural complexity of the images extracted from irradi-

ated mice tends to be greater than those extracted from non-radiated mice. As these images

were generated from the score values linked to glycogen, this work suggests that the affect of

radiation on glycogen production is not uniform across the tumour.

Discussion

The Haralick feature analysis provides a new methodology for shedding light onto the evolu-

tion of textural features within Raman maps of glycogen production within murine-irradiated

tumours. For example, in this study we quantitiavely show a statistically significant decrease in

the homogeneity of glycogen production (Fig 4a) as a function of irradiation dose. Put another

way, glycogen production is heterogeneously distributed throughout the tumour and, further-

more, the extent of heterogeneity exhibits a radiation dose dependence. In a separate study we

show that glycogen production is negatively correlated with tumour regression post radiation

[30]. Furthermore, the current and past hypoxic state of local tumour morphology is correlated

with glycogen production, thus affecting the spatial extent of tumour regression and glycogen

production [30]. While we tackle the radiobiological implications of glycogen production in a

separate work [30], it is clear that the Haralick features calculated here are (i) able to quantitate

the extent of textural variation as a function of radiation dose, and (ii) correlate well with

expected radiobiological trends in our murine models. Furthermore, it is apparent that glyco-

gen heterogeneity exists not only intra tumour, but also between murine tumours. This varia-

tion is inherently interesting from the point of view of future assays based on tailoring

treatment based on individual sample response and points towards future experiments dedi-

cated to understanding this inter-murine variability.

Within our current approach, only a single principal component (PC) is considered.

Although this component describes a large percentage (54.92%) of the total variability within

the Raman dataset, the inclusion of additional PCs may be advantageous in terms of under-

standing variability of Haralick indices for PCs that may harbour additional biochemical infor-

mation relating to radiation response. In order to analyze multiple PCs simultaneously, one

could investigate an extension of Haralick textural features that uses the colours discriminators

to describe colour images. In the context of this paper, rather than using a single PC score to

create a gray-toned image, a pseudo-coloured Raman map could be generated using the first

three PC scores to represent the red, green, and blue components in an RGB colour model; an

example is provided in Fig 5. Owing to the fact that these principal components explain

79.34% of the total variability in our data, these images present a richer representation of the

underlying spectroscopic information and could provide useful insight on the radiation-

induced differences in succeeding PCs that may be linked to other biological interpretations.

In future work, we will explore if and how the colour-indexed Haralick features are affected by

this extension.

Quantification of heterogeneity in tumour radiation response
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Fig 4. Side-by-side box plots for Haralick features. The box plots of the five Haralick features values obtained for the

74 gray-level Raman maps according to dose. The gray-level values are generated using the scaled PC1 scores. (a)

homogeneity, (b) contrast, (c) correlation, (d) entropy, and (e) local homogeneity, as defined in Eqs 2–6. Dose levels

are in gray units (Gy).

https://doi.org/10.1371/journal.pone.0212225.g004
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Haralick features provide possibilities for future implementation in the long term strategy

of personalized radiotherapy. For example, it is possible that Haralick analysis on biopsy-based

Raman maps can provide information on response heterogeneity that, along with orthogonal

biological information, can be used in the assessment of overall response. Other in vivo image

modalities provide information regarding tumor architecture as well as spatial context relative

to normal adjacent or host tissue within an organ system. In some cases such as PET, indirect

assessments of phenotype (e.g. glucose uptake) of a single biomarker can help infer some bio-

logical phenotype (e.g. metabolically active). While improvements may allow for potentially

dual or even triple biomarker uptake analysis, these techniques are different than Raman spec-

troscopy. Raman spectroscopy provides a global picture of biochemical signatures across mul-

tiple biomolecules in a single sample and does not rely on uptake of a tracer. As such, the

information collected from imaging and Raman spectroscopy are complementary in this

regard rather than overlapping. Future Raman spectroscopic point-of-care probes under

research development may in the future alleviate the need for biopsy samples. Further research

is required to continue to develop this long term goal.

On a final note, we recognize that an array of texture analysis methods exist in the literature.

We here do not presume that Haralick features will necessarily outperform other methods.

Rather, we here demonstrate that textural features provide an excellent platform to tackle the

issue of response heterogeneity. While this well-known model serves as a reasonable first

choice in our exploratory analysis, alternative techniques such as the ones described in [31]

Fig 5. Example of six RBG-scaled Raman maps with red/green/blue intensities equal to the scaled PC1, PC2, and PC3 scores

obtained from running PCA on Xn×p. Left: Map from non-radiated tumour section. Maps from irradiated mouse tumour sections

are shown for mice irradiated to 5 Gy (middle) and 15 Gy (right). Pixels are 15 × 15 μm. Map numbers refer to tumour slice region

of interest. A representative sample of maps has been shown.

https://doi.org/10.1371/journal.pone.0212225.g005
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could also prove useful. Additional work is required to establish the feasibility of other textural

feature analysis techniques.

Conclusion

The Haralick texture features display biologically relevant trends for dose response in tumours

extracted from our murine model. We here have demonstrated the ability of Haralick textural

features to quantitatively characterize the evolution of textural components (e.g. contrast,

homogeneity, entropy) within Raman maps of radiation-induced glycogen production in

murine tumours. Our results indicate that Haralick feature calculations provide a new, quanti-

tative assessment within a radiobiological context and may, in future studies, help quantify the

extent of radiation response. In turn, such quantification may be valuable in the long term goal

of personalized radiation therapy response monitoring.
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S1 Fig. Top panel: PC component 1 from the Raman data analysis of irradiated murine

tumours. Bottom panel: Raman spectrum of pure glycogen.

(TIFF)

S2 Fig. Raman maps with pixel intensities equal to the scaled and discretized PC1 scores

(glycogen production) for control unirradiated tumour sections.

(TIFF)

S3 Fig. Raman maps with pixel intensities equal to the scaled and discretized PC1 scores

(glycogen production) for tumour sections irradiated to 5Gy.

(TIFF)

S4 Fig. Raman maps with pixel intensities equal to the scaled and discretized PC1 scores

(glycogen production) for tumour sections irradiated to 15Gy.

(TIFF)
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