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The unprecedented magnitude of the 2014/2015 Ebola virus (EBOV) outbreak in West Africa
prompted the fast-tracking of experimental live replicating recombinant vaccines into clinical
safety trials and field deployment. The epidemic was by far the worst crisis caused by any Filo-
virus, infecting ten times more individuals than all previous outbreaks combined. The out-
break was eventually brought back under control via methods of containment, including
patient isolation, contact tracing, and safe burial practices. This achievement was made possi-
ble by the unwavering determination of countless volunteers under the guidance of the World
Health Organization and multiple other aid organizations.

At the height of the West African crisis, it was unknown whether standard containment
protocols would be enough to stem the epidemic. In the face of the looming crisis, the decision
was made to accelerate the delivery of vaccine candidates and therapeutic antibody treatments,
previously at an early stage of development, into clinical safety trials and field deployment.
While localized infections still continue to appear and require continued vigilance, the imme-
diate threat has now been brought under control. As a result, we are now presented with a
unique window of opportunity to reassess these vaccines and decide whether they are optimal
to combat future outbreaks.

To date, seven vaccine candidates have entered clinical safety trials (reviewed [1-3]). Of
these, three have progressed to efficacy trials after completion of Phase I trials and include
ChAd3-ZEBOV, Ad26-EBOV/MVA-EBOV, and rVSV-EBOV. ChAd3-ZEBOV and Ad26-E-
BOV/MVA-EBOV are both adenovirus-based vaccines and contain the EBOV glycoprotein
(GP) in place of the native adenovirus early region 1. This region is essential for virus replica-
tion, and the genetic substitution at this site renders both ChAd3 and Ad26 viruses nonrepli-
cating [4,5]. While this feature provides additional safety, immunogenicity issues have been
observed, necessitating high vaccine doses and multiple immunizations. In the case of Ad26-E-
BOV, a heterologous booster regime utilizes MVA (modified vaccinia Ankara) to deliver a
subsequent dose of Ebola GP. Nevertheless, both candidates have had promising results in
both nonhuman primate (NHP) models and human trials [4-7].

The furthest progressed of the vaccine candidates is a live replicating recombinant virus
based on the backbone of a vesicular stomatitis virus (rVSV-EBOV, Merck). This approach
includes a functional full-length EBOV GP that is incorporated in place of the native VSV Gly-
coprotein (G) (Fig 1A). This vaccine had previously been shown to be protective in NHPs and
was shown to be effective in humans in a delayed deployment efficacy trial conducted in
Guinea at the tail end of the 2014/2015 outbreak [8].

The results of the delayed deployment efficacy trial led to rVSV-EBOV being widely
reported as 100% effective. However, restricted to a short study window of only 11 days
(10 and 21 post-vaccination), these encouraging results should be viewed with caution.
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Fig 1. The live attenuated VSV-EBOV vaccine and EBOV GP functional attributes. (A) To create an
attenuated vaccine for EBOV, the glycoprotein of VSV was replaced with that of EBOV GP. The resulting virus,
rVSV-EBQV, forms bullet-shaped particles similar to VSV (Transmission electron microscopy analysis left panels
[22,34,35]) rather than the long filaments usually observed for wild-type EBOV. EBOV GP is present on the surface
of the chimeric virus in place of VSV G. (B) Recent research has revealed that the EBOV GP (known atomic
structure presented in red—PDB-5JQ3 [36]—and cryo-electron tomographic structure of the complete formin
outline—EMD-6003 [37]) contains three critical neutralization sites found at the glycan cap, GP1/2 interface, and
the stem region, respectively [32,38]. Effective vaccine candidates would be expected to elicit a strong response to
these epitopes. The mucin-like domain, which projects from the top of the GP trimer, acts as a shield to prevent
immune recognition of neutralization sites [19] and has also been observed to initiate cell activation and the
production of inflammatory cytokines in vitro [12]. The transmembrane (TM) domain tethers the GP trimer to the
viral membrane and has been implicated in endothelial cell disruption [15]. The adverse effects of the mucin-like
domain and the TM domain could be eliminated in future DNA or subunit vaccine lacking these regions.

doi:10.1371/journal.ppat.1006037.g001

Promisingly, no new cases were identified in the vaccinated population during the study win-
dow, compared to 16 cases in the population yet to receive the vaccine. However, two cases of
suspected EBOV disease were reported within the vaccinated population at day 24 and 38
post-vaccination [8]. Careful evaluation of these events and any additional putative cases
found to have occurred after the study window will shed light on the long-term efficacy of the
vaccine approach. Surprisingly, while the interim results from this trial were reported in
August 2015 [8], the final results are still yet to be released (as of October 2016), so it is cur-
rently unknown whether these suspected cases were later verified or whether any additional
cases amongst vaccinated individuals have been detected.

In addition to this trial, four separate Phase I safety trials for rVSV-EBOV were completed,
and the findings have been recently reported [9]. These trials were conducted in Geneva (Swit-
zerland), Hamburg (Germany), Kilifi (Kenya), and Lambaréné (Gabon), using different doses
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of rVSV-EBOV. In the Geneva trial, which administered the highest dose, 11 cases of arthritis
were identified (22% of participants), forcing a temporary hold. Joint pain and/or arthritis
were also reported amongst participants at other trial sites, although cases were less frequent
and predominantly less severe. In four participants from the Geneva trial, pain persisted
between 2 and 6 months and a further two participants reported reoccurring joint pain after
2.5 or 4 months. In one participant with arthritis, r'VSV RNA was detected in synovial fluid
collected by knee arthrocentesis, indicating migration of the recombinant virus into the joint
capsule. Nonserious adverse reactions that were frequently reported in all four safety trials
included fever (20%), chills (29%), myalgia (45%), arthralgia (15%), headache (48%), and
fatigue (42%). Within the delayed deployment efficacy trial, a severe episode of febrile illness
was reported in a participant at day 2 post-vaccination and was deemed to be a direct result of
vaccination [8]; however, rates of nonserious adverse events have not been reported.

The underlying cause of these adverse reactions remains open to debate. The VSV back-
bone has previously been shown to have an acceptable safety profile in humans when used to
present HIV gag [10], however, use in humans is limited, and backbone contribution to the
observed reactogenicity for rVSV-EBOV requires further investigation. Of note, in vitro stud-
ies have previously linked EBOV GP with cell cytotoxicity, inflammation, and vascular leak,
raising the possibility that it may produce similar effects within the context of the recombinant
vaccine and contribute directly to the observed adverse reactions. Within GP, two regions
have been linked with cytotoxicity; the highly glycosylated, mucin-like domain and the c-ter-
minal transmembrane (TM) region (Fig 1B).

The mucin-like domain has been shown to be directly involved in the detachment of endo-
thelial cells from blood vessels, leading to increased vascular permeability [11]. This domain
has also been shown to be involved in the interaction between GP and the pathogen-associated
molecular pattern (PAMP) receptor, Toll-like receptor 4 (TLR4). TLR4 binding leads to cellu-
lar activation and the potent induction of inflammatory responses [12]. Given TLR4 activation
has been linked directly to vascular leak in other viral systems [13], a central role for this path-
way in EBOV pathology remains an untested but likely hypothesis [14].

Beyond the mucin-like domain, TM region has also been implicated in cytotoxicity. Expres-
sion of full-length GP triggers the extensive formation of filaments at the plasma membrane,
followed by cellular detachment. The same effect is seen when only the C-terminal GP2 sub-
unit is expressed but can be partially reversed by mutation within the TM region [15]. Addi-
tionally, it is worth noting that a significant portion of GP is shed from the infected cell surface
through the activity of a metalloprotease, tumor necrosis factor o-converting enzyme (TACE).
The extent to which this occurs upon vaccination with rVSV-EBOV has not been specifically
addressed and could be optimized in future vaccines [16]. Such optimization could also pro-
vide important insights into EBOV pathogenesis as the shed form of GP has been specifically
implicated in vascular permeability [17], while the membrane-anchored full-length form has
been implicated in cytotoxicity [18]. Pertinent to vaccine design, neither the mucin-like
domain nor the TM domain is essential for generation of a protective neutralizing immune
response. Indeed, the epitopes targeted by the approved antibody cocktail treatment lie within
the GP1/2 chalice and do not require the mucin-like or TM domains (Fig 1B). In fact, the
mucin-like domain has been suggested to shield vulnerable epitopes from immune recogni-
tion, and the absence of this domain from virus-like particles has been shown to improve the
neutralizing immune response upon immunization [19].

These studies highlight a possible causal relationship between discrete structural motifs
within GP and EBOV pathogenesis, which raises the possibility that these effects may be mini-
mized in future versions of EBOV vaccines. The current rVSV-EBOV and other live replicat-
ing recombinant vaccines utilize full-length EBOV GP; however, large alterations to GP
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structure appear a viable prospect, as previous work has demonstrated that the mucin-like
domain is dispensable for the generation of replication competent virus [19,20]. Beyond live
vaccines, other approaches, including DNA-based, subunit, and virus-like particles or other
nonreplicating vaccines, are ideal vehicles for optimized GP delivery and could be designed to
include known protective epitopes without undesirable masking or cytotoxic domains.

Of further concern is the theoretical potential for live replicating vaccines, such as rVSV-E-
BOV, to become transmissible in humans. While unlikely, this possibility is exemplified by
outbreaks of vaccine-derived poliovirus [21]. The potential for transmission of chimeric
recombinant vaccines represents a larger unknown compared to attenuated vaccines, and the
repercussions from such an event could be far more dramatic.

Considering these risks, it is of concern that among vaccinated individuals, shedding of live
recombinant virus has been recorded. Of 51 patients immunized with high doses of rVSV-E-
BOV in the Geneva trial, three developed maculopapular rash with vesicular lesions shown to
contain VSV antigens. Genetic material from rVSV-EBOV could be detected in fluid released
from vesicular lesions by qPCR out to 17 days after vaccination, and infectious virus was iso-
lated from one individual 9 days after vaccination [9]. Direct contact with vesicular lesions
could, therefore, theoretically facilitate transmission. This scenario could provide a window
for the acquisition of mutations or genetic recombinations that could transform the recombi-
nant virus from a vaccine into a pathogen in its own right.

While VSV infections in humans are rare and generally subclinical, incorporation of a
potential virulence factor, such as EBOV GP, could promote unforeseen effects. EBOV GP is
responsible for facilitating receptor binding and viral entry and, therefore, has the potential to
alter cellular tropism. Indeed, altered tropism was observed and used to validate the incorpo-
ration of EBOV GP in the VSV system [22]. The reported vaccine-associated maculopapular
rash observed in safety trials has not been reported for human infections with wild-type VSV
and may be an indication that altered viral tropism is driving unique pathology in humans.
Also of concern is the potential of GP-induced vascular leak, which may facilitate systemic dis-
semination of the live virus and increase transmission risk.

The level of rVSV-EBOV replication, and therefore risk of adverse effects, can be crudely
adjusted by altering the vaccine dose. Ideally, a level could be identified that is both safe and
protective. However, due to the natural variation in susceptibility between individuals, it may
not be possible to define an appropriate dose that is both safe and protective in all individuals.
This is of particular significance when considering potential use in children, pregnant women,
and immunocompromised individuals in whom vaccination may trigger more severe adverse
effects. Notably, clinical trials of the adenovirus-based vaccines Ad26-ZEBOV and CHAd3-E-
BOZ are being performed within these cohorts and may offer a safer alternative [23,24].

Despite these concerns, the r'VSV-EBOV approach has several advantages, including a
robust response that doesn’t necessitate a booster regime or adjuvant. This feature is especially
valuable given the challenging logistics of vaccine delivery in endemic regions. In addition,
rVSV-EBOV appears to have potential in both pre- and post-exposure settings. Data from
post-exposure treatment in humans is thus far limited to one example, in which rVSV-EBOV
was administered 43 hours after accidental needlestick exposure to EBOV [25]. In this
instance, post-exposure treatment induced VSV viremia and anti-EBOV immunity, and the
individual survived; however, it is unknown whether the initial exposure dose was life-threat-
ening. Successful post-exposure treatment has also been demonstrated in NHP models
[26,27], supporting the ongoing use of r'VSV-EBOV in this manner wherever possible.

Consideration of potential risk versus benefit is an integral part of the implementation of
any vaccination strategy. The high fatality rate associated with EBOV justifies the acceptance
of a higher level of risk in the absence of a viable alternative. However, the higher potential for
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adverse reactions and the possibility of vaccine-derived infections warrant careful consider-
ation when utilizing live replicating vaccines. Adverse reactions also have implications beyond
the individual level, as community uptake may be reduced due to public concern about vaccine
safety. As with rVSV-EBOV, other live replicating vaccines incorporating full-length EBOV
GP and other viral backbones could be expected to suffer from similar complications. In paral-
lel with clinical efforts, the recent outbreak also stimulated renewed basic research in Ebola,
which is now translating into significant advances in the understanding of GP structure, func-
tion, and optimal neutralization sites at the molecular level [28-33]. These new insights should
now be used to guide rational antigen design in order to minimize cytopathic effects and pro-
vide optimal protective efficacy. Now that the immediate threat from the West African EBOV
outbreak has been brought under control, we have the capacity to establish an optimal vaccine
strategy with the aim of delivering robust protection together with a stringent safety profile.
We advocate for the careful assessment of the risks and benefits of utilizing live replicating vac-
cines for Ebola and for the expedition of subunit and other nonreplicating vaccines into clini-
cal trials to provide alternatives for protection against Ebola.
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