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Abstract

Actinobacteria encode a wealth of natural product biosynthetic gene clusters (NPGCs), whose 

systematic study is complicated by numerous repetitive motifs. By combining several metrics we 

developed a method for global classification of these gene clusters into families (GCFs) and 

analyzed the biosynthetic capacity of Actinobacteria in 830 genome sequences, including 344 

obtained for this project. The GCF network, comprised of 11,422 gene clusters grouped into 4,122 

GCFs, was validated in hundreds of strains by correlating confident mass spectrometric detection 

of known small molecules with the presence/absence of their established biosynthetic gene 

clusters. The method also linked previously unassigned GCFs to known natural products, an 

approach that will enable de novo, bioassay-free discovery of novel natural products using large 

data sets. Extrapolation from the 830-genome dataset reveals that Actinobacteria encode hundreds 

of thousands of future drug leads, while the strong correlation between phylogeny and GCFs 

frames a roadmap to efficiently access them.

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
* Corresponding authors: William W. Metcalf, metcalf@illinois.edu. Neil L. Kelleher, n-kelleher@northwestern.edu.
†Authors contributed equally to this study
Author Contributions JRD designed and performed bioinformatic analyses. JRD, RRH and KAT produced microbial extracts. JCA 
designed LC-MS experiments and JCA and AWG collected and analyzed LC-MS data. KSJ received and processed germplasm and 
contributed to genomic library preparation. DPL selected and provided germplasm from the ARS Culture Collection. WWM and NLK 
designed and directed the work. JRD, JCA, WWM and NLK wrote the manuscript.
Author Information Draft genomes sequenced as part of this project are available through NCBI BioProject PRJNA238534.

Supplementary Information is submitted as file “Metcalf SI.pdf”, “Metcalf Suppl Note.pdf” 
“Metcalf_supplementary_dataset1.xlsx”, “Metcalf_supplementary_dataset2.xlsx”, and “Metcalf_supplementary_dataset3.xlsx”. An 
interactive database of the GCF networks is available online at www.igb.illinois.edu/labs/metcalf/gcf.

Competing Financial Interests
The authors declare no competing financial interests.

HHS Public Access
Author manuscript
Nat Chem Biol. Author manuscript; available in PMC 2015 May 01.

Published in final edited form as:
Nat Chem Biol. 2014 November ; 10(11): 963–968. doi:10.1038/nchembio.1659.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/authors/editorial_policies/license.html#terms
http://www.igb.illinois.edu/labs/metcalf/gcf


Introduction

Natural products from actinomycetes have been the source or inspiration for the majority of 

clinically useful antibiotics, along with numerous other pharmaceutically useful compounds 

including immunosuppressive, antiproliferative, herbicidal, insecticidal, fungicidal and 

antiparasitic drugs 1. Yet, despite the historical importance and numerical dominance of 

natural product-based medicines, many pharmaceutical companies have replaced their 

natural product discovery efforts with target-based screening of synthetic compound 

libraries 2. Ironically, the coincident rise of rapid and inexpensive DNA sequencing 

technology has revealed a wealth of novel natural product biosynthetic gene clusters in 

actinomycete genomes: typically ten-fold higher than the number of molecules discovered 

by traditional approaches in each organism 3. Thus, the current pharmaceutical industry is 

built upon <10% of the biosynthetic capacity of the microbial world. These observations 

have engendered the idea that “genome-mining” will lead to a renaissance in natural product 

discovery that could revitalize the pharmaceutical industry. Although genome-mining has 

allowed some notable natural product discoveries 4,5, its promise has yet to be fulfilled on a 

large scale due to bioinformatics hurdles related to the complex and repetitive nature of the 

biosynthetic genes involved and the need to have specific and sensitive assays for each new 

compound.

Systematic, large-scale genome-mining will require automated methods for recognition and 

classification of units that generate new compounds – namely biosynthetic gene clusters. 

Toward this end, numerous software tools have been developed for the automated 

recognition and database storage of NPGCs. Some of these tools predict the structure of the 

putative natural products, while others perform simple comparisons between the clusters 

found in various organisms 6-14. However, to our knowledge, none perform a global 

classification of all gene clusters, which is a computationally difficult problem due to 

ubiquitous features found in the common natural product biosynthetic enzymes, polyketide 

synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). Individual NRPS and 

PKS proteins are comprised of repeating modules that add or modify the chemical subunits 

of growing natural products (see 15 for review). These include derivatives of at least ten 

discrete modules that catalyze substrate activation and tethering, condensation with the next 

subunit, chemical modification of the growing chain and release of the final product. Over 

time, these repeating modules have recombined with other NPGCs, both within and between 

organisms, to produce a complex and diverse set of biosynthetic gene clusters that are 

difficult to functionally dissect due to shared sequences in genes that direct the synthesis of 

very different products and rearranged gene clusters that direct synthesis of the same 

product. We report a systematic bioinformatics framework for the study of natural product 

gene clusters. We used mass spectrometry data to verify gene cluster family designations 

and to demonstrate utility for de novo correlation of natural products and biosynthetic genes.
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Results

Creation and analysis of a GCF network

We created a dataset comprised of NPGCs involved in the synthesis of NRPS, type I and 

type II PKS, NRPS-independent siderophores (NISs), lanthipeptides, and thiazole-oxazole 

modified microcins (TOMMs). These include NPGCs identified in 830 actinomycete 

genomes, 344 of which were sequenced for this project (Supplementary Data Set 1), as well 

as 412 gene clusters with established natural products from Genbank. Three distance metrics 

were calculated for every NPGC pair: (i) the number of homologous genes shared (Fig. 1a); 

(ii) the proportion of nucleotides involved in a pairwise alignment (Fig. 1b); and (iii) the 

amino acid sequence identity between the domains of repeated protein modules (Fig. 1c). 

When used alone, each of these metrics has limited ability to separate homologous from 

paralogous gene clusters. For example, BLAST-based ortholog detection and clustering as 

reported previously 16 is especially limited by the repeated, modular structure of large PKS 

and NRPS genes, which produce very low e-values for genes in different gene cluster 

families. However, a combined score that incorporates all three metrics produces coherent 

GCFs that include only highly related NPGCs, as assessed by manual inspections of gene 

cluster diagrams and GCF network visualizations (Supplementary Results, Supplementary 

Fig. 1; an interactive version of Supplementary Figure 1 is available at www.igb.illinois.edu/

labs/metcalf/gcf). The all-v-all nature of this approach was very computationally expensive, 

taking several months on a server utilizing 40 processors, mostly dedicated to PROmer 

comparisons. The combined scoring metric was not systematically compared to the BLAST 

only clustering because the families produced by this metric clearly produced families 

containing unrelated gene clusters (data not shown). To further validate the approach, we 

examined the gene cluster families that contain multiple NPGCs with established natural 

products. (Note that characterized gene clusters that are the sole members of GCFs are not 

informative in this regard and were not included in the analysis.) The combined metric 

correctly grouped 103 characterized gene clusters into forty-one GCFs that direct synthesis 

of highly similar natural products (Supplementary Note and Supplementary Fig. 2). The 

single known NPGC that was not grouped with relatives making highly similar compounds 

is an unusual actinomycin gene cluster with a large internal duplication, previously reported 

to be divergent from other actinomycin gene clusters 17.

The GCF network created using these methods from the 830 actinobacterial genomes was 

comprised of 140,986 genes from 11,422 NPGCs grouped into 4,122 GCFs (Fig. 2a). There 

were 77 GCFs that contain at least one characterized NPGC along with related, as yet 

uncharacterized, gene clusters in the newly sequenced genomes. These “anchored” GCFs 

provided 1193 new NPGCs that are likely to direct the synthesis of novel derivatives of 

known compounds (Supplementary Data Set 2), each with a high expectation of exhibiting a 

targeted bioactivity. We are currently developing functionality that will allow users to 

submit their own genomic data into this framework.

The ability of the GCF approach to recognize whether one NPGC is the same or different 

from another allows the use of rarefaction analysis to estimate the total number of natural 

product scaffolds made by actinomycetes and the number of strains that would need to be 
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screened to find them all. This statistical method examines the rate at which new GCFs 

accumulate as new genomes are randomly added to the data set. This process is somewhat 

complicated by the non-random nature of the data; over 40% of the genomes in our dataset 

were derived from a few medically relevant genera: Mycobacterium (142 genomes); 

Corynebacterium (68 genomes); Propionibacterium (89 genomes); Actinomyces (24 

genomes); and Gordonia (20 genomes (Fig. 2a). To correct for these phylogenetic biases, 

we randomly sampled our data from phylogenetic bins (operational taxonomic units, or 

OTUs) for extrapolation analyses and to produce a rarefaction curve (Fig. 2b). Three 

different estimation methods, Chao1, ACE and extrapolation, implemented within the 

software EstimateS 18, were used to analyze the data; all gave similar results 

(Supplementary Table 1). Although the NRPS GCFs were the most abundant in our current 

data, the extrapolation predicts that type I PKS will become more abundant as more 

genomes are sampled. These classes were followed, in order, by type II PKSs, 

lanthipeptides, NRPS-independent siderophores (NISs), and TOMMs. Collectively, we 

estimated that the actinomycetes encode ~17,350 GCFs in these six classes. Because each 

GCF represents the biosynthetic capacity to produce a suite of related molecules, these 

GCFs are predicted to direct the synthesis of hundreds of thousands, but not millions, of 

natural products. The extrapolations predict that essentially all actinomycete NPGCs will be 

identified after ca. 15,000 genomes are sequenced from different OTUs, an achievable 

proposition given the decreasing cost of sequencing. Considerably fewer genome sequences 

will be required to access the full repertoire of the less abundant classes (Fig. 2b).

Our analysis of the abundance and distribution of the GCFs in the dataset provided an 

efficient path for selection and prioritization of actinobacterial strains for future natural 

product discovery efforts. Consistent with previous reports19, our data suggested that certain 

phylogenetic groups are gifted with an abundance and diversity of NPGCs (taxa between 

Streptomycetales to Pseudonocardiales, inclusive, in Fig. 2a). In total, these gifted groups 

encoded 73.6% of the GCFs present in our dataset (Table 1). Based on these finding, we 

asked whether inclusion of the non-gifted genomes biased the diversity estimates. However, 

when only the gifted taxa were analyzed, the predicted numbers of GCFs were essentially 

the same as presented in the previous section (Supplementary Table 2). Importantly, our data 

showed a strong correlation between phylogenetic distance and the GCF complement of 

individual strains, with the degree of conservation varying according to biosynthetic class 

and phylogenetic group (Fig. 3, Supplementary Fig. 3). Among the gifted taxa, related 

strains share 80% of their NRPS and 73% of their type I PKS GCFs at the 1% divergence 

level (based on a concatenated ribosomal protein phylogeny), These values drop sharply 

beyond the 1% cut-off, such that strains share only 6% and 3% of their respective NRPS and 

PKS I GCFs at a ribosomal protein divergence of 4-5%. We observed similar trends for 

most other natural product classes, although the rate of decline in GCF conservation across 

genetic distance for lanthipeptides and type II PKS clusters was not as pronounced 

(Supplementary Fig. 3). In contrast, NRPS-independent siderophores were conserved across 

a much larger phylogenetic distance: 84% and 66% conservation at 0-1% and 4-5% 

ribosomal protein divergence, respectively. Importantly, we observed the same correlations 

between phylogeny and GCF with the use of a simple 297 bp fragment of the rpoB gene 

suitable for amplicon sequencing (Fig. 3b). Significantly, 1% ribosomal protein divergence 

Doroghazi et al. Page 4

Nat Chem Biol. Author manuscript; available in PMC 2015 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



corresponds to a suggested “species-level” cutoff within Streptomyces (Supplementary Fig. 

4), consistent with the idea that natural product biosynthetic capacity drives speciation 

within this genus20.

Correlation of GCFs with secondary metabolite production

Our analysis of GCFs substantially reinforces the idea that Actinobacteria represent a major 

source of new natural products; however, to move beyond the concept, the molecules 

produced by each GCF must be identified. With this in mind, we developed a liquid 

chromatography-high resolution mass spectrometry (LC-HRMS) method to quantitatively 

measure the exported metabolome of the strains being screened. We tested this method on 

pooled extracts produced by 178 of the strains included in our GCF data set after growth in 

four different media. After background subtraction, we detected an average of 105 

compounds produced by each strain, many of which were found in multiple strains/samples. 

In total, 2,521 unique compounds (intact masses) were identified in the MS1 data. Among 

these, we identified 110 previously characterized natural products after automated search of 

a database consisting of 9,817 known actinomycete natural products. After we collapsed 

highly similar molecules (e.g. actinomycin A and actinomycin D) into groups, we 

experimentally linked 27 known natural products to nine GCFs in our network. In the 

samples we analyzed, these 27 compounds were observed and verified by high-resolution 

tandem MS 268 times (representative data shown in Supplementary Fig.5). Significantly, we 

identified the correct GCF in the genome of the source organism in 92% of these cases. 

Thus, the method has a relatively low rate of false positives. Interestingly, these same gene 

clusters could be found in many strains that did not produce the compounds in question, i.e. 

the gene clusters were cryptic in these cases. In total, known GCFs were cryptic in 77% of 

the strains we examined. This observation belies the idea that NPGCs are usually cryptic, 

with major implications for discovery efforts. Accordingly, one may need to screen on 

average only four isolates with a given NPGC to find one in which the corresponding natural 

product is produced at levels sufficient to allow mass spectrometric detection. We wish to 

emphasize that our assessment of cryptic NPGCs applies only to the known compounds that 

we identified. It remains to be seen whether this trend will apply to all NPGCs.

We were particularly interested in whether an automated method could be developed for 

linking specific gene clusters to specific molecules (i.e. specific exact masses from the MS 

data) based on the simple fact that a molecule cannot be produced without the biosynthetic 

genes also being present. To achieve this, we performed a binary correlation between 

subsets of each GCF - based on clustered domain sequences - present in each genome and 

the MS1 intact masses found in each extract. Without manual intervention, the binary 

correlation of the GCF and MS data sets associated experimentally established biosynthetic 

gene clusters with production of oxytetracycline, benarthin, nonactin, and enterocin, with 

correlation scores at the extreme high end of the overall distribution (Fig. 4a, Table 2). 

Further, manual searches revealed the presence of fragmentary gene clusters (due to the 

draft nature of the genome sequences) that had been omitted from our automated GFC 

network in some of the strains that produced MS2 verified natural products. This improved 

the correlation scores for actinomycin D and pyridomycin, as did the use of the full GCF for 

proferrioxamine D2, such that the manual correlation score was actually higher than the best 
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automated correlation score. Application of the automated method to the full data set also 

revealed a strong correlation between a previously uncharacterized GCF and the related 

compounds desertomycin A, B, D, and E and oasamycin A, D, and E (Fig. 4b, 

Supplementary Fig. 6). This cluster encodes PKS modules consistent with the known 

molecule, as well as proteins with predicted functions that match the unique structural 

features of the molecule, specifically N-methylation, and mannosylation. Thus, we believe it 

highly likely that this previously unassigned GCF is responsible for the synthesis of both 

desertomycin and oasamycin. We also observed a highly significant correlation between the 

griseobactin GCF and benarthin. It had previously been speculated, but never proven, that 

the two molecules share a biosynthetic pathway21. Our correlation data provide additional 

support for this hypothesis, and show that this method can also be used to find biosynthetic 

intermediates.

Discussion

Over the past several decades, pharmaceutical companies have cultivated millions of 

actinomycetes searching for novel bioactive compounds; yet, efforts to discover natural 

products within this vast and valuable resource is like exploring a continent without a map. 

As a result, high rates of rediscovery have plagued the natural product discovery arena. 

Here, we have developed a global, genome- and mass-spectrometric-enabled framework for 

the discovery of natural products that alleviates this blind screening approach. This 

discovery roadmap will enable researchers to explore the complete diversity of NPGCs in a 

systematic way.

While their potential is high, our analyses show that actinomycete natural products represent 

estimable number of scaffolds that reaches into the thousands rather than the millions. We 

note, however, that each GCF corresponds to a natural product scaffold, rather than a 

discrete molecule and that we have not estimated the number of possible modifications 

within each scaffold family. Given the number of total GCFs in each class of natural 

products, it is possible to envision research consortia focused on natural product discovery 

that will aim to uncover the majority of chemical diversity within the actinomycetes for each 

of the smaller classes.

Despite clear evidence of horizontal gene transfer of biosynthetic genes, our data reveal a 

strong phylogenetic signal to the genomic catalog of NPGCs. Thus, two strains that are 

separated by a ribosomal protein distance of 0.5% will likely share almost all of their natural 

product gene clusters, while two strains separated by 7% will share almost none but the most 

common. Accordingly, future discovery efforts would benefit greatly from a focus on gifted 

phylogenetic groups coupled with prescreening to reduce the number of close relatives. This 

places a much greater importance on knowledge of microbial diversity than if GCFs were 

randomly distributed. Because different species, and perhaps even supraspecific clades, have 

habitat preferences, GCFs may also be viewed as having “habitats”; an idea that is supported 

by recent metagenomic NPGC surveys 22. The current state of knowledge regarding 

microbial ecology and phylogenetic diversity within these groups currently limits our ability 

to assess the degree to which these unknowns will affect our diversity estimates. For 

example, if novel cultivation methods or culture-independent sequencing uncover novel 
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natural product rich actinobacterial families not currently covered by culture collections, 

then sampling 15000 genomic species may be insufficient to cover all natural product 

diversity. To paraphrase 23, our extrapolation to 15000 genomic species is performed under 

the assumption that the additional samples are collected under the same conditions and 

protocols as our existing data set. Despite these limitations, our observation that PCR-based 

screening of rpoB alleles provides an accurate reflection of NPGC content suggests a rapid 

and inexpensive phylogenetic typing method to accelerate this research.

Finally, we note that these GCF/NP linkages were the product of a small data set consisting 

of data from 178 strains grown under only four conditions, harvested at a single time point 

and restricted to molecules retained by a single purification methodology. There is every 

reason to believe that correlation scores will improve dramatically with larger, more 

inclusive datasets. Moreover, the method reported herein could be further strengthened by 

expanding to include MS-MS spectral networking as reported previously 24, which has yet 

to be coupled with genomic data that could be used to constrain the analysis. If this 

expectation is met, it is not unreasonable to believe that this correlative approach will lead to 

the discovery of nearly all natural products produced by actinomycetes (or any other group 

for which a sufficiently large dataset can be generated). In this regard, our analyses revealed 

numerous correlation scores in the same range as those for the established knowns. 

Experiments are currently in progress to validate these linkages and to determine the 

structure of the molecules in question.

Methods

Genome Sequencing

All strains were received directly from the Agricultural Research Service (NRRL) culture 

collection, Peoria, IL. ATCC® Medium #172 broth 25 was used for liquid cultures (per liter: 

glucose, 10.0 g; soluble starch, 20.0 g; yeast extract, 5.0 g; N-Z amine type A, 5.0 g; CaCO3, 

1.0 g; agar, 15.0 g). Genomic DNA was prepared using the UltraClean Microbial DNA 

Isolation Kit (MO BIO Laboratories, Carlsbad, CA) and sequencing library preparation was 

performed with Nextera version 2 kits (Illumina, San Diego, CA). Genomes for the 343 

strains reported here were sequenced at the University of Illinois at Urbana-Champaign 

Keck Sequencing Center and the University of Wisconsin Biotechnology Center. These 

genomes were sequenced in four separate batches. 87 were sequenced using version 1 

Nextera library preparation kits. The 24 genomes handled at the University of Wisconsin 

Biotechnology Center were sequenced on the Illumina GAIIx platform. Sixty-four genomes, 

including one that had insufficient reads on the GAIIx, were sequenced on an Illumina 

HiSeq using v2 chemistry at the University of Illinois. For these 87 genomes, an initial set of 

genome assemblies was performed using Velvet version 1.0.15 26, SOAPdenovo v1.04 27, 

EULER-SR v1.1.2 28. Subsequently, faux reads created by breaking larger contigs from 

these assemblies into 1999 bp pieces and 400,000 reformatted Illumina paired-end reads 

were used as input for gsAssembler v2.5.3 29. The resulting contigs were then used as input, 

along with all Illumina reads for a final scaffolding step with SSPACE v1.1 30. For the 

remaining genomes, sequencing was performed on an Illumina HiSeq 2000 with version 3 

chemistry and 24 samples pooled per lane. These genomes were assembled IDBA UD 
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version 1.0.9 31. Gene prediction was performed with Prodigal version 2.5.0 32. The 

remaining 487 genomes were downloaded from NCBI. All available gene predictions were 

kept and not altered. NCBI taxonomy information was used in an attempt to include all 

Actinomycetales genomes in NCBI as of February 2013. A small number of these genomes 

were not carried all the way through the pipeline, primarily due to a lack of complete 

uniformity in locus tag and formatting conventions. All further processing was performed 

with Perl scripts interfaced with MySQL.

Bioinformatics

Gene clusters were identified as previously described 19. Orthologs were defined using 

OrthoMCL to analyze an initial set of 231 genomes 33. Genes included within gene cluster 

boundaries for additional genomes were recruited to this initial data set by defining 

orthologs based on best BLAST hits to the original 231 genome data set below an e-value 

cutoff of 1e-10.

Gene cluster families were created using three similarity measures. The first is the mean 

proportion of orthologs shared by two gene clusters, with each gene only being counted once 

to prevent inflated scores from repeated genes (e.g. polyketide synthases and nonribosomal 

peptide synthetases). The cutoff used for this score was 0.5 (50%). The second uses PROmer 

alignments of every possible pairwise combination of gene clusters that were scored as the 

mean proportion of each gene cluster that is part of an alignment 34. The cutoff used for this 

score was 0.5 (50%). The third is based on similarity of one type of domain or full length 

gene for each biosynthetic class as follows: type I and II polyketide synthases, ketosynthase 

domain; nonribosomal peptide synthetases, adenylation domain; NISiderophores, IucA-IucC 

domains; lanthipeptides, lanthionine-cyclase containing genes; and microcins, dehydratase 

genes. The program uclust was used to group domains at a 70% similarity cutoff 35. The 

cutoff used for this score was that half of the total number of key domains or genes present 

in a pair of clusters must be in the same 70% similarity groups. To be placed into a gene 

cluster family, all three of these cutoffs must be passed. These scores were then weighted, 

counting the domain similarity twice, and converted to a distance metric as D = a + h + 2s, 

where D is the distance metric, a is the alignment score, h is the proportion of shared 

homologous genes and s is the highest clustering threshold in uclust that groups at least half 

of the domains in a pair of clusters together. These distance scores were used as input for 

density-based clustering with DBSCAN 36 implemented in the R package fpc (http://cran.r-

project.org/web/packages/fpc/) with the following parameters: eps, 0.3; and MinPts, 2. The 

clusters assignments produced using DBSCAN were used as input to color the gene cluster 

family networks in the program Cytoscape to aid manual auditing 37. All GCFs were 

manually examined, with special attention paid to GCFs split into separate clusters by 

DBSCAN.

Lanthipeptides and TOMMs were subjected to additional scrutiny based on predicted 

precursor peptides. The lan-cyclase domain containing genes and the cyclodehydratase, 

previously known as the docking protein, genes were aligned with MUSCLE v3.7 38 and 

used as input for FastTree version 2.1.5 SSE3, OpenMP 39 with option –gamma for rate 

optimization under the Gamma20 model. The resulting phylogenetic framework was used to 
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examine precursor peptides, with special attention paid to likely secondary structure for 

lanthipeptides, which is tied to resulting function 40.

All GCFs were manually checked for similarity based on gene cluster diagrams highlighting 

orthologous genes. This visualization was performed with in-house Perl scripts interfaced 

with MySQL and output as HTML with JavaScript. The visualizations are provided in 

Database S1. The annotations presented of the website are based on the most frequently used 

annotation for each set of homologous genes, as found within the set of annotated genomes 

in Genbank. This generic method allows automated annotation based on existing data. We 

strongly recommend additional bioinformatics analyses for genes of interest.

Ribosomal proteins used to create the phylogenetic tree in Figure 2a were detected using 

pHMMs created with HMMER using the files developed in a previous study 41. The 

proteins were aligned using ClustalW 42 and the tree was created with FastTreeMP 39 and 

visualized with the Python library ETE2 43. Genomic data was presented with Circos 44.

All sequence distance comparisons, for both amino acid and nucleotide sequences) were 

performed based solely on identity and represent the proportion of differences. These scale 

linearly and range from 0-1. The rpoB gene fragment used ranges from the Streptomyces 

coelicolor A3(2) gene SCO4654 coordinates 1451-1747.

Correlations were performed on subsets of each GCF to improve accuracy when looking for 

an exact mass. An entire GCF likely includes multiple unique structures that share a 

common core, and this diversity would not be reflected in our current analysis based on 

intact masses. The central domains or genes discussed above, e.g. ketosynthase domains or 

full length pepM, were clustered at a threshold of 0.9 using the program uclust35. Individual 

domains were given unique identifiers, such that some fragmented clusters that are closely 

related could be used for correlations that were left out of the larger GCF analysis. These 

subsets of each GCF were the correlated with the binary occurrence of each individual 

component ID in the output from SIEVE (see below). Scoring was applied in the following 

fashion: GCF present, component ID present = +10; GCF absent, component ID present = 

−10; GCF present, component ID absent = 0; GCF absent, component ID absent = +1.

Extrapolations were performed using the program estimateS 18. Genomes were considered 

as sampling sites and occurrence of gene cluster families within the genomes as counts of 

individuals. Analyses were repeated for 100 runs. Classical measures were used for Chao1 

and ACE estimates. Extrapolation was performed for a total of 750 knots out to 15000 

samples.

Growth and Extraction

Seed cultures for production were grown in yeast-extract, malt-extract medium for 7 days at 

30°C. 200 μl of this culture was used as inoculum for four solid media types (all ingredients 

given per liter, all pH should be adjusted to 7): (1) 12.5 g glycerol, 1.0 g arginine-HCl, 1.0 g 

NaCl, 1.0 g K2HPO4, 0.5 g MgSO4-7H2O, 0.01 g Fe2(SO4)3 -6H2O, 1 mg FeSO4-7H2O, 1 

mg MnCl2-4H2O, 1 mg ZnSO4-7H2O, 15.0 g agar 45; (2) 20.0 g mannitol, 20.0 g soya flour, 

20.0 g agar; (3) 5 ml glycerol, 10.0 g sucrose, 5.0 g beef extract, 5.0 g casamino acids; (4) 
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ISP medium 4 46 with 10 mM N-acetylglucosamine. Strains were grown on these solid 

media for 10 days. Plates were frozen and then manually extruded through filter paper to 

obtain a crude extract. Crude sample was acidified to a final concentration of 0.1% formic 

acid and then loaded onto an Oasis HLB extraction column (Waters, Milford, MA). 

Following equilibration, columns were washed with 2 mL of water, followed by 2 mL of 

10% ACN. Metabolites were eluted in 1.2 ml of 80% ACN and the eluate was evaporated to 

dryness. All flow-through was performed by gravity-flow, and a vacuum manifold was used 

when gravity was not sufficient. Microcentrifuge tubes were weighed empty and after drying 

to obtain a sample weight.

LC-MS Analysis

Extracts were resuspended in 5% ACN with 0.2% formic acid to a final concentration of 2 

μg/μL. For LC-MS analysis, 40 μg of sample was loaded onto a 150 mm × 2.1 mm i.d., 2 μm 

particle size Kinetex C18 RPLC column (Phenomenex, Torrance, CA). Analysis was 

performed using an Agilent 1150 LC system (Agilent, Santa Clara, CA) equipped with a 

photodiode array and placed in-line with a Q-Exactive mass spectrometer (Thermo Fisher 

Scientific, Waltham, MA). Chromatography was performed at a flow rate of 200 μL/min 

using water/0.1% formic acid (solvent A) and acetonitrile/0.1% formic acid (solvent B) with 

the following gradient: time 0 min., 2% B; 35 min., 60% B; 54 min., 98% B. UV spectra 

were acquired at a rate of 1 Hz. For every spectrum, the three most intense apices were 

recorded. The mass spectrometer instrument settings were as follows: capillary temperature 

275 °C, sheath gas 8 (arbitrary units), spray voltage 4.2 kV. Full MS spectra were acquired 

at 35,000 resolution for the mass range m/z 250 to 3750 for all samples. This resulted in an 

average scan rate of 6 Hz. Following each full MS scan, the top 5 most intense ions were 

selected for a dependent MS2 scan. MS2 was conducted using HCD with a collisional 

energy of 25%.

Software, Informatics and Statistical Treatment of Data

SIEVE software was used for chromatographic alignment, component detection, removal of 

background, and relative quantification. Chromatographic alignment was performed for all 

samples using an initial tile size of 500 frames. Following alignment, feature detection was 

performed using an initial mass tolerance of 10 ppm and a retention time window of 3.0 

minutes. Analysis parameters were optimized for low m/z (250-500), mid m/z (500-900), and 

high m/z (900-3,750). A minimum normalized intensity of 5×107, 1×107, or 5×106, was 

selected as the threshold for defining a peak as a feature in the low-, mid- and high-m/z 

regimes, respectively. Deisotoping and the summation of multiple adducts observed for a 

single species were performed to reduce data complexity. Following complexity reduction, a 

final list of components was output. For each component, a reconstructed ion chromatogram 

was created and the integrated intensity of the peak was calculated. An integrated intensity 

of 2×106, 1×106, or 7.5×105 was selected as the cut-off value for a component to be 

considered present in a given sample in the low-, mid- and high-m/z regimes, respectively.
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Automated Dereplication

All component mass values for each of the components were searched against an accurate 

mass database consisting of known bacterial metabolites using a mass tolerance of only 3 

parts-per-million (ppm). The database of 9,817 known natural products was prepared using 

Antibase (http://wwwuser.gwdg.de/~hlaatsc/antibase.htm), Dictionary of Natural Products, 

as well as additional bacterial natural products found in the literature. Manual analysis of 

fragmentation spectra was performed to confirm intact mass-based identifications. In 

addition, UV data was compared to literature values when available to offer additional and 

orthogonal confirmation of compound identity (Supplementary Table 3).

MS/MS Verification Procedure

All compounds putatively identified via accurate intact mass were confirmed using accurate 

mass, tandem MS (MS2) data. To ensure that low-quality spectra were not included, MS2 

spectra containing less than 5 peaks at >1% relative abundance were excluded from analysis. 

Additionally, spectra containing more than 100 peaks at >1% abundance were included only 

if >20% of the peaks appeared in the higher m/z half of the spectrum. A large number of 

very low m/z fragment ions in the absence of high molecular weight fragments was found to 

be characteristic of over-fragmentation, and had the potential to lead to false identifications. 

Structures for putatively identified compounds were fragmented in silico using the software 

suite Mass Frontier (Thermo Fisher Scientific, Waltham, MA). Both general fragmentation 

rules and fragmentation library modes were used. The fragmentation library was composed 

of the HighChem ESI Positive 2008 library as well as annotated spectra from in-house 

compound libraries. General fragmentation rules were bypassed for library reactions. For 

general fragmentation rules, electron sharing and charge stabilization resonance reactions 

were allowed. Ionization, stabilization, and cleavage were allowed on aromatic systems. For 

compounds with a molecular mass less than 500 Da, 8 reaction steps were allowed with an 

upper limit of 10,000 reactions. For compounds with a molecular mass greater than 500 Da, 

12 reaction steps were allowed with an upper limit of 20,000 reactions. Confirmation 

required that at least 4 of the top 5 most intense peaks were consistent with theoretical 

fragment ions to within 5 ppm. On average, 8.4 out of the top 10 most abundant peaks were 

consistent with theoretical fragment ions among all confirmed species in the dataset.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Similarity metrics for NPGC comparisons
Three similarity metrics were created for comparison of NPGCs. (a) The number of 

orthologous genes shared by the two clusters divided by the total number of genes in both 

clusters. Each gene is scored only once. (b) The total amount of each cluster involved in a 

PROmer alignment. (c) For the core biosynthetic domains or genes described in the 

Materials and Methods, corresponding domains/genes from GC_1 are found in GC_2 based 

on whether they are clustered together with the program uclust at clustering thresholds that 

increase in steps of 10%. Red indicates that A1-A4 from GC_1 are clustered together with 

an adenylation domain from GC_2 at a given clustering threshold. Gray indicates that there 

is no corresponding adenylation domain from GC_2 at a given clustering threshold. The 

third score used is the highest clustering threshold in which half of the domains/genes in 

GC_1 have a corresponding domain/gene in GC_2. The arrow indicates the maximum score 

for GC_1 and GC_2 of 70%, or 0.7, where half of the GC_1 A-domains are present in 

GC_2.
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Figure 2. Genomic NPGC content and extrapolation
(a) A phylogenetic tree for the sampled organisms is shown surrounded by natural product 

gene cluster content of each genome. Blue shading indicates genomes sequenced for this 

project. Concentric rings, from the inside out, show counts of NRPS, type I PKS, type II 

PKS, NISiderophore, lanthipeptide, and TOMM gene clusters. The names of the most 

abundant taxonomic families are shown in the outer ring. (b) Extrapolation of the number of 

GCFs encoded by Actinobacteria, with 95% confidence intervals indicated as the grey area 

inside of dashed lines. Extrapolation was performed out to 15,000 genomes. Filled circles 

indicate the current extent of our sampling.
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Figure 3. GCF conservation over genetic distance
For every pair of genomes highlighted that span the Streptomycetales to the 

Pseudonocardiales in Fig. 2a, the proportion of GCFs shared between them is plotted 

against their genetic distance. NRPS conservation plotted against (a) ribosomal protein 

distance, (b) rpoB gene fragment. Conservation of type I PKS clusters (c) and NRPS-

independent siderophores (d) plotted against ribosomal protein distance. The density of 

points across both axes is shown beside all plots.

Doroghazi et al. Page 16

Nat Chem Biol. Author manuscript; available in PMC 2015 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. MS/GCF correlations
(a) The density distribution of the correlation scores for every GCF compound is shown for 

NRPS and type II PKS classes along with scores for selected known compound-gene cluster 

pairs. (b) Desertomycin and oasamycin compounds with the highest correlation scores (196) 

to a novel type I PKS gene cluster (PKS_I_18) are shown. Additional details are shown in 

Supplementary Fig. 6.
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Table 1

NPGC abundance by taxonomic family

Taxon PKS I NRPS PKS II Lant TOMMs NIS genomes genome−1

Streptomycetales 5.4 7.9 1.7 2.7 1.2 2.6 341 21.6 (3, 43)

Pseudonocardiales 7.5 7 1 2.6 1 0.6 40 19.8 (1, 44)

Streptosporangiales 2.9 5.8 0.5 3 1.6 1.1 14 15.0 (0, 26)

Micromonosporales 4.6 4 1.3 1.4 0.7 1.3 19 13.3 (2, 18)

Frankiales 4.9 1.3 1.6 1.5 0.4 0.5 11 10.2 (0, 17)

Corynebacteriales 4.1 3.8 0.2 0.1 0.1 0.2 238 8.4 (0, 31)

Micrococcales 0.1 0.3 0 0.2 0.1 0.3 67 1.1 (0, 5)

Propionibacteriales 0 0.2 0 0.2 0 0 81 0.4 (0, 8)

This table shows the total count of NPGCs of each biosynthetic class, the total number of genomes and the mean number of NPGCs in each 
genome, reported for the main taxonomic families shown. The range is shown in parentheses to the right of the per genome average.
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Table 2

Gene clusters with MS characterized products

Natural Product Mass (Da) Error (ppm) Corr. Score Strains

proferrioxamine D2 600.3483 0.41
499

#
/268

47

oxytetracycline 460.1482 0.19 270/270 12

homononactyl
nonactoate

400.2461 1.04 254/254 9

benarthin 411.1754 0.29 251/251 12

griseobactin 1179.495 1.27 162*/251 3

actinomycin D 1254.628 0.34
204

#
/177

3

rimocidin amide 766.4252 1.66 210/250 7

desertomycin A 1191.7492 0.76 196/196 2

pyridomycin 540.2220 1.60
195

#
/176

2

enterocin 444.1056 0.45 192/192 2

chlortetracycline 478.1143 0.08 189/199 2

kirromycin 796.4146 1.83 185/195 1

Natural products shown were found by searching the accurate mass for each SIEVE-identified compound against an Actinobacteria specific 

compound database. Hits were then verified manually using accurate mass MS2 data and comparing previously characterized gene clusters against 
gene cluster family results. The correlation score is shown compared to the maximum automated score for all compounds correlated with the given 
gene cluster family subset containing the characterized gene cluster.

*
indicates that the result was affected by manual verification of the mass spectrometry data,

#
indicates that the result was affected by manual verification of the gene cluster family data set. Raw data for these compounds from all 178 strains 

are available in Supplementary Data Set 3.
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