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Abstract

N6-methyladenosine (m6A) methylation has been reported to play a role in type 2 diabetes 
(T2D). However, the key component of m6A methylation has not been well explored in 
T2D. This study investigates the biological role and the underlying mechanism of m6A 
methylation genes in T2D. The Gene Expression Omnibus (GEO) database combined with 
the m6A methylation and transcriptome data of T2D patients were used to identify m6A 
methylation differentially expressed genes (mMDEGs). Ingenuity pathway analysis (IPA) 
was used to predict T2D-related differentially expressed genes (DEGs). Gene ontology (GO) 
term enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used 
to determine the biological functions of mMDEGs. Gene set enrichment analysis (GSEA) 
was performed to further confirm the functional enrichment of mMDEGs and determine 
candidate hub genes. The least absolute shrinkage and selection operator (LASSO) 
regression analysis was carried out to screen for the best predictors of T2D, and RT-PCR 
and Western blot were used to verify the expression of the predictors. A total of 194 
overlapping mMDEGs were detected. GO, KEGG, and GSEA analysis showed that mMDEGs 
were enriched in T2D and insulin signaling pathways, where the insulin gene (INS), the 
type 2 membranal glycoprotein gene (MAFA), and hexokinase 2 (HK2) gene were found. 
The LASSO regression analysis of candidate hub genes showed that the INS gene could be 
invoked as a predictive hub gene for T2D. INS, MAFA, and HK2 genes participate in the T2D 
disease process, but INS can better predict the occurrence of T2D.

Introduction

N6-methyladenosine (m6A) is one of the most prevalent 
and abundant methylations in mRNA and viral RNA. The 
dysregulation of RNA modification has been linked to 
obesity, diabetes, metabolic syndrome, cancer, and other 
human diseases (1, 2, 3).

Diabetes is a chronic disease in which the blood glucose 
level elevates due to either suboptimal production of 
insulin by the pancreas or insulin resistance in peripheral 
tissues. It is a major global health threat and was the 15th 
most important cause of lives lost in 2015. Despite the 

efforts made by the World Health Organization to reduce 
the burden of diabetes, its prevalence is increasing and is 
likely to cause further mortality (4). In China, the incidence 
of type 2 diabetes (T2D) has rapidly increased over the 
recent decades, and T2D has become a leading public 
health challenge (5). Therefore, it is urgent to explore new 
therapeutic methods for T2D. Moreover, recent research 
reported that m6A content was decreased in T2D patients, 
which suggested that mRNA m6A methylation may play a 
role in the pathogenesis of T2D (6, 7).
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In the dynamic regulation of m6A modification, m6A 
methyltransferases and demethylases play crucial roles. 
Recent evidence indicates that m6A can be demethylated 
by fat mass- and obesity-associated protein and alpha-
ketoglutarate-dependent dioxygenase alkB homolog 
5 protein (6). In T2D, m6A methylation may have an 
important role in regulating the biological function of 
human β-cells (8). Nevertheless, the exact role of m6A 
methylation in T2D has not been explored.

In this study, bioinformatics is used to investigate 
the biological role and underlying mechanism of 
m6A methylation genes in T2D, and the INS gene was  
screened out as the hub gene for T2D, providing a new 
research direction for T2D molecular research.

Materials and methods

Data acquisition and processing

The raw data of GSE120024, including 30 samples obtained 
from 7 T2D patients and 8 non-diabetic controls, were 
downloaded from the GEO database, which is an openly 
accessible database.

For the quality control of the RNA-seq data, the quality 
control tool FastQC was used to perform on the raw data. 
At the same time, the data output of each sample was 
recorded. After testing, a total of 755,188M clean reads 
were obtained, and the base quality value Q of each  
sample was greater than 30, which met the needs of 
subsequent analysis.

For sequence alignment, after quality control, the clean 
data were aligned to the reference human genome (Homo 
sapiens, GRCh38), using the alignment tool hierarchical 
indexing for spliced alignment of transcripts 2 (HISAT2), 
and then analyzed. HISAT2 is an efficient comparison 
system for aligning both DNA and RNA sequences using 
a graph Ferragina Manzini index (9). The comparison 
efficiency of reads and the reference genome of each 
sample were above 95.34%, so biometric analysis could  
be performed.

The analysis of m6A methylation

To observe the m6A methylation of RNA in T2D patients 
and healthy human pancreatic islet tissues, the samples 
were divided into the healthy group and the T2D group. 
At the same time, each group was divided into the input 
group (transcriptome sequencing) and the IP group 
(m6A immunoprecipitation sequencing), and a total 

of 30 sequencing samples were analyzed for the m6A 
methylation process.

For obtaining m6A methylated call peaks, model-
based analysis of ChIP-Seq (MACS) (https://github.com/
taoliu/MACS) is the most popular peak calling software. It 
was originally designed for the ChIP data of transcription 
factors. In its latest version, aptamers for histone 
modifications have been added (10). In this study, MACS2 
was used to detect the m6A methylation peak region on 
RNA to obtain the peak count matrix of 15 patients.

For further analysis of m6A methylation peaks, the 
R package DESeq2 was used to analyze the difference 
between groups, and the screening criteria were  
|log2FC| ≥ 1 and P-value ≤ 0.05 (11).

The analysis of DEGs in the input group

featureCounts is a tool in the subread software package. 
It is mainly used to calculate the results of the Subread 
comparison and count reads (12). It can not only support 
gene quantification but also supports exon, gene bodies, 
genomic bins, and quantification of chromosomal 
locations (12). For DEG analysis, the R package DESeq2  
was used for differential expression analysis and screened 
for DEGs by setting the screening criteria (|log2FC| ≥ 1 and 
adj. P-value ≤ 0.05).

Pathway and network analysis using IPA

The list of DEGs in the GSE120024 dataset, containing 
gene identifiers and corresponding expression values, 
was uploaded into the ingenuity pathway analysis (IPA) 
software. The core analysis function included in the 
software was used to interpret the differentially expressed 
data, which comprised biological processes, canonical 
pathways, upstream transcriptional regulators, and gene 
networks (13). Each gene identifier was mapped to its 
corresponding gene object in the Ingenuity Pathway 
Knowledge Base.

GO and KEGG pathway functional 
enrichment analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway and GO enrichment analyzes were performed 
using clusterProfiler and default settings. The bubble 
diagrams were constructed using ggplot2. Protein–protein 
functional networks were constructed using the online 
resource Search Tool for the Retrieval of Interacting  
Genes (STRING).
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GESA

Gene set enrichment analysis (GSEA) was used to assess 
the related pathways and molecular mechanisms in 
mMDEGs from the T2D patients. The collapse data set to 
gene symbols was set to true, the permutation type was set 
to phenotype, the enrichment statistic was set to weight, 
and the Signal2Noise metric was used for ranking genes. 
GSEA calculated a gene set running enrichment score, 
which analyzed genes that were enriched in the biological 
signal, and the mean normalization method was utilized 
to obtain the normalized enrichment score (NES) in the 
gene sets. Enriched gene sets with a nominal P-value < 0.05 
were accepted as statistically significant.

LASSO regression analysis

The least absolute shrinkage and selection operator (LASSO) 
regression analysis is a compression estimation method. It 
obtains a more refined model by constructing a penalty 
function, which makes it compress some coefficients and 
set some coefficients to zero (14). Therefore, the advantage 
of subset shrinkage is retained, and it is a biased estimate 
for processing multicollinearity data (15). The degree of 
LASSO regression complexity adjustment is controlled by 
the parameter λ. Larger the λ, greater the penalty for the 
linear model with more variables, so that a model with 
fewer variables is finally obtained (16).

In this study, a LASSO regression model based on 
gene expression combined with the R package glmnet 
was constructed, taking the occurrence of disease as the 
dependent variable (control = 0; T2D = 1) and different 
genes as dependent variables. The type was Gaussian, the 
number of predictive models was lambda = 1000, and the 
standard parameter of the LASSO regression was alpha = 1.

Sample collection

A total of 30 samples was obtained from 11 T2D patients and 
20 non-diabetic controls. The present study was approved 
by the ethics committee of The Second Hospital Affiliated 
to Kunming Medical University. The study was consistent 
with the Declaration of Helsinki of 1964 (including later 
amendments) and related ethical standards. The samples 
were collected after written informed consent was obtained.

RNA isolation and real-time PCR

High-quality total RNA (>200 nucleotides) was isolated 
with the standard Trizol reagent (Invitrogen), according to  

the manufacturer’s instructions. The RNA quality 
and quantity were analyzed using a NanoDrop 1000 
Spectrophotometer (Thermo Fisher) and then used for 
RT using the high-capacity cDNA synthesis kit (Applied 
Biosciences). cDNA syntheses were performed with 
PrimeScript RT Master Mix (Takara Bio) and amplified 
with SYBR pre-mix EX Taq (Takara Bio). Glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) was used as an 
endogenous control. The primer sequence was as follows: 
GAPDH, forward ACAACTTTGGTATCGTGGAAGG, 
reverse GCCATCACGCCACAGTTTC; INS, 
forward CAGCCTTTGTGAACCAACACC, reverse 
TGTTCCACAATGCCACGCT. PCR was performed based on 
an unpaired approach with 20 healthy samples and 11 T2D 
samples. It should be noted that the data from the paired 
group of control 8 and patient 4 were found to be abnormal, 
so we excluded the data from this group. Therefore, the 
PCR data presented now had a total of 19 samples in the 
control group and 11 samples in the T2D group.

Protein isolation and Western blotting

The total protein was collected from peripheral blood 
mononuclear cell lysates of 20 healthy samples and 11 T2D 
samples using M-PER protein extraction reagent (Thermo 
Fisher) supplemented with proteinase and phosphatase 
inhibitors (Sigma), in line with the manufacturer’s 
protocols Protein quantitative processing was performed 
with a bicinchoninic acid assay kit (Sigma). Protein 
samples were separated on 10% SDS_PAGE and blotted 
to PVDF membranes, followed by standard western 
immunoblotting of proteins using different primary 
antibodies (anti-INS (ab181547, Abcam) and anti-β-actin 
(4970, Cell Signaling)) at 4°C overnight, and the secondary 
antibody at room temperature for 2 h. The blots were 
developed using the Odyssey infrared imaging system 
(LI-COR Bioscience, Lincoln, NE) and quantified with 
Image J software. In this study, an unpaired approach was 
used to combine the healthy and diseased samples.

Statistical analysis

All of the statistical tests were done with R 3.3.1 and 
GraphPad Prism (version: 8.3.0). All the analyses performed 
in the Wilcoxon rank-sum test, which is a non-parametric 
statistical hypothesis test mainly used for comparisons 
between two groups, were two-sided. A Student's t-test 
was performed to analyze the RT-PCR and Western blot 
data, and statistical significance was established at a 
P-value < 0.05.
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Results

A difference analysis of m6A methylation peaks

To observe the m6A methylation of RNA on the pancreatic 
islet tissues of T2D patients and healthy subjects, MACS2 
was used to detect the m6A methylation peak region in 
RNA and the peak count matrices of 15 patients were 
obtained using the test. A total of 48,706 m6A methylation 
peaks were obtained, involving a total of 20,157 genes. 
Then, the R package DESeq2 tool was employed to analyze 
the differences between groups using the following cut-
off values: |log2FC| ≥ 1and P-value ≤ 0.05. As a result, a 
total of 1912 differential peaks (gene 1719) were identified, 
including 1290 demethylated peaks (gene 1202) and 622 
hypermethylated peaks (gene 517). A volcano map (Fig. 1A)  
was used to demonstrate the overall distribution of 
the differential peaks of T2D and control subjects. The 
top 50 up- and downregulated differential peak genes 
are clustered together in Fig. 1B, where the red-colored 
genes are upregulated and the blue-colored genes are 
downregulated. Moreover, the m6A methylome segregates 
disease status in a relatively homogeneous manner in the 
T2D samples (Fig. 1C).

Identification of T2D-related DEGs

To gain further insight into the difference in gene expression 
between T2D patients and healthy people, conventional 
transcriptome sequencing data (input group) were selected 
in the sequencing samples for differential expression 
analysis. Using |log2FC| ≥ 1 and adj. P-value ≤ 0.05 as cut-
off criteria, a total of 673 DEGs were detected, of which  

386 were markedly upregulated and 287 were 
downregulated. The volcano plot shows up- and 
downregulated genes in the GSE120024 dataset (Fig. 2A). 
The expression level of the principal 100 DEGs (50 up- and 
50 down-regulated) with −log (P-value) is displayed in Fig. 
2B. For an in-depth understanding of the impact of gene 
expression on diseases and an initial identification of 
disease-related genes, the DEGs of the T2D group and the 
control group were combined to perform IPA core analysis. 
The predicted T2D-related genes and their networks are 
displayed in Fig. 2C and D.

GO terms and KEGG pathway enrichment analyses 
of mMDEGs

To further understand and explore the role of m6A 
methylation in T2D, the results of m6A methylation 
analysis and transcriptome difference analysis were 
intersected to find the mMDEGs. A total of 194 overlapping 
mMDEGs were detected after performing an integrated 
analysis of the above two results (Fig. 3A).

To investigate the biological significance of m6A 
methylation in human T2D, GO, and KEGG pathway 
analyses of mMDEGs were performed. GO analysis 
classifies genes into three functional groups: biological 
process (BP), cellular component (CC), and molecular 
function (MF). Figure 3B shows the top 30 significantly 
enriched BPs. All CCs and top 10 MFs of mMDEGs are 
shown in Fig. 3C and D. For the KEGG pathway analysis, 
it was found that mMDEGs were significantly associated 
with the ‘T2D’ signaling pathway (Fig. 3E). The mMDEGs 
participating in this pathway were INS, MAFA, and HK2. 

Figure 1
(A) Volcano map of the overall distribution of 1912 differential peaks between T2D and control. (B) The top 50 up- and downregulated differential peaks 
genes from A. The red-colored genes were upregulated and the blue-colored genes were downregulated. (C) Principle component analysis (PCA) for the 
m6A methylome between T2D and control. Roundness pointed T2D samples and triangle pointed control samples.
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Thus, in combination with the previous results, it was 
concluded that the genes INS, MAFA, and HK2 participate 
in the T2D disease process. The expression of MAFA and INS 
was down-regulated relative to the healthy group, and the 
expression of HK2 was up-regulated, which was consistent 
with the previous analysis. The metabolites of genes HK2 
and MAFA participate in the disease process intracellularly, 
while the INS gene participates in the form of extracellular 
metabolites. The down-regulation of INS promoted the 
pathogenesis of T2D, but the specific regulatory effects of 
HK2 and MAFA in the disease were unclear (Fig. 2C and 
D). In addition, the online tool varElect was used at the 
same time to perform disease association analysis on the 
194 mMDEGs to understand whether the above genes 
were tied to the disease process. It was found that a total of  

33 genes were directly related to the disease, among which 
the main three related genes were INS, MAFA, and HK2.

Related research has shown that INS is an insulin-
encoding gene that regulates carbohydrate and lipid 
metabolism in the body (17). Therefore, the downregulation 
of INS can directly lead to the occurrence and development of 
diabetes (18). The HK2 gene is related to the insulin response 
in the body (19). The pathways related to the metabolism of 
this gene include glucose metabolism (20). It appears that 
the onset of diabetes comes from a carbohydrate metabolism 
disorder (21). MAFA, as a transcriptional regulator, can be 
bound to RIPE3b (enhancer) to regulate the expression 
of the INS gene (22). These results indicated that the  
above three genes play a critical role in T2D, so focus shifted 
to the T2D pathway and its related pathways and genes.

Figure 2
(A) Volcano plot of up- and down-regulated genes using |log2FC| ≥ 1 and adj. P-value ≤ 0.05 as cut-off criteria. (B) The expression level of the principle 
100 DEGs (50 upregulated and 50 downregulated) with −log (P-value). (C and D) IPA core analysis for the combined DEGs between the T2D group and the 
control group to predict T2D-related genes and their networks.
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Figure 3
(A) Venn diagram of intersecting the results of m6A methylation analysis and transcriptome difference ananlysis. (B, C and D) GO terms enrichment 
analysis of mMDEGs. (B) The top 30 significantly enriched BPs of mMDEGs. (C) All CCs of mMDEGs. (D) The top 10 MFs of mMDEGs. (E) KEGG pathway 
analysis of mMDEGs.
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An analysis of related pathways and genes of ‘T2D’

In order to clarify the pathways and genes related to 
‘T2D’, in-depth observations were conducted, and it was 
found that this pathway was independently distributed, 
indicating that it had no interaction with other enriched 
pathways (Fig. 4A). It is worth noting that, as shown  

in Fig. 4B, T2D and the PI3K-Akt signaling pathway share 
the gene INS (3630). Furthermore, HK2 (3099) is the shared 
gene of T2D and central carbon metabolism in cancer. 
MAFA was not noted in other pathways.

It was concluded that ‘T2D’ is the strategic pathway 
for mMDEGs to participate in T2D, and the genes 
involved: INS, MAFA, and HK2 are candidate hub genes. 

Figure 4
(A and B) Analysis of related pathways (A) and genes (B) of ‘T2D’.

Figure 5
The mechanism of regarding ‘T2D’ as the strategic 
pathway for mMDEGs.
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The specifically related mechanism of this pathway is 
presented in Fig. 5.

GSEA for mMDEGs

GSEA was utilized to further confirm the functional 
enrichment of mMDEGs. The enrichment consequences 
showed pathways closely related to T2D, including 
T2D (Fig. 6A) and insulin signaling pathway (Fig. 6B).  

Through observation and confirmation, the genes  
engaged in the above two T2D-related pathways include 
INS, HK2, and MAFA, of which INS and HK2 are involved  
in the two pathways. GSEA analysis also confirmed that 
the candidate hub genes INS, HK2, and MAFA participate 
in T2D-related pathways.

The PPI network was constructed from the STRING 
database, and the results showed that the network 
involved 156 genes, 240 pairs of interactions, and an 

Figure 7
Correlation analysis between candidate hub 
genes methylation and transcription expression. 
Using the Pearson correlation analysis method, 
the significance threshold was set to P < 0.05.

Figure 6
(A and B) GSEA for mMDEGs, including T2D (A) and insulin signaling pathway (B). (C) The PPI network combined Cytoscape. The red diamonds 
represented T2D candidate hub genes, and the light purple circles represented ordinary mMDEGs.
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average link degree of 3.08. Meanwhile, as shown in Fig. 
6C, Cytoscape was used to display the network, the red 
diamonds representing T2D candidate hub genes, and 
the light purple circles representing ordinary mMDEGs.

Correlation analysis of candidate hub genes 
methylation and transcription expression

To further confirm and explore the relationship between 
the methylation of the candidate hub genes (INS, HK2, 
MAFA) and gene expression, the R package ggstatsplot 
was used to analyze the correlation between the m6A 
methylation matrix and the gene expression matrix 
of these three genes. Using the Pearson correlation 
analysis method, the significance threshold was set to 
P-value < 0.05, and the results are shown in Fig. 7. It was 
found that the m6A methylation of the three candidate 
hub genes was positively correlated with their gene 
expression, and the correlation coefficients were all greater 

than 0.7. For example, the INS gene and peak_7501 (r = 0.72, 
P = 0.01), HK2 and peak_28267 (r = 0.94, P < 0.0001), MAFA 
and peak_49094 (r = 0.97, P < 0.0001) and peak_49095 
(r = 0.87, P = 0.0001). It was also observed that there was a 
significant correlation between different m6A methylation 
peaks in genes, such as peak_49095 and peak_49094 of the 
MAFA gene, and the correlation coefficient was as high as 
0.93. It was also observed that the expression correlation 
between the three genes was not strong, nor was the m6A 
methylation correlation between the three genes. The m6A 
methylation information of the three genes is outlined  
in Table 1.

In summary, it is speculated that the m6A methylation 
of the T2D candidate hub genes has a direct or indirect 
effect on its expression, and there are interactions and 
effects between different methylation peaks within the 
genes. Since the expression of the three genes or m6A 
methylation do not significantly affect each other, they 
may be a compensation mechanism and perform different 
functions in the disease.

Figure 8
(A, B and C) LASSO regression analysis of candidate hub genes. (A) The appropriate model. The two dashed lines in the figure indicated two special λ 
values, one was lambda.min and the other was lambda.1se. (B and C) The predicted effect of the model under these two parameters combining the 
actual event value (T2D= 1; control= 0). (D and E) Experimental validation of INS. (D) The result of RT-PCR. (E) The result of Western blot.
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LASSO regression analysis of candidate hub genes

To observe and predict the impact of the three candidate 
hub genes on T2D, a LASSO regression model was 
constructed based on the gene expression combined with 
the R package glmnet. The ultimate goal of this analysis 
was to algorithmically predict the correlation between 
the gene expression and the disease. First, the appropriate 
model was selected. The two dashed lines in Fig. 8A 
indicated two special λ values, one was lambda.min and 
the other was lambda.1se. The lambda.min = 0.072 and 
lambda.1se = 0.263 were obtained in this analysis, so the 
actual event value (T2D = 1; control = 0) was combined 
to determine the predicted effect of the model under 
these two parameters (Fig. 8B and C). The parameters of 
the lambda.min and lambda.1se were able to predict the 
occurrence of T2D, and their P-values were both equal 
to 0.014. At the same time, it was confirmed that the 
independent variables (genes) under these two prediction 
models were INS. Therefore, it was concluded that INS 
could be a predictive hub gene for T2D.

Experimental validation of INS

To further test the importance of the hub genes, INS was 
selected for RT-PCR verification. The relative expression 
of INS mRNA was significantly lower (P = 0.0019) in the 
T2D group (n = 11) compared to the control group (n = 19) 
as indicated by t-test analysis (Fig. 8D), while the Western 
blot indicated that the INS protein levels in T2D were 
significantly suppressed (Fig. 8E).

Discussion

m6A methylation regulates physiology and metabolism (1) 
and participates in multiple cellular biological processes, 
such as immune modulation, fat metabolism, biological 
rhythm, and reproductive development. Thus, its disorders 
can cause many kinds of disease (23). One study (24) shows 
that compared to the healthy controls, the content of m6A 
mRNA in peripheral blood samples isolated from T2D 
patients is much reduced, which indicates that there is a 
connection between m6A and T2D.

In the GO enrichment analysis of mMDEGs, in terms of 
the biological process, mMDEGs were found to be enriched 
in extracellular structure organization, extracellular 
matrix organization, cell-substrate adhesion, digestive 
tract development, and digestive system development, 
whereas with regard to cellular component, mMDEGs were 

enriched in the collagen-containing extracellular matrix, 
collagen, and trimer. For molecular function, mMDEGs 
were enriched in endopeptidase activity, calmodulin 
binding, extracellular matrix structural constituent, and 
protein tyrosine kinase activity. One study shows that in 
peripheral tissues, such as muscle, liver, and adipose tissue, 
the extracellular matrix and integrins are the key regulators 
of insulin action, which provides new potential targets for 
the treatment of T2D insulin resistance (25).

For the KEGG pathway analysis, it was found that 
mMDEGs were significantly associated with the T2D 
signaling pathway, and the mMDEGs that were confirmed 
to participate in this pathway were INS, HK2, and MAFA. 
Since INS was the shared gene of T2D and the PI3K-Akt 
signaling pathway, and HK2 was the shared gene of T2D 
and central carbon metabolism in cancer, the PI3K-Akt 
signaling pathway and central carbon metabolism in cancer 
was focused on. Many studies have shown the correlation 
between the PI3K-Akt signaling pathway and T2D. In 
the study of Gao et  al. (26), it was found that D-pinitol 
played a positive role in regulating insulin-mediated 
glucose uptake in the liver through the translocation and 
activation of the PI3K/Akt signaling pathway in T2D rats. 
They also found that D-chiro-inositol played a positive role 
in regulating insulin-mediated glucose uptake through 
the PI3K/Akt signaling pathway in T2D rats (27). There is 
evidence (28) that the skin blood flow oscillation extract 
played a positive role in alleviating T2D through the  
PI3K/Akt signaling pathway in HepG2 cells, and it is known 
that obesity and T2D are related to insulin resistance (29). 
Most insulin actions were carried out by activating two 
main signaling pathways: the PI3K/Akt pathway and the  
MAPK/Ras pathway. In the matter of the PI3K/Akt pathway, 
the activation of the Akt kinase led to phosphorylation 
of enzymes, transcription factors, cell-cycle regulating 
proteins, and so on, which means that the Akt kinase plays 
a key role in insulin signaling. Also, the decrease in PI3K 
and Akt kinases activity is one of the most common insulin 
resistance alterations (30). However, there are few studies 
on the correlation between central carbon metabolism in 
cancer, and it is not yet possible to confirm whether this 
pathway is related to T2D.

In this study, three candidate hub genes were obtained 
that were closely related to T2D, namely INS, HK2, and 
MAFA. The INS gene was more meaningful for T2D 
prediction, and it appears to be closely related to diabetes. 
For instance, INS gene promoter mutations have been 
shown to lead to both remitting/relapsing and permanent 
neonatal diabetes mellitus (31). Mouzaki et  al. (32) 
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thought that the INS gene was one of the most important 
genes in the pathogenesis of type 1 diabetes (T1D).  
Methylation may play a role in the relationship between 
INS variation and T1D development (33). Although there 
are currently few studies on the correlation between 
the INS gene and T2D, our research suggests that the INS 
gene can accurately predict the occurrence of T2D in the 
LASSO regression model. HK2 is a subtype of hexokinase 
and a predominant isoform in insulin-sensitive tissues 
such as the heart, skeletal muscle, and adipose tissues (19). 
Moreover, abnormal expression of the HK2 gene can affect 
glucose metabolism, such as glycolysis (34). This means 
that the HK2 gene may drive diabetes by changing the 
concentration of glycolysis intermediates. MAFA (v-maf 
musculoaponeurotic fibrosarcoma oncogene homologue 
A) is the only transcriptional activator present exclusively 
in islet β-cells (35). MAFA controls many β-cell-specific 
genes, such as insulin, Glut2, Pdx-1, Nkx6.1, GLP-1R, 
PC-1/3, and pyruvate carboxylase (36). Studies have shown 
that MAFA is an important regulator of glucose-stimulated 
insulin secretion (37), and it can drive insulin expression 
by binding to the enhancer/promoter region of the INS 
gene (38). One study pointed out that the deletion of MAFA 
resulted in the decreased transcription of INS1, INS2, and 
Pdx1 in adult mice, which further led to impaired glucose 
tolerance and glucose-stimulated insulin secretion (39). In 
light of this, MAFA can be considered to play an important 
role in T2D.

In conclusion, multiple biological information 
analyses were conducted on the 30 samples, and 48,706 
m6A methylation peaks (involving a total of 20,157 
genes) were obtained from the 30 samples and a total 
of 1912 differential peaks (involving 1719 genes) were 
identified. To further understand the effect of m6A 
methylation in T2D, mMDEGs were obtained and then 
GO and KEGG pathway analysis and a GSEA of mMDEGs 
were performed. The signaling pathways were found to 
be significantly related to the mMDEGs, and there were 
three candidate hub genes (INS, MAFA, and HK2). Finally, 
a LASSO regression model was constructed, and it was 
found that INS could be invoked as a predictive hub gene 
for T2D disease, which was also confirmed by the RT-PCR 
and Western blot. Since this has not been verified by 
cell or animal experiments, this line of research will be 
followed up in the future.
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