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Left–right asymmetry in anatomical structures and functions of the nervous system is
present throughout the animal kingdom. For example, language centers are localized in
the left side of the human brain, while spatial recognition functions are found in the right
hemisphere in the majority of the population. Disruption of asymmetry in the nervous
system is correlated with neurological disorders. Although anatomical and functional
asymmetries are observed in mammalian nervous systems, it has been a challenge
to identify the molecular basis of these asymmetries. C. elegans has emerged as a
prime model organism to investigate molecular asymmetries in the nervous system, as
it has been shown to display functional asymmetries clearly correlated to asymmetric
distribution and regulation of biologically relevant molecules. Small non-coding RNAs have
been recently implicated in various aspects of neural development. Here, we review cases
in which microRNAs are crucial for establishing left–right asymmetries in the C. elegans
nervous system. These studies may provide insight into how molecular and functional
asymmetries are established in the human brain.
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INTRODUCTION
microRNAs (miRNAs) are endogenous 20–24 nt small non-coding
RNAs that regulate gene expression through binding to comple-
mentary sequences in target messenger RNAs (mRNAs), leading
to translational repression and/or cleavage of target mRNAs
(Ambros, 2004; He and Hannon, 2004; Bartel, 2009; Cheku-
laeva and Filipowicz, 2009; Ghildiyal and Zamore, 2009). While
most miRNAs downregulate gene expression, there are examples
of miRNA-mediated upregulation of target gene expression dur-
ing cell cycle arrest, suggesting that miRNA function is complex
and context dependent (Vasudevan et al., 2007; Orom et al., 2008).
miRNAs have been implicated in many aspects of development
and disease including cell cycle, cell differentiation, apoptosis,
life span, developmental timing, stress responses, neural develop-
ment and regeneration, cancers, and neurodegenerative disorders
(Boehm and Slack, 2005; Bushati and Cohen, 2007; Chang et al.,
2009; Ambros, 2011; Sayed and Abdellatif, 2011; Zhang et al., 2011;
Boulias and Horvitz, 2012; Cochella and Hobert, 2012a; Saito and
Saito, 2012; Zou et al., 2012, 2013).

FUNCTIONS OF miRNAs IN NEURAL DEVELOPMENT
The importance of miRNAs in various aspects of neuronal
development has been demonstrated in several animal mod-
els. In zebrafish, maternal–zygotic dicer mutants, that disrupt
the processing of precursor miRNAs into mature miRNAs, dis-
play deleterious effects on the development of the brain, and
injection of mature miR-430 rescues the early brain pattern-
ing defects (Giraldez et al., 2005). In mice, the neuron-specific
miRNA miR-124 induces neuronal differentiation by directly tar-
geting a global repressor of alternative pre-mRNA splicing and

triggering a downstream switch to neuron-specific alternative
splicing (Makeyev et al., 2007). In the Xenopus retina, a number of
cell cycle related miRNAs target Xotx2 and Xvsx1 in early retinal
progenitor cells to inhibit bipolar cell differentiation (Decembrini
et al., 2009). In Drosophila, miR-9a targets senseless to inhibit
neuronal fate in non-sensory organ precursors (Li et al., 2006).
In C. elegans, the miRNA lin-4 targets the LIN-14 transcrip-
tion factor to inhibit netrin-mediated axon attraction (Chang
et al., 2004a; Zou et al., 2012), and the miRNA let-7 contributes
to a developmental decline in neuronal regeneration (Zou et al.,
2013). In addition, miRNAs lsy-6, mir-273, and mir-71 function in
asymmetric differentiation of two pairs of C. elegans sensory neu-
rons, which will be discussed later (Johnston and Hobert, 2003;
Chang et al., 2004b; Hsieh et al., 2012). Thus, miRNAs are impor-
tant factors that control neuronal development across the animal
kingdom.

LEFT–RIGHT ASYMMETRY OF THE NERVOUS SYSTEM
Although the nervous systems of animals are largely symmetric
across the left–right axis, there have been several observations
of anatomical and functional brain lateralization throughout the
animal kingdom. For example, zebrafish display asymmetry in the
epithalamus (Snelson and Gamse, 2009; Taylor et al., 2010); mice
have been shown to have paw preferences, indicating the pres-
ence of a dominant hemisphere in motor control (Signore et al.,
1991; Biddle et al., 1993); and the majority of humans have lan-
guage centers such as Wernicke’s and Broca’s area located in the left
hemisphere of the brain (Sun and Walsh, 2006). This lateralization
of the nervous system is thought to be beneficial, as it allows for
an increase of functional capacity (Rogers et al., 2012).
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Disruption of asymmetry in the brain is seen in a number of
neurodevelopmental diseases, including dyslexia, schizophrenia,
autism, Alzheimer’s disease, and attention deficit/hyperactivity
disorder (ADHD; Herbert et al., 2005; Derflinger et al., 2011;
Oertel-Knochel and Linden, 2011; Renteria, 2012). In children
diagnosed with ADHD, the prefrontal cortex was shown to have
a loss in rightward asymmetric distribution of prefrontal cortex
volume as compared to typically developing children (Shaw et al.,
2009). In dyslexic patients, the planum temporale shows alteration
in asymmetry, as the right temporale appears physically larger than
the left counterpart (Galaburda et al., 1985).

There have been several reports on functional and anatomical
nervous system asymmetries; however there have been compar-
atively fewer studies on identifying the molecular mechanisms
that establish lateralization. Here we narrow our focus to the
function and regulation of miRNAs in the development of neu-
ronal asymmetry. The most interesting evidence of miRNAs in
vertebrate neuronal asymmetry comes from the investigation of
miRNA function in neocortex development. The simplest form
of asymmetry is the division of a cell to give rise to two asym-
metric fates. In the case of the mouse neocortex, a progenitor
cell divides asymmetrically to give rise to a progenitor cell and
a neuron. Asymmetric localization of the TRIM-NHL protein
TRIM32 is observed in the daughter cell that becomes a neuron,
while the cell lacking TRIM32 remains a progenitor (Schwamborn
et al., 2009). TRIM32 increases the activity of specific miRNAs
through binding of the RNAse argonaute-1 (Hammell et al., 2009;
Schwamborn et al., 2009). It was further shown that the miRNA
Let-7a, one of the TRIM32 targets, is required and sufficient for
neuronal differentiation (Schwamborn et al., 2009).

A subset of zebrafish olfactory bulb output neurons called the
mitral cells send axons asymmetrically to the right habenula, which
is an asymmetric part of the brain where the higher olfactory
processing center is located (Miyasaka et al., 2009; Taylor et al.,
2010). Several molecules are asymmetrically expressed in adult-
born olfactory neurons in the ventricular–subventricular zone
(V–SVZ) of the zebrafish brain. The transcription factors Myt1
and Neurogenin1 are predominantly expressed in the left V–SVZ,
while DeltaA and hairy/enhancer of split-related protein (a Notch
effector) are mainly expressed on the right side (Kishimoto et al.,
2013). In addition, members of the miR-200 family are involved in
the proper differentiation of olfactory neurons of both mice and
zebrafish (Choi et al., 2008). It would be interesting to see whether
the miR-200 family or other miRNAs influences the asymmetric
and lateral projection of olfactory axons to the higher olfactory
centers, and whether Myt1, Neurogenin1, and Delta/Notch are
potential targets of miR-200.

A study found that 27 genes are differentially expressed in the
embryonic human cerebral cortex, and the Lim domain transcrip-
tion factor LMO4 is more abundant in the right perisylvian cortex
than the left, and may be involved in asymmetric development
of the cortex (Sun et al., 2005). The hypothesis that differential
expression of these genes between left and right sides of the cor-
tex may be regulated by miRNAs is plausible and worth further
investigation.

Although there are limited reports of the involvement of miR-
NAs in the development of neuronal asymmetry in vertebrates, C.

elegans has proved to be a powerful model organism to study lat-
eralization of the nervous system due to its genetic amenability, as
well as evidence of functional asymmetry having clear molecular
correlates. In this review, we highlight two cases of the roles that
miRNAs play in establishing left/right asymmetry in the C. ele-
gans nervous system. Both involve the specification of two types
of chemosensory neurons: the pair of amphid neurons, single cil-
liated endings (ASE) taste neurons, in which lsy-6 and mir-273
miRNAs are involved, and the pair of amphid wing “C” (AWC)
olfactory neurons, where mir-71 is crucial for establishment of
asymmetry.

miRNAs IN TASTE NEURON ASYMMETRY
Like other animals, the C. elegans nervous system appears gen-
erally symmetric. However, the pair of taste neurons, called ASE
left (ASEL) and ASE right (ASER) displays molecular and func-
tional asymmetries. The ASE neurons are located in the nerve
ring of the nematode, which is the brain equivalent in the worm.
Although the neurons are derived from different cell lineages, they
are anatomically symmetric in terms of cell position, morpholo-
gies, and axonal projections (White et al., 1986). The ASEL neuron,
however, differentially expresses the putative chemoreceptor gcy-7,
while the ASER neuron expresses another putative chemoreceptor
gcy-5 (Yu et al., 1997). The pair of ASE neurons also senses dif-
ferent chemicals, as the ASEL neuron functions to detect sodium,
while ASER senses chloride (Pierce-Shimomura et al., 2001).

Over the past few years, there have been many studies inves-
tigating the molecular mechanism on how ASE asymmetry is
established. Intriguingly, the first step of breaking symmetry of
the taste neurons occurs several divisions before the ASEL and
ASER neurons are born, during the early embryonic stage (Poole
and Hobert, 2006). In the ASEL lineage, a pair of redundant T-box
transcription factors TBX-37/38 are transiently expressed six cell
divisions before the birth of ASEL (Good et al., 2004; Figure 1).
These transcription factors work to “prime” a miRNA called lsy-6,
which promotes the ASEL cell fate. This is achieved by binding of
TBX-37/38 to a downstream primer element of lsy-6 and results in
physical opening up of the lsy-6 chromatin (Cochella and Hobert,
2012b). The priming event is then “remembered” several cell divi-
sions later in the ASEL mother cell. The open chromatin status of
lsy-6 allows for the CHE-1 zinc finger transcription factor to bind
to an upstream booster element of the lsy-6 locus (Cochella and
Hobert, 2012b). This induces “boosting” of lsy-6 expression levels
in the ASEL neuron. The “prime and boost” model is essential for
establishing ASE asymmetry.

In the ASER lineage, a Delta/Notch signal in the ASER pre-
cursor cell causes the T-box transcription factors TBX-37/38 to
be repressed (Good et al., 2004; Priess, 2005). Therefore, the lsy-
6 “priming” event does not occur in the ASER lineage, allowing
the lsy-6 chromatin to remain in a compact form (Cochella and
Hobert, 2012b). This in turn leads to the inability of the CHE-1
transcription factor to physically bind the upstream element of
lsy-6, and no boosting of the miRNA expression levels occurs in
ASER. Overall, this causes asymmetric distribution of the lsy-6
miRNA in the ASEL neuron.

The lsy-6 miRNA functions in a double negative feedback loop
to control the asymmetry of ASEL/R neurons (Johnston et al.,

Frontiers in Cellular Neuroscience www.frontiersin.org September 2013 | Volume 7 | Article 158 | 2

http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


“fncel-07-00158” — 2013/9/23 — 20:12 — page 3 — #3

Alqadah et al. microRNAs and neuronal asymmetry

FIGURE 1 | Priming and boosting model of ASE asymmetry. ASEL: (1) The
first step of promoting the ASEL cell fate occurs six cell divisions before the
postmitotic ASEL is born. A transient pair of T-box transcription factors
TBX-37/38 acts on the downstream primer element of lsy-6 miRNA to open
up the chromatin. (2) The priming event allows boosting of lsy-6 miRNA levels
by the CHE-1 transcription factor in the ASEL mother cell, leading to high
levels of the miRNA in the postmitotic ASEL neuron. (3) The lsy-6 miRNA
directly inhibits the ASER promoting transcription factor COG-1, and allows

the ASEL promoting transcription factor DIE-1 to be expressed. (4) DIE-1 then
activates ASEL effector genes and represses the ASER cell fate. ASER: (1)
Notch is expressed in the ASER precursor and inhibits the lsy-6 priming
event. Therefore, the lsy-6 miRNA expression level cannot be boosted as the
chromatin remains compact. (2) Consequently, in the postmitotic ASER
neuron, the COG-1 transcription factor is expressed, which activates another
miRNA, mir-273. (3) mir-273 directly inhibits the ASEL promoting transcription
factor DIE-1, and therefore promotes the ASER fate.

2005). In the ASEL neuron, lsy-6 directly represses an ASER
promoting transcription factor COG-1, through physical bind-
ing of complementary bases in the cog-1 3′UTR (Johnston and
Hobert, 2003). Repression of COG-1 allows for yet another tran-
scription factor DIE-1 to be expressed, which is the output of

the feedback loop. DIE-1 then activates ASEL effector genes and
suppresses ASER effector genes (Johnston et al., 2005; Figure 1).

In the ASER neuron, lsy-6 expression is relatively low, and
cannot effectively repress the COG-1 transcription factor. This
allows activation of another miRNA, mir-273, which displays
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complementarity to the 3′UTR of the previously described die-
1 output (Chang et al., 2004b). mir-273 therefore represses DIE-1,
resulting in the de-repression of the ASER fate (Figure 1). Mutat-
ing any of the factors involved results in a loss of asymmetry, with
both cells adopting either the ASEL or ASER cell fate.

miRNAs IN OLFACTORY NEURON ASYMMETRY
Like the ASE neurons, the C. elegans AWC olfactory neurons are
bilaterally symmetrical at the morphological level. However, AWC
left (AWCL) and AWC right (AWCR) neurons express different
odorant receptors and sense different odors (Figure 2; Troemel
et al., 1999). The AWCON neuron expresses the odorant recep-
tor gene str-2 and specifically senses the odor butanone; while
the contralateral AWCOFF neuron expresses the odorant recep-
tor gene srsx-3 and specifically senses the odor pentanedione
(Figure 2; Troemel et al., 1999; Wes and Bargmann, 2001; Bauer
Huang et al., 2007). In wild-type animals, only one of the AWC
neurons expresses str-2. AWC asymmetry is stochastic and coor-
dinated, so that 50% of the worms in a population express str-2
in AWCL, while the other 50% express str-2 in AWCR (Troemel
et al., 1999; Taylor et al., 2010). The default state of the AWC neu-
rons is AWCOFF, which is specified by a calcium-regulated and
microtubule-dependent MAP kinase pathway including UNC-
43/CaMKII, TIR-1/Sarm1, NSY-1/MAPKKK, and SEK-1/MAPKK
(Figure 2; Sagasti et al., 2001; Tanaka-Hino et al., 2002; Chuang
and Bargmann, 2005; Chang et al., 2011). NSY-4 claudin-like

FIGURE 2 | Model of mir-71 function in AWC asymmetry. In the
AWCOFF cell, high calcium level activates the calcium-regulated
UNC-43/TIR-1/MAPK cascade, leading to srsx-3 expression. In the AWCON

cell, nsy-4 and nsy-5 promote the stability of mature mir-71 through an
unknown mechanism. The mature mir-71 miRNA targets the 3′UTR of tir-1
mRNA for degradation, leading to the inhibition of the calcium signaling
pathway and the subsequent induction of str-2 expression. Orange color
represents factors that promote AWCON. Blue color represents factors that
promote AWCOFF. Gray/white color represents inactive or less active
factors. Dotted line represents factors being downregulated. PD,
pentanedione; BU, butanone.

protein and NSY-5 gap junction protein act in parallel to inhibit the
calcium signaling pathway in the induced AWCON cell (Vanhoven
et al., 2006; Chuang et al., 2007). In addition, intercellular cal-
cium signaling between AWCs and non-AWC neurons via a NSY-5
gap junction-dependent neural network coordinates precise AWC
asymmetry (Schumacher et al., 2012).

One of the important questions on AWC asymmetry is how
the calcium signaling pathway is downregulated by nsy-4 and nsy-
5 in the AWCON cell. A recent study showed that the miRNA
mir-71 acts downstream of nsy-4 and nsy-5 to promote AWCON

in a cell autonomous manner through inhibiting the expression
of the calcium signaling adaptor protein gene tir-1 (Figure 2;
Hsieh et al., 2012). The TIR-1/Sarm1 adaptor protein assem-
bles a calcium-signaling complex to cell-autonomously specify
the default AWCOFF identity (Chuang and Bargmann, 2005).
Thus downregulation of tir-1 expression by mir-71 is an effi-
cient mechanism to inhibit calcium signaling in the cell becoming
AWCON.

mir-71 is regulated at both transcriptional and post-
transcriptional levels in AWC (Hsieh et al., 2012). At the tran-
scriptional level, the expression level of mir-71 is higher in the
AWCON cell than in the AWCOFF cell. This transcriptional bias of
mir-71 is not dependent on nsy-4 or nsy-5; thus, the mechanisms
that regulate differential expression of mir-71 in the two AWC
cells are yet to be elucidated. At the post-transcriptional level, the
stability of mature mir-71 is dependent on nsy-4 and nsy-5. The
C. elegans 5′ → 3′ exoribonuclease XRN-2 has been shown to
be involved in degradation of mature miRNAs (Chatterjee and
Grosshans, 2009). It is possible that nsy-4 and nsy-5 may antag-
onize the xrn-2-mediated miRNA turnover pathway to increase
the level of mature mir-71. However, RNA interference (RNAi)
knockdown of xrn-2 did not cause a defect in AWC asymmetry,
suggesting that the stability of mature mir-71 may be independent
of xrn-2. In support of this idea, not all miRNAs accumulate in
xrn-2 RNAi worms (Chatterjee and Grosshans, 2009), suggesting
the existence of alternative miRNA turnover pathways that may be
inhibited by nsy-4 and nsy-5.

PERSPECTIVES
Understanding the molecular mechanisms involved in establish-
ing left–right asymmetry in the C. elegans nervous system can
lay the groundwork for identifying the processes used in higher
organisms, as the methods used may be evolutionarily conserved.
Because of the highly conserved nature of miRNAs, insights into
how they are involved to control asymmetric fates will help facil-
itate our understanding in vertebrate neuronal asymmetry. The
involvement of miRNAs in asymmetry may also be reflective of
the principles these small non-coding RNAs use in directing other
neurodevelopmental processes.
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