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Objective: Inform coronavirus disease 2019 (COVID-19) infection prevention measures by identifying and
assessing risk and possible vectors of infection in nursing homes (NHs) using a machine-learning
approach.
Design: This retrospective cohort study used a gradient boosting algorithm to evaluate risk of COVID-19
infection (ie, presence of at least 1 confirmed COVID-19 resident) in NHs.
Setting and Participants: The model was trained on outcomes from 1146 NHs in Massachusetts, Georgia,
and New Jersey, reporting COVID-19 case data on April 20, 2020. Risk indices generated from the model
using data from May 4 were prospectively validated against outcomes reported on May 11 from 1021
NHs in California.
Methods: Model features, pertaining to facility and community characteristics, were obtained from a self-
constructed dataset based on multiple public and private sources. The model was assessed via out-of-
sample area under the receiver operating characteristic curve (AUC), sensitivity, and specificity in the
training (via 10-fold cross-validation) and validation datasets.
Results: The mean AUC, sensitivity, and specificity of the model over 10-fold cross-validation were 0.729
[95% confidence interval (CI) 0.690‒0.767], 0.670 (95% CI 0.477‒0.862), and 0.611 (95% CI 0.412‒0.809),
respectively. Prospective out-of-sample validation yielded similar performance measures (AUC 0.721;
sensitivity 0.622; specificity 0.713). The strongest predictors of COVID-19 infection were identified as the
NH’s county’s infection rate and the number of separate units in the NH; other predictors included the
county’s population density, historical Centers of Medicare and Medicaid Services cited health de-
ficiencies, and the NH’s resident density (in persons per 1000 square feet). In addition, the NH’s historical
percentage of non-Hispanic white residents was identified as a protective factor.
Conclusions and Implications: A machine-learning model can help quantify and predict NH infection risk.
The identified risk factors support the early identification and management of presymptomatic and
asymptomatic individuals (eg, staff) entering the NH from the surrounding community and the devel-
opment of financially sustainable staff testing initiatives in preventing COVID-19 infection.
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Long-term care facilities (LTCFs) have emerged as critical epicen-
ters of coronavirus disease 2019 (COVID-19) outbreaks and are asso-
ciated with approximately 1 in 10 COVID-19 cases and 1 in 3 COVID-19
fatalities in the United States.1 Among LTCFs, nursing homes (NHs)
have been shown to have high-risk populations that are particularly
vulnerable to COVID-19 infection and poor subsequent outcomes.2,3

Rapid COVID-19 transmission within NHs stress the need for proac-
tive measures preventing infection and facility spread.4e7 However,
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developing effective policies and interventions is challenging because
of a lack of both accurate data sources as well as data-driven analyses
regarding infection vectors.8

This study describes the development and implications of a
machine-learning model, trained on NH COVID-19 outcome data from
multiple US states, to assess risk of COVID-19 infection and identify
associated risk factors and possible infection introduction
mechanisms.

Methods

Study Setting and Population

This study included public NH COVID-19 facility-level case data
reported by state and local departments of health across the United
States, which were collected to create a binary outcome variable for
whether there was at least 1 resident infection in the facility. The
model was trained on COVID-19 outcomes reported on April 20, 2020
from 1146 NHs in Massachusetts, Georgia, and New Jersey, and pro-
spectively validated out-of-sample against outcomes reported on May
11, 2020 from 1021 NHs in California. These states had relatively
comprehensive reporting and testing capacity at the time of outcome
collection (see Supplementary Material, Data Sources and Model In-
puts section for details).

Data Sources

Predictive features were created from a self-constructed dataset,
integrating public and private sources from organizations including
the Centers of Medicare andMedicaid Services (CMS), Long-Term Care
Focus, and National Investment Center for Seniors Housing and Care,
covering 15,300 federally certified US NHs and their surrounding
communities. The dataset includes information on each NH’s physical
infrastructure, number of units, and historical financial, managerial,
resident, staffing, and quality-of-care characteristics. In addition, the
dataset includes NH community information (eg, COVID-19 infection
rates on the day of NH reporting, social distancing, and population
characteristics and mobility measures). See the Supplementary
Table 1 for details on the dataset and model features.

Model Development

The model used a tree-based gradient boosting algorithm,9 pre-
dicting a binary classification outcome by facility that signifies at least
1 resident COVID-19 infection. In other words, the model generates a
risk index associated with the likelihood of COVID-19 infection at the
NH. Prior to training, highly correlated predictors with a variance
inflation factor greater than 10 were removed. Then, the remaining
predictors were assessed for predictive stability by determining the
number of times each predictor was selected by the model following
L1 regularization during 10-fold cross-validation (CV). Features
selected at least 7 times out of the 10 folds were considered stable
predictors.

Themodel inputs were restricted to the identified stable predictors
and hyperparameter tuning and out-of-sample performance assess-
ments were conducted via 10-fold CV. The mean out-of-sample area
under the receiver operating characteristic curve (AUC), sensitivity,
and specificity, along with the associated 95% confidence intervals
(CIs), were calculated over the 10-folds. The final tuned model was fit
over the entire training dataset and was used to calculate the stable
predictors’ feature importance and predict updated risk indices for
model validation. A logistic regression model and 2-layer feedforward
neural network were also developed using the identified stable pre-
dictors and assessed via the same methods, serving as benchmark
predictive models for comparison. Although a neural network model
is not easily interpretable, the model was used as a benchmark for
comparison due its strong predictive capabilities. Model development
and feature importance evaluation is further described in the Sup-
plementary Material (Model Development and Feature Importance
Evaluation section).

Model Validation

To assess the model’s prognostic ability and generalizability, risk
indices fromMay 4were prospectively validated against NH outcomes
reported on May 11 from California. The predicted risk indices were
categorized as binary outcomes using an optimal threshold value
(selected as the value that minimizes the difference between the
model’s sensitivity (true positive rate) and specificity (true negative
rate) across the entire training dataset). Risk indices above the
threshold value were predicted as infected NHs. The differences in the
predictive characteristics between the training and validation datasets
were compared using the ManneWhitney U test for continuous var-
iables, and the c2 test for binary variables.

In addition, reported outcomes from 7660 LTCFs1 on May 11 were
used to calculate the Pearson correlation coefficient between each
state’s median NH risk index (ie, the median risk index, from May 4,
across all NHs that are in our dataset in the state) and each state’s
LTCF related COVID-19 infection and death rates. The benchmark
logistic regression and neural networkmodels were also validated in
the same manner, and the performance of the 3 models were
compared. Model validation is further detailed in the
Supplementary Material (Prospective Out-of-Sample Model
Validation section).

Results

Table 1 summarizes and compares the characteristics the NHs used
to train and validate the model. The training set included 1146 NHs
that reported COVID-19 cases on April 20 (60.3% reported at least one
resident COVID-19 case). The validation set included 1021 NHs (20.5%
reported at least 1 resident COVID-19 case) reporting on May 11. The
NH characteristics in the validation set was significantly different from
the training set, indicating the validation set is suitable to rigorously
assess the model’s out-of-sample predictive performance and gener-
alizability to unseen data.

Overall, 7 out of 41 inputted features were identified as predictors
of infection (Figure 1). The NH’s county’s infection rate and number of
units were the strongest predictors of risk and positively associated
with increased infection risk. The other predictors of infection include
the NH’s county’s population density, CMS cited health deficiencies,
and resident and staff densities, which were positively associated with
infection risk, as well as the percent of non-Hispanic White residents,
which was negatively associated with infection risk (Supplementary
Figure 1). The gradient boosting model’s mean out-of-sample AUC,
sensitivity, and specificity from 10-fold CV over the training set were
0.729 (95% CI 0.690‒0.767), 0.670 (95% CI 0.477‒0.862), and 0.611 (95%
CI 0.412‒0.809), respectively.

Themodel had an AUC of 0.721 (sensitivity 0.622; specificity 0.713)
when prospectively compared against California NHs with reported
outcomes from May 11. The optimal threshold value used to form
binary outcome classifications from predicted risk indices was 0.618.
Table 2 shows LTCF related case and death rates from May 11 with the
model’s median risk indices by state. The correlation was statistically
significant for both case (R ¼ 0.859; P < .001) and death (R ¼ 0.856;
P < .001) rates.

Compared with the benchmark models, logistic regression and
neural network (Table 3), the gradient boosting model demonstrated
stronger prognostic ability and higher correlation to LTCF case and
death rates by state. The gradient boosting model had higher mean



Fig. 1. Feature importance and impact on risk of COVID-19 infection in NHs from the gradient boosting model. The NH’s county’s COVID-19 infection rate and size had the largest
impact on infection risk (features are in descending order from highest to lowest importance). In the figure, each dot represents a NH that the model has been trained on. For each
NH, a high feature value corresponds to the color red, and a low feature value corresponds to the color blue. The horizontal axis shows whether the effect of the feature value is
associated with a higher or lower risk of NG infection.

Table 1
The Summary and Comparison of the Predictive Characteristics of the NH in the Model’s Training and Validation Sets

Identified Predictive Features Training Set*
(n ¼ 1146)

Prospective Validation Sety

(n ¼ 1021)
P Value

Cumulative number of positive COVID-19 cases per capita
in the facility’s county on the day of NH COVID-19 case
reporting (confirmed cases per 100,000 people), median (IQR)

478.1 (182.0‒730.7) 112.5 (79.5‒244.7) <.001

Total number of beds at the facility, median (IQR) 122 (94‒167) 99 (74‒140) <.001
Population density of the facility’s county (population per square mile),
median (IQR)

1027.0 (420.6‒2033.7) 1613.3 (343.8‒2508.6) <.05

Number of health deficiencies at the facility as defined by the CMS,
median (IQR)

12 (7‒19) 35 (23‒50) <.001

Percent of NH residents who were non-Hispanic white prior to the COVID-19
outbreak, median (IQR)

83.6 (62.0‒94.2) 59.6 (42.9‒78.5) <.001

Number of patients per 1000 square feet in the facility prior to the COVID-19
outbreak, median (IQR)

2.95 (2.15‒3.77) 4.83 (3.75‒5.68) <.001

Number of clinical workers per 1000 square feet in the facility prior to the
COVID-19 outbreak, median (IQR)

1.06 (0.78‒1.33) 1.90 (1.52‒2.32) <.001

Positive COVID-19 resident case in NH, No. (%) 722 (63.0) 209 (20.5) <.001

IQR, interquartile range.
Significant differences in the characteristics between the 2 sets were found. A strong predictive performance across a validation set population that is significantly different
from its training set population suggests the model will be generalizable to different populations. P values fromManneWhitney U and c2 tests, as appropriate, comparing the
differences in the characteristics are shown.

*NHs from Massachusetts, Georgia, and New Jersey with outcomes reported on April 20, 2020.
yNHs from California with outcomes reported on May 11, 2020.
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out-of-sample AUC, sensitivity, and specificity compared with the
logistic regression and neural network models from 10-fold CV over
the training set (Table 3). In the validation set, the logistic regression
model had a lower AUC (0.689) compared with the gradient boosting
model and a large difference in sensitivity (0.914) and specificity
(0.233), indicating its poor predictive power (overestimating the
number of infected NH’s) and generalizability. Similarly, the neural
network had a lower AUC (0.707) compared with the gradient
boosting model and a large discrepancy in sensitivity (0.904) and
specificity (0.308) across the validation set, also indicating over-
estimation of infected NH’s and poor model generalizability. The
optimal threshold value used to form binary outcome classifications
from the logistic regression and neural network model predictions
were 0.609 and 0.640, respectively. The correlation between the
gradient boosting model’s median risk index and LTCF outcome rates
by state was stronger compared with both the logistic regression and
neural network models for both state case rates, R ¼ 0.384 (P < .05)
and R ¼ 0.731 (P < .001), respectively, as well as state death rates,
R ¼ 0.335 (P < .05) and R ¼ 0.705 (P < .001), respectively. The
benchmark logistic regression model is further detailed in the
Supplementary Table 2 for the interested reader.

Discussion

Predicting COVID-19 outbreaks in senior care facilities has been a
challenge for policymakers and nursing home operators who priori-
tize the allocation of various critical resources (eg, personal protection
equipment (PPE), training, audits, testing) to prevent and mitigate
outbreak and its consequences.10e12 For example, previous studies
havemixed results on the relationship between standard LTCF ratings,
such as the CMS 5-star overall and health inspection ratings, and
increased risk of infection.11e16 This study describes the development
and application of a machine-learning gradient boosting model to
quantify complex predictive relationships between NH COVID-19
infection risk and granular NH characteristics that were decomposed
from traditional aggregated NH measures, highlighting factors
contributing to NH infection during the initial COVID-19 outbreak
phase (March/April 2020). The model demonstrated moderate



Table 2
Predicted NH Risk from the Gradient Boosting Model and LTCF Related COVID-19 Case and Death Rates Reported on May 11 by State

State Ranking Based
on Predicted NH Risk Index
(as of May 4, 2020)

State Predicted on May 4, 2020 Reported on May 11, 2020 Reported LTCF Related Deaths per
1000 Beds (Relative Rank)

Median Predicted
NH Risk Indices (IQR)

Reported LTCF
Related Cases per 1000 Beds

(Relative Rank)

1 New Jersey 78.7 (67.1‒82.7) 500.9 (1) 92.7 (1)
2 Massachusetts 74.8 (65.1‒81.2) 365.3 (2) 66.9 (2)
3 Connecticut 71.3 (50.6‒78.3) 251.5 (3) 63.3 (3)
4 New York 66.1 (44.4‒83.5) No reporting data 47.8 (4)
5 Maryland 65.7 (49.8‒72.2) 226.3 (5) 28.8 (7)
6 Rhode Island 63.1 (54.6‒70.8) 230.1 (4) 37.9 (5)
7 Delaware 62.6 (58.5‒72.2) 91.9 (14) 28.0 (8)
8 Louisiana 58.0 (42.9‒74.5) 112.3 (11) 23.3 (10)
9 California 54.0 (39.9‒63.7) 82.7 (15) 8.4 (21)
10 Pennsylvania 51.0 (37.8‒68.1) 152.5 (8) 29.0 (6)
11 Florida 51.0 (39.7‒59.6) 66.9 (17) 8.6 (19)
12 Virginia 49.6 (37.7‒63.0) 115.1 (10) 15.2 (14)
13 Michigan 45.8 (34.0‒70.1) 99.7 (13) 4.6 (27)
14 Illinois 45.1 (33.9‒73.9) 127.5 (9) 17.4 (12)
15 Colorado 44.8 (35.6‒59.9) 184.7 (6) 26.8 (9)
16 Washington 44.8 (36.6‒51.7) 51.0 (26) 3.8 (32)
17 Georgia 44.8 (36.7‒62.6) 158.9 (7) 17.5 (11)
18 Nevada 44.8 (40.7‒48.6) 102.3 (12) 8.6 (20)
19 Utah 43.7 (31.5‒53.8) 10.3 (40) 2.0 (37)
20 Mississippi 43.6 (37.7‒52.6) 66.4 (18) 10.5 (17)
21 Indiana 43.5 (36.2‒52.4) 59.1 (20) 11.4 (16)
22 Alabama 41.5 (34.1‒47.3) 62.2 (19) 1.0 (40)
23 Ohio 40.7 (31.2‒56.0) 54.2 (24) 3.2 (34)
24 Texas 40.5 (31.5‒56.0) 10.1 (41) 3.6 (33)
25 South Carolina 40.0 (33.3‒44.8) 54.4 (23) 5.4 (25)
26 Nebraska 39.8 (31.5‒45.3) 5.2 (45) 0.1 (45)
27 Hawaii 38.6 (31.5‒45.4) 0.7 (49) No reporting data
28 New Mexico 37.7 (31.5‒47.3) 5.7 (42) 2.2 (36)
29 North Carolina 37.7 (31.5‒46.2) 56.4 (21) 7.3 (22)
30 Arizona 37.7 (31.9‒44.0) 76.0 (16) 12.7 (15)
31 Alaska 36.6 (31.5‒42.0) 3.9 (46) No reporting data
32 New Hampshire 33.9 (26.6‒39.8) 19.3 (38) 1.7 (38)
33 Vermont 33.7 (31.5‒38.7) 55.8 (22) 9.6 (18)
34 Tennessee 33.5 (28.4‒44.8) 22.6 (36) 2.4 (35)
35 Kentucky 33.3 (28.0‒43.6) 53.3 (25) 6.7 (23)
36 Oklahoma 33.2 (28.5‒44.8) 35.8 (32) 4.3 (29)
37 Arkansas 33.1 (29.8‒40.5) 17.8 (39) 1.4 (39)
38 Iowa 32.4 (28.0‒41.5) 36.8 (31) 0.5 (42)
39 Missouri 32.1 (28.0‒44.8) 2.4 (48) 0.2 (43)
40 Idaho 31.6 (29.6‒40.5) 29.1 (34) 4.7 (26)
41 Minnesota 31.5 (28.0‒46.4) 48.7 (27) 16.8 (13)
42 Kansas 31.5 (28.0‒40.7) 26.2 (35) 4.2 (30)
43 Wyoming 31.5 (28.0‒37.7) 5.4 (43) No reporting data
44 West Virginia 31.5 (29.7‒37.7) 30.7 (33) 4.0 (31)
45 Oregon 31.5 (31.3‒50.8) 39.9 (29) 6.3 (24)
46 Montana 29.8 (28.0‒34.4) 5.4 (44) 0.9 (41)
47 North Dakota 29.1 (27.6‒39.5) 44.0 (28) No reporting data
48 Maine 28.9 (25.5‒35.1) 37.7 (30) 4.4 (28)
49 South Dakota 28.5 (25.3‒36.6) 2.8 (47) No reporting data
50 Wisconsin 28.0 (25.3‒37.9) 22.1 (37) 0.2 (44)

IQR, interquartile range.
States were ranked in descending order based on the state’s median, 75th percentile and 25th percentile risk index as of May 4, 2020.
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predictive power and strong association with NH and LTCF outcomes
across the United States, suggesting the value of the identified risk
factors in predicting which NHs are most susceptible to infection
introduction. The gradient boosting approach outperformed logistic
regression and neural network benchmark models, further demon-
strating its ability in providing insights to inform healthcare policies to
prevent COVID-19 infection.

The identified risk factors provide data-driven support of
hypotheses regarding 2 primary infection mechanisms: (1) introduc-
tion via presymptomatic and asymptomatic individuals from the
surrounding community, and (2) intra-facility transmission following
initial exposure.4,5,7,14 Opportunities for infection introduction in-
crease with the number and frequency of individuals entering the NH
from the surrounding community. Intra-facility transmission
following exposure from the outside community appears to increase
with staff and resident density, suggestive of greater interaction
within the NH. In addition, historical CMS-cited health deficiencies
could indicate poor safety culture, inappropriate infection control
practices, and lack of financial resources to implement appropriate
safety measures,17,18 all of which may impact both infection intro-
duction and spread.17,19,20 Lastly, a higher percent of non-Hispanic
white residents was associated with lower risk of infection, consis-
tent with the racial disparities of COVID-19 infection risk, as well as
social and structural determinants of health, affecting both the general
public21e25 and the geriatric and NH community.10e12,26 As lower
long-term18,27 and post-acute care quality,28 as well as more limited
financial resources29 have been found in NHswith a higher percentage
of minority residents, these results further suggest poor infection



Table 3
The Gradient Boosting Model’s Performance and Correlation to LTCF Related COVID-19 Case and Death Rates by State Compared with the Performance of the Benchmark
Logistic Regression and Neural Network Models

Dataset Metric of Interest Gradient Boosting Model Benchmark Logistic
Regression Model

Benchmark Neural
Network Model

Training set* (via 10-fold
cross validation)

AUC, mean (95% CI) 0.729 (0.690‒0.767) 0.653 (0.599‒0.706) 0.696 (0.657‒0.734)
Sensitivity, mean (95% CI) 0.670 (0.477‒0.862) 0.610 (0.483‒0.738) 0.664 (0.484‒0.843)
Specificity, mean (95% CI) 0.611 (0.412‒0.809) 0.592 (0.450‒0.733) 0.585 (0.410‒0.760)

Prospective validation sety AUC 0.721 0.689 0.707
Sensitivity 0.622 0.914 0.904
Specificity 0.713 0.233 0.308

State LTCF outcome ratesz Correlation between median
risk index and state LTCF case

rates by state, Pearson correlation
coefficient

0.859 0.384 0.731

Correlation between median risk
index and LTCF deaths rates by

state, Pearson correlation coefficient

0.856 0.335 0.705

*NHs from Massachusetts, Georgia, and New Jersey with outcomes reported on April 20, 2020.
yNHs from California with outcomes reported on May 11, 2020.
zLTCF-related COVID-19 case and death rates reported on May 11th by states across the United States.
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control practice and limited access to infection control resources may
impact COVID-19 introduction. These factors help inform policy pri-
orities that have emerged in NH COVID-19 management: staff and
resident testing; positive workforce practices; PPE availability and
proper use; financial relief for NHs; and development of high-quality
facility level COVID-19 databases.

The importance of community transmission supports evidence
that early identification and management of presymptomatic and
asymptomatic individuals, particularly staff who frequently enter and
exit the facility, can be effective in infection introduction.4,5,30e32 The
role that presymptomatic and asymptomatic individuals play in
transmission underscores the importance of frequent surveillance
testing of staff as a preferable policy to symptom screening in effec-
tively preventing infection introduction.33 Staff have not been priori-
tized in many NH testing strategies, which have been extremely
inconsistent across states.34,35 Less than one-half of the states were
reporting COVID-19 cases in staff during the initial COVID-19 outbreak
in April,36 some of which did not evenperform staff testing following a
NH outbreak.37 The development of a state or federally supported
surveillance testing approach for staff during the COVID-19 pandemic
is essential to sustain effective infection prevention practices in NHs;
most important, is securing funding sources and providing opera-
tional capacity e such questions have been raised in many states and
most notably in New York which has recently mandated regular
testing of workers.38,39 In addition to testing, state-supported work-
force policies could help address staffing shortages, facilitate effective
organizational communication, and provide paid sick leave as COVID-
positive workers are identified.

Once a facility has at least 1 COVID-19 case, the relevant mecha-
nism for infection to consider is intrafacility transmission among
residents and staff.4,5,7 The positive association of risk to resident and
staff density supports interventions that minimize staff transitions
across parts of the facility, and that limit unnecessary in-person in-
teractions with residents. In the short term, intrafacility infection
spread may be lower in facilities with reduced occupancy rates as a
result of the first wave of the COVID outbreak. At the same time,
reduced occupancy has a significant financial impact on facilities,
particularly from decreased Medicare revenue associated with low
post-acute care referrals and increased patient management costs.3 At
the federal level, short-term policies that bring Medicaid payments in
line with Medicare payments per head and eliminate low occupancy
penalization should be considered to provide financial stability to
facilities while at the same time reducing the risk of intra-facility
spread. And finally, immediate actions to increase available PPE for
NH staff, which have been in shortage,3,8,31,35,40 are also essential, as
unprotected and asymptomatic staff are likely primary vectors accel-
erating infection spread.

The challenge of improving COVID-19 outcomes in NHs and
compliance to infection policies emphasize the continuing role of data
analytics and advanced modeling techniques to inform NH response.
Risk indices, such as the one generated by our model, can be used by
policymakers to prioritize certain facilities for enhanced support, as
well as reveal critical support needs. Moreover, predictive risk models
can be instrumental in informing the relaxation and tightening of NH
visitor policies. Diligence around identifying risk factors and drivers of
infection will remain critical through future COVID-19 recovery
phases.

Maintaining quality, up-to-date facility level data will help inform
data-driven analysis in the dynamically changing NH and COVID-19
landscape. Moving forward, health organizations including CMS and
Centers for Disease Control and Prevention would benefit from
developing high-quality national datasets to inform infection and
control policies. Along with this, frequent assessment of NH charac-
teristics that are relevant to informing decision-makers should be
conducted to support analysis of suspected infection mechanisms. For
example, the inflow and outflow of residents and workforce, staffing
levels, and workforce status within NHs have been points of interest4,5

that have not been reported in public datasets.
Applying these modeling techniques to inform targeted in-

terventions may also improve COVID-19 outcomes in other institu-
tional settings, such as homeless shelters and correctional facilities,
that have experienced rapid intra-facility transmissions.30,41 The
strong correlation between state median risk indices and LTCF case
and death rates can be explained as most infections and deaths
occurred in NHs, but also could indicate the relevance of the risk
factors to such settings.

This study has several limitations. First, NH COVID-19 outcomes
were inconsistently reported across states and could underestimate
actual infection and fatality rates. Partial testing of NHs could also
result in underestimations of outcomes. To mitigate this risk, training
data was collected from states with relatively higher testing levels,
and better data quality. Second, while the model performed strongly
when validated on a state with significantly different characteristics
from the training states, model performance could still be inconsistent
across different geographic areas. Lastly, model predictors describing
NHs were developed from historical reports, such as those from the
2017 Long-Term Care Focus database andmay not reflect real-time NH
characteristics.
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Conclusions and Implications

A machine-learning gradient boosting model can describe and
predict the risk of COVID-19 outbreak in NHs, providing data-driven
support for NH infection control policies, strategies for the prioriti-
zation of resources to high-risk NHs, and the relaxation and restriction
of NH visitor policies. The prevalence of COVID-19 infections in a NH’s
surrounding community and a NH’s size were identified as the pri-
mary risk factors associated with NH infection, suggesting that the
introduction of infection from the outside community as a likely
infection mechanism. Developing financially sustainable testing and
screening approaches to identify presymptomatic and asymptomatic
individuals entering a NH are critical to preventing and controlling
COVID-19 outbreaks in these settings.
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Supplementary Appendix
Supplemental Methods

Data Sources and Model Inputs

The data used in the study, and to train the machine-learning
model, was a unique self-constructed dataset, describing 15,300
federally certified NHs and their surrounding community across the
United States. This dataset integrated information collected from
public sources as well as provided by industry sources. Facility infor-
mation from each source was merged based on keys generated from
the facility’s name, address, and, if available, the CMS certification
number.

Outcomes
Data pertaining to NH outcomes, describing if there was at least 1

resident COVID-19 infection at an NH, was collected from public State
Department of Health NH and LTCF COVID-19 reports.1e5 The states
included in the study (Massachusetts, Georgia, New Jersey, and Cali-
fornia), were selected based on the availability of facility level NH
infection data (as a limited number of states were reporting during the
study period), number of daily tests per capita,6 number of reporting
NHs, and granularity of reporting COVID-19 related data (ie, if infor-
mation on the NH’s census, resident deaths, and staff outcomes were
reported, in addition to resident infections). This selection criteria
were used to help mitigate the impact of reporting bias stemming
fromvariations in each state’s and NH’s willingness and ability to both
test for infection and report outcomes. Such variations and limitations
in testing and reporting behaviors can result in underestimated
numbers of infected NHs, artificially lowering measured NH infection
risk.

Predictors
The data included in our dataset pertaining to NH characteristics

were from Muller Consulting and Data Analytics (MCDA),7 OMEGA
Healthcare Investors,8 the National Investment Center for Seniors
Housing and Care (NIC),9Walk Score,10 Centers for Disease Control and
Prevention,11 Long-term Care Focus (LTCFocus),12 US Census,13 and
CMS.14 Data from CMS includes, Nursing Home Compare data, which
pulls from the CMS Provider Certification database, Health Inspection
database, Payroll-Based Journal system, the Minimum Data Set na-
tional database, and Medicare claims data. Data on the NH’s sur-
rounding community, (ie, the facility’s county and zip code area), was
collected from the New York Times’ COVID Tracker15 and provided by
Claritas Inc.16 and SafeGraph.17 The MCDA features describing NH
characteristics were developed using CMS claims and staffing data as
of 2019 Q3, as well as provider certification, health inspections, and
cost report data as of March 2020. The LTCFocus features describe NH
characteristics as of April 2017.

The specific variables used in the machine-learning model are
shown in Supplementary Table 1. These predictors were selected
based on a priori knowledge and suggestions from field experts.
Predictors with missing variable values (Supplementary Table 1) were
imputed using a k-nearest neighbors approach based on all predictor
variables of the NHs using the Python package fancyimpute.18 NHs
with missing data on all of the predictor variables were excluded from
the study. A total of 1146 of 1242 (92.3%) and 1021 of 1254 (81.4%) of
reporting NHs were included in the training and testing sets,
respectively.

Model Development and Feature Importance Evaluation

Model development
We used a binary classification gradient boosting model to predict

the probability of the presence (binary outcome of 1) of at least 1
positive resident COVID-19 case in the NH. A binarymetric was used as
a single confirmed COVID-19 case is likely indicative of a compromised
facility because of rapid intrafacility transmission and the presence of
undetected asymptomatic and presymptomatic individuals.19,20

Following feature selection, the model’s hyperparameter and out-
of-sample performance were tuned and calculated, respectively,
through 10-fold CV. Specifically, we first divided thewhole training set
into 10 stratified folds, creating 10 different splits where one fold was
selected as the CV test set and the 9 others as the CV training set. Then,
we applied an internal 10-fold CV, with no repetition, only on the
formedCV training set,while restricting themodel inputs toonlybe the
identified stable predictors that were selected via feature selection
methods described in the main document. For the internal 10-fold CV,
the model’s hyper-parameters were optimized via the Python sklearn
cross-validated grid search function21 with the area under the receiver
operating characteristic curve (AUC) as the performance metric
to maximize. After hyper-parameter tuning, the optimal threshold
value, which categorizes predicted probabilities as binary outcomes
(a probability above the threshold indicates the predicted presence of
at least one positive resident COVID-19 case), was selected as the value
that minimizes the difference between the model’s in-sample sensi-
tivity and specificity. This process was repeated for each of the 10
training-testing set splits from the external folds. The mean out-of-
sample AUC, sensitivity (true positive rate) and specificity (true nega-
tive rate), and their 95%CIswere calculatedover theexternal 10-foldCV
testing folds. Logistic regression and neural networkmodels were also
developed and assessed using the samemethods and identified stable
predictors, serving as benchmark models for comparison.

Feature importance
Following model hyperparameter tuning, the model was fit over

the entire training dataset to evaluate the feature importance of the
identified stable predictors of risk. Specifically, we first used the Py-
thon SHapley Additive exPlanations package22 to calculate and visu-
alize the impact of the predictors on infection risk (Figure 1). We then
assessed the relationship between each identified stable predictor and
estimated infection risk levels by generating risk levels for each of the
15,300 NHs in our dataset, using the trained model, while varying the
value of the specific predictor variable of interest. For each NH, the
predictors other than the predictor of interest being varied retained
their actual values (the NH’s county’s infection rate used was the rate
reported on April 20, 2020). Themedian, 25th and 75th percentiles, and
5th and 95th percentiles of the NH risk levels across the 15,300 NHs,
while varying the predictor values, were calculated.

Prospective Out-of-Sample Model Validation

For prospective validation, we fit themodel over the entire training
dataset (composed of NH outcomes fromMassachusetts, Georgia, and
New Jersey reported on April 20, 2020), using only the identified
stable predictors, and generated new predictions with predictor var-
iables fromMay 4, 2020. The predicted probabilities were converted to
binary outcomes using an optimal threshold value calculated, as
previously described, over the entire training dataset from April 20.

The predictions were prospectively compared with outcomes re-
ported a week later on May 11, 2020, in 2 ways. We first calculated the
AUC, sensitivity, and specificity of the predictions against outcomes
from 1021 NHs in California. We then compared the predictions to
COVID-19 case and death rates from 7660 LTCFs across the United
States. Specifically, we calculated the Pearson correlation coefficient
between each state’s median NH risk score, across all the state’s NHs in
our dataset, and each state’s LTCF related COVID-19 infection and
death rates. The benchmark logistic regression and neural network
models were also validated as described for comparison to the
machine-learning model.
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The LTCF related infection and death rates used for validationwere
calculated by dividing the sum of the reported number of LTCF related
outcomes by the sum of bed counts from the 15,300 federally certified
NHs in our dataset, by state.While normalizing LTCF related outcomes
by NH beds increases calculated case and death rates compared to
normalizing using LTCF bed counts, given the available data,webelieve
using NH beds results in a robust measure for validation for the
following 2 reasons. First, to the best of our knowledge, there is no
comprehensive LTCF database that contains information on assisted-
living and independent-living facilities across all states. Including
incomplete assisted-living and independent-living data per state can
lead to overestimates of case and death rates for states with missing
data. In other words, states with missing bed counts data would have
artificially increased outcome rates compared with states without
missing bed count data, as the incomplete bed count denominator
would be smaller than complete bed counts. In contrast, the federal NH
dataweused is regulated and consistently reported across all US states,
providing an accurate lower bound of the number of LTCF beds per
state. Second, the reported cases and deaths are likely underestimates
of the actual COVID-19 related outcomes in LTCFs, counteracting
potential overestimation when normalizing by NH beds.

Supplemental Results

Impact of Identified Predictors on Infection Risk

The estimated change in NH infection risk when varying the values
of each of the 6 identified key predictors is shown in Supplementary
Figure 1. The NH’s county’s infection rate and size had the largest
impact on infection risk.

Benchmark Logistic Regression Model

The odds ratios of the logistic regression model based on the
full training dataset are shown in Supplementary Table 2. The
relationships identified using the logistic regression model should
be interpreted with caution because of its poor predictive perfor-
mance (Table 3), namely, the overestimation of the number of
infected nursing homes in the validation set and generating risk
indices with poor correlation to state level LTCF infection and death
rates.

The relationships between the predictor variables and COVID-19
infection found using logistic regression were not all aligned with
those identified by the gradient boosting model (Figure 1). Consistent
with the gradient boosting model, the logistic regression model found
that the NH’s county’s infection rate, number of units, CMS-cited
health deficiencies, and clinical worker density were significantly
associated with COVID-19 infection. However, both the population
density of the facility’s county (population per square mile) and
percent of nursing home residents who were non-Hispanic white
variables were not significant predictors in the logistic regression
model, despite being the third and fifth most impactful predictors,
respectively, according to the machine learning gradient boosting
model (Figure 1). The logistic regression model also did not find a
significant association between the NH’s patient density and COVID-
19 infection.



Supplementary Fig. 1. Predictive feature’s impact , shown in subfigures (A‒G), on estimated NH risk of COVID-19 infection. The median (blue line), 25th and 75th percentiles (gray
band), and 5th and 95th percentiles (orange band) of the infection risk levels generated by the trained model are shown across 15,300 NHs in the United States.
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Supplementary Table 1
Overview of the Data Inputs of the NH Risk Model

Data Category Variable Description Data Source Number of NH in Training Set without Missing
Feature Values (n ¼ 1146), n (%)

Facility’s community
characteristics

Cumulative number of positive
COVID-19 cases per capita in
the NH’s county on the day of
NH COVID-19 case reporting

NYT COVID Tracker 1133 (98.9)

Estimated poverty score of the NH’s
county (Based on: Household income)

CDC 1133 (98.9)

Overall comorbidity score of the NH’s
county (Based on: Obesity, diabetes,
hypertension, cardiovascular
characteristics from 2018)

CDC 1133 (98.9)

Overall percentile ranking of social
vulnerability index of the NH’s county
(Based on: Socioeconomic, household
composition, minority status/language,
and housing type/transportation
characteristics)

CDC 1133 (98.9)

Percent of facility’s county who are
non-Hispanic White

US Census 1133 (98.9)

Percentage of family households in the NH’s
county

Claritas 1133 (98.9)

Population density of the NH’s county
(population
per square mile)

Claritas 1133 (98.9)

Community social distancing
and
population mobility
characteristics

Proportion of Safe Graph tracked devices
traveling less
than 8000 meters per day out of all tracked
devices
in the facility’s Zip code of the week of NH
COVID-19
case reporting

Safe Graph 1096 (95.6)

Proportion of Safe Graph tracked devices
traveling more
than 50,000 meters per day out of all tracked
devices
in the facility’s zip code of the week of
NH COVID-19 case reporting

Safe Graph 1096 (95.6)

Proportion of Safe Graph tracked devices
exhibiting full-time
employment behavior in the zip code of the
week of NH
COVID-19 case reporting

Safe Graph 1101 (96.1)

Proportion of Safe Graph tracked devices
traveling less than
8000 meters per day out of all tracked devices
in the facility’s
county of the week of NH COVID-19 case
reporting

Safe Graph 1133 (98.9)

Proportion of Safe Graph tracked devices
traveling more than
50,000 meters per day out of all tracked
devices in the facility’s
county of the week of NH COVID-19 case
reporting

Safe Graph 1133 (98.9)

Proportion of Safe Graph tracked devices
exhibiting full-time
employment behavior in the county of the
week of NH COVID-19
case reporting

Safe Graph 1133 (98.9)

Inflow of Safe Graph tracked devices to the
facility’s county of the week
of NH COVID-19 case reporting

Safe Graph 1131 (98.7)

Outflow of Safe Graph tracked devices from the
facility’s county of the
week of NH COVID-19 case reporting

Safe Graph 1132 (98.8)

Percentage of county’s population taking public
transportation to work

Claritas 1133 (98.9)

(continued on next page)
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Supplementary Table 1 (continued )

Data Category Variable Description Data Source Number of NH in Training Set without Missing
Feature Values (n ¼ 1146), n (%)

Facility characteristics Age of the nursing home in years NIC 750 (65.4)
Standardized hourly cost per clinical worker
excluding certified nursing
assistants (per patient per day)*,y

MCDA 1090 (95.1)

Standardized hourly cost per clinical worker
including certified nursing
assistant (per patient per day)*,y

MCDA 1090 (95.1)

Walk Score measures walkability on a scale
from 0‒100 based on walking
routes to destinations such as grocery stores,
schools, parks, restaurants,
and retail

Walk Score 760 (66.3)

Number of clinical workers per 1000 square feet
in the facility prior to the
COVID-19 outbreak*

MCDA 999 (87.2)

Number of health deficiencies at the facility as
defined by the Centers for
Medicare and Medicaid Service since 2014

CMS 977 (85.3)

Number of patients per 1000 square feet in the
facility prior to the
COVID-19 outbreak

MCDA 999 (87.2)

Overall infection control process and
performance index

MCDA 974 (85.0)

Rate of influenza vaccination for long stay
residents

MCDA 1065 (92.9)

Rate of influenza vaccination for short stay
residents

MCDA 1078 (94.1)

Rate of pneumococcal vaccination for long stay
residents

MCDA 1065 (92.9)

Rate of pneumococcal vaccination for short stay
residents

MCDA 1080 (94.2)

Rate of rehospitalizations of residents due to
infection

MCDA 1091 (95.2)

Index based on CMS health inspection citations
related to infection control
measures (citations weighted according to
scope, severity, and recency)

MCDA 849 (74.1)

Index based on CMS health inspection citations
related to laboratory processes (citations
weighted according to scope, severity, and
recency)

MCDA 739 (64.5)

Index based on CMS health inspection citations
related to managerial processes (citations
weighted according to scope, severity, and
recency)

MCDA 966 (84.3)

Index based on CMS health inspection citations
related to physical environment (citations
weighted according to scope, severity, and
recency)

MCDA 739 (64.5)

Total number of beds at the facility CMS, NIC 1146 (100.0)
Total number of beds for Nursing Care NIC 768 (67.0)
Total number of units for assisted living NIC 768 (67.0)
Total number of units for independent living NIC 768 (67.0)
Total number of units for memory care NIC 768 (67.0)
Percent of facility residents who were non-
Hispanic white prior to the COVID-19
outbreak

LTCFocus 961 (83.9)

Percent of facility residents whose primary
support was Medicare prior to the COVID-19
outbreak

LTCFocus 961 (83.9)

Percent of facility residents whose primary
support was Medicaid prior to the COVID-19
outbreak

LTCFocus 961 (83.9)

Facility outcomes Presence of at least one resident COVID-19 case State Departments of health 1146 (100.0)

CDC, Centers for Disease Control and Prevention; LTCFocus, Long-term Care Focus; MCDA, Muller Consulting and Data Analytics; NIC, National Investment Center for Seniors
Housing and Care; NYT, New York Times.

*Clinical worker defined as registered nurses, licensed practical nurses, certified nursing assistants, nursing aides, medical aides/technicians, nursing home administrators,
medical directors, physicians, physician assistants, nurse practitioners, clinical nurse specialists, pharmacists, dieticians, feeding assistants, occupational therapists, occu-
pational therapy assistants, occupational therapy aides, physical therapists, physical therapist assistants, physical therapist aides, respiratory therapists, respiratory therapy
technicians, speech/language pathologists, therapeutic recreation specialists, qualified activities professionals, other activities staff, qualified social workers, other social
workers, mental health service workers.

yStandardized costs based on average hours worked multiplied by Bureau of Labor Statistics national wage rate estimates for respective occupations in skilled nursing
facilities.
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Supplementary Table 2
Odds Ratios for Benchmark Multivariate Logistic Regression Model Based on the Training Set Data (n ¼ 1146)

Variables Odds Ratio (95% CI) P Values

Cumulative number of positive COVID-19 cases
per capita in the facility’s county on the day of
NH COVID-19 case reporting (confirmed cases
per 100,000 people)

75.7 � 1090 (57.8 � 1067‒99.0 � 10113)* <.001

Total number of beds at the facility 1.003 (1.001‒1.005)* <.001
Population density of the facility’s county
(population per square mile)

1.0000 (0.9999‒1.0001) .782

Number of health deficiencies at the facility as
defined by the Centers for Medicare and
Medicaid Services

1.029 (1.015‒1.044)* <.001

Percent of nursing home residents who were
non-Hispanic white prior to the COVID-19
outbreak

0.997 (0.991‒1.004) .456

Number of patients per 1000 square feet in the
facility prior to the COVID-19 outbreak

0.844 (0.653‒1.091) .195

Number of clinical workers per 1000 square feet
in the facility prior to the COVID-19 outbreak

2.528 (1.185‒5.390)* <.05

Intercept 0.204 (0.096‒0.435)* <.001

*P < .05.
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