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Abstract

Background: One method of identifying cis regulatory differences is to analyze allele-specific expression (ASE) and
identify cases of allelic imbalance (AI). RNA-seq is the most common way to measure ASE and a binomial test is often
applied to determine statistical significance of AI. This implicitly assumes that there is no bias in estimation of AI.
However, bias has been found to result frommultiple factors including: genome ambiguity, reference quality, the
mapping algorithm, and biases in the sequencing process. Two alternative approaches have been developed to
handle bias: adjusting for bias using a statistical model and filtering regions of the genome suspected of harboring
bias. Existing statistical models which account for bias rely on information from DNA controls, which can be cost
prohibitive for large intraspecific studies. In contrast, data filtering is inexpensive and straightforward, but necessarily
involves sacrificing a portion of the data.

Results: Here we propose a flexible Bayesian model for analysis of AI, which accounts for bias and can be
implemented without DNA controls. In lieu of DNA controls, this Poisson-Gamma (PG) model uses an estimate of
bias from simulations. The proposed model always has a lower type I error rate compared to the binomial test.
Consistent with prior studies, bias dramatically affects the type I error rate. All of the tested models are sensitive to
misspecification of bias. The closer the estimate of bias is to the true underlying bias, the lower the type I error rate.
Correct estimates of bias result in a level alpha test.

Conclusions: To improve the assessment of AI, some forms of systematic error (e.g., map bias) can be identified
using simulation. The resulting estimates of bias can be used to correct for bias in the PG model, without data filtering.
Other sources of bias (e.g., unidentified variant calls) can be easily captured by DNA controls, but are missed by
common filtering approaches. Consequently, as variant identification improves, the need for DNA controls will be
reduced. Filtering does not significantly improve performance and is not recommended, as information is sacrificed
without a measurable gain. The PG model developed here performs well when bias is known, or slightly misspecified.
The model is flexible and can accommodate differences in experimental design and bias estimation.
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Background
Sequence polymorphisms which impact gene expression
have been identified as an important factor in human
disease (Reviewed in [1-6]); explaining phenotypic dif-
ferences between individuals (e.g., drug response [7];
biometric traits [8]) and species (e.g., ecological and
reproductive traits [9-18]). A variety of experimental
designs and analytical methods have been employed to
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identify the genetic basis of regulatory variation, finding
abundant variation in both cis and in trans regulatory
mechanisms [19-32].
In this study we focus on analytical approaches for the

analysis of allelic imbalance (AI), a common method used
to identify genetic differences in gene regulation. Allelic
imbalance occurs when regulatory processes result in dif-
ferent steady-state transcript levels for the two alleles
(within a single individual). Genetic differences in the reg-
ulation of transcript abundance for a focal gene can arise
from regulatory sequence variation occurring within reg-
ulatory regions of that gene (cis effects) or in regulatory
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or coding regions of trans acting factors (trans effects)
or through indirect or epistatic effects. The two alle-
les in a diploid individual are expressed in a common
cellular environment. Alleles expressed in a common cel-
lular environment can differ in regulatory sequence, but
share a common pool of trans acting factors. Therefore,
allelic imbalance between alleles in a common cellular
environment reveals functional differences between alle-
les in cis regulatory regions [20,22]. While comparing
the same allele in different cellular environments (e.g.,
between genotypes) reveals differences in trans regulation
because cis regulatory elements are identical while trans
environments differ.
Early studies of AI focused on a limited number of genes

and a few genotypes (e.g., parental genotypes and their F1
progeny, [22,29]). Different technologies have also been
employed, including custom platforms [33], SNP detec-
tion [20,22] and arrays [29,34]. Currently, the technology
most frequently used to asses allele-specific expression is
RNA-seq (e.g., [32,35-38]).
The null expectation, when there is no AI, is that the two

alleles are expressed equally (termed allelic balance or AB
throughout). That is, the proportion of the total expres-
sion level contributed by the maternal/paternal allele is
equal to a half. A common approach to analysis of allelic
imbalance in RNA-seq data is use of a binomial or chi-
square test to determine if allele-specific read counts
depart from this expected proportion [32,35,39,40]. How-
ever, these tests do not necessarily have the correct error
variance [41-45]. Bayesian models have been proposed to
improve estimates of allele-specific expression and/or to
identify allelic imbalance [46-48].
These Bayesian methods have primarily focused on

proper handling of error variance in the statistical model.
However, bias in estimation of AI is an important issue
for both intraspecific [35,49] and interspecific [38,48,50]
studies. Biases are present when aligning to a single ref-
erence, a single reference with SNPs masked, and mul-
tiple references; which can result in false positives for
AI [35,49-51]. Bias in estimation of allele-specific expres-
sion or allelic imbalance has multiple sources, including
sequence differences between reads and reference (missed
SNPs/false SNPs), properties of alignment algorithms,
genome features that result in ambiguity of read align-
ments and other technical sources of error (Figure 1)
[35,52,53].
There are several approaches to dealing with bias in

studies of AI, which are not necessarily mutually exclu-
sive. Some analytical methods reduce bias resulting from
differences between allele-specific reads and a single ref-
erence by the use of multiple strain specific references
(e.g., [46,48]) or by allele augmented references [47,51].
To account for bias due to properties of the alignment,
simulated reads have also been used to filter SNPs or

other units of analysis that show bias in alignments
[35,46,51,54]. For simple F1 experimental designs, the use
of DNA controls works quite well [21,22,29] to either fil-
ter biased regions [50] or to estimate bias and directly
account for bias, technical error variance and biological
error variance in the statistical model [48].
DNA sequencing of F1 heterozygotes (DNA controls)

is used to determine allele-specific read counts in the
case where equal amounts of each allele are present in
the sample. If there is bias in the DNA read counts the
paternal/maternal proportion of reads will deviate from
0.5. Because themeasurements fromDNA controls reflect
the complete process of allele-specific read assessment,
the error can originate from properties of the genome
(ambiguity, missed variation), mapping, or sequencing
related technical bias. This is in contrast to existing filter-
ing approaches, which only capture sources of bias related
to ambiguity and mapping. However, use of DNA controls
can be cost prohibitive in intraspecific experiments, where
the number of genotypes evaluated is expected to be
quite high.
In this manuscript we introduce a Bayesian Poisson-

Gamma (PG) model for analysis of allelic imbalance. The
PGmodel is a Bayesian version of Poisson regression. This
model can be used when DNA controls are not available
through use of a parameter representing bias which is
incorporated into the structure of the model. The param-
eter can be fixed (q) or random (φ) and can be used
in conjunction with simulation to account for genome
ambiguity and map bias.

Results and discussion
To compare model performance under different scenarios
we generated allele-specific read counts for both RNA and
DNA controls from a Poisson distribution (see Additional
file 1).While total allele-specific reads are distributed sim-
ilar to real data, bias and the ratio of the two allele mean
counts are specified by the parameters B and R respec-
tively. We investigated model performance for a previ-
ously developed Bayesian negative binomial (NB) model
[48], the newly developed Bayesian Poisson-Gamma (PG)
model, and a binomial model under three different sce-
narios: a null expectation data set with no bias and no AI,
B = 0.5 and R = 1; a null expectation data set with bias
and no AI, B �= 0.5 and R = 1; and a model with bias and
AI, B �= 0.5 and R �= 1.
To assess the performance of the PG model relative to

the NB model when the bias parameter is random, we
incorporate simulated DNA control counts (φ = DNA)
into the PG model and consider φ, assuming the same
model that we assume for p in the NB model (as in (1)
below). To determine the impact of using a fixed versus a
random bias parameter, we examined both the PG model
with q and the PG model with φ. For the NB and PG
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Figure 1 Sources of error in read alignments and allele-specific read counts contribute to bias in estimation of ASE and AI. Here we
consider error originating from sequence similarity in the genome (e.g., repeats and duplications) and hidden variation (missed or false SNPs). The
examples shown illustrate cases for alignments to a single reference (A-C) and to multiple references (D-E). Alignments to augmented references
are expected to behave similarly to alignments to multiple references. A)Masking SNPs located in regions with strong sequence similarity to other
locations in the genome (genome sequence ambiguity) can result in alignment error, the best match in the masked reference may be located in a
location other than the true source of the read. B) Algorithms that account for multiple mapping can result in allele bias when reads from one of the
alleles are discarded or are mapped randomly, while reads from the other allele map to their true source location. C) For a single unmasked
reference, reads from one of the alleles may not align at all, resulting in bias toward the other allele. D)When two references are used (one for each
parental genome), differences between the references in genome sequence ambiguity can result in allele bias for the same reason as outlined in B.
E) Sequencing errors in one reference can result in allele bias when reads from both (identical) alleles align best to the other reference.

models with a random bias parameter, the value is taken
from replicate simulated DNA control allele-specific read
counts. For comparison, we examine the performance
of the PG model with q = 1/2. In practice, any sin-
gle value estimate of bias can be used in the PG model
with q, under a null expectation of no bias q = 1/2 is
appropriate.
The type I error rate was examined for the null case

where allele-specific read counts are generated with no
bias (B = 0.5) and no AI (R = 1). Type I error is less than
5% in all cases, with the NB and PG models showing sim-
ilar levels of type I error that are lower than that of the
binomial, but all tests are valid in this case (Table 1).

Table 1 Estimate of the type I error rate

Model Type I error rate

Binomial 4.9%

NB: p = DNA 3.5%

PG: φ = DNA 3.8%

PG: q = 1/2 3.2%

Allele-specific counts from DNA and RNA-seq data were simulated with no
bias and no allelic imbalance for three replicates each of 10,000 exonic regions
and analyzed using the binomial exact test, the random bias parameter NB and
PGmodels that use DNA controls and the PGmodel with fixed bias parameter,
q = 1/2. Even when there is no bias, the Bayesian models have better
performance than a binomial exact test.
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Both the PG model with a fixed effect of q = 1/2 and
the binomial exact, assume that there is no bias. That
is, the null expectation is equal amounts of reads from
the paternal and maternal alleles. However, error variance
is handled differently by the two approaches. Is the PG
model with q = 1/2 different from the binomial test? We
compare these models using simulated data sets of allele-
specific read counts under a null scenario in which there
is bias (B �= 0.5) and no allelic imbalance (R = 1) and
simulated data sets with both bias and allelic imbalance
(R �= 1). Comparing the type I error rates for data gener-
ated with increasing levels of bias shows that while in both
cases the model assumptions are violated and type I error
increases with increasing bias, the PG model always has
a lower type I error rate (Figure 2).
To understand how bias affects model performance, we

further investigated the behavior of the PG model with
q = 1/2 and PG model with q = B, for B = 0.5 ±
10% error. The model performs well when there is bias,
while the binomial and q = 1/2 perform poorly when
there is bias (Figure 2; Additional file 1: Figure S1). The
model with q = B controls the type I error rate (2.6%)
even when there is bias in the allele-specific read counts.
When bias is accounted for but misspecified, the type
I error rate depends on the amount of misspecification
(Figure 2; Figure 3). Interestingly, when the amount of bias
is large misspecification of small amounts (5%) can result
in large type I errors. As expected, this appears as slightly
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Figure 2 Type I error rate of the PGmodel with q = 1/2 and the
binomial test, with increasing levels of bias. The x axis is the
percentage of misspecification as bias increases above 0.5. That is,
B = 0.5(1+ x%) with x represented by the the horizontal axis. The
horizontal line (grey) through 0.05 is shown for reference.
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Figure 3 Simulated amount of bias vs Type I error rate of the PG
model with different levels of misspecification. The x axis
represents the simulated amount of bias x = 2(100)(B− 0.5) with B
in the interval (0.35, 0.65). The line labeled “0” represents the type I
error rate TIER when q = (1 + 0%)B, the line labeled “1%” represents
the TIER when q = (1 + 1%)B, and similarly for the lines labeled “2%”,
“5%” and “10%”. Note that the smaller the simulated amount of bias
is the lower B is and, therefore, the difference between B and the
specified q, is smaller; hence the lower the TIER. This explains why the
TIER increases with the simulated amount of bias. The horizontal line
(grey) through 0.05 is shown for reference.

asymmetric with respect to the binomial. This is simply
due to 1% of 0.65 being a larger absolute amount of bias
than 1% of 0.35 (Figure 3). When bias is large and unac-
counted for, the PG model with q = 1/2 and the binomial
can have dramatic type I error rates (Figure 2).

Using DNA controls or simulated reads to measure bias
What causes bias in estimates of AI? Genome sequence
ambiguity and mapping ambiguity can lead to bias, often
collectively referred to as map bias. Graze et al. 2012
[48] and Satya et al. 2012 [51] found that the use of sep-
arate reference sequences for each allele or augmented
single references that contain both alleles reduces map
bias. Satya et al. 2012 [51] also found that ambiguity in
the reference genome is associated with bias and showed
that simple masking of biased SNPs is not sufficient to
reduce systematic error in studies of allelic imbalance.
Stevenson et al. 2013 [50] observed that changing map-
ping parameters and filtering can reduce the impact of
map bias on estimates of AI when mapping to a single
reference.
Simulation studies in which equal numbers of simu-

lated reads from each allele are created and counted, after
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mapping to each reference, capture genome sequence
ambiguity and bias in the mapping algorithm. To incor-
porate this measure into the PG model, we simulated
reads from both a maternal (D. simulans) and paternal
(D. melanogaster) reference. This creates a simulated set
of reads that are analogous to sequencing the F1 het-
erozygote. Mapping these back to both references we
counted allele-specific reads corresponding to each allele,
using the proportion of allele-specific reads correspond-
ing to the paternal reference as a measure of map bias.
Bias was detected approximately 32% of the time in the
interspecific read simulation study.
Intraspecific studies are expected to have smaller dif-

ferences, but are still expected to have regions of genome
ambiguity and map bias. Using the DGRP as inspiration
[55]. We simulated 94 different F1 genotypes formed by
crossing each line to a common tester. Approximately 18%
of the time, gene regions were always biased, implicat-
ing shared regions of ambiguity among genotypes. In 3%
of cases bias was specific to the genotype constructed,
implicating a combination of ambiguity and SNP variation
among lines. This supports the conclusions of previous
studies that bias is likely present in intraspecific studies
of AI.
To compare statistical modeling of bias and filtering

strategies we examined the behavior of the models using
real RNA-seq allele-specific read counts from an interspe-
cific F1 genotype (see Methods for details). We compare a
modeling approach with bias measured as the frequency
of the paternal allele using allele-specific read counts from
DNA sequencing of the same F1 interspecific genotype
(PG model with q = DNAcontrols) with a model that
uses an interspecific simulation study to measure map
bias (PG model with q = simulation). Additionally, allele

assignment error and genome ambiguity based filtering
strategies are investigated.
Read simulation and alignment generally produce

smaller estimates of bias than the DNA controls. Often
the simulation results in estimates of a half even when
the DNA indicates bias. However, using q from the sim-
ulation study (q = simulation) does identify a portion
of the bias and only rarely does this measure estimate a
larger amount of bias then the DNA. This indicates that
the PG model with q = simulation should perform bet-
ter than the PG model with q = 1/2 (Figure 4). Using the
DNA controls as “truth”, the proportion of false positives
is notably smaller and the number of false positives and
false negatives are more balanced in the PG model with
q = simulation, relative to the PG model with q = 1/2
(Table 2). The specificity using q = simulation is larger
(0.74) than when using q = 1/2 (0.41), but the sensitivity
using q = simulation is smaller (0.69) than when q = 1/2
(0.81). Among biased exonic regions there is an exorbi-
tant false positive rate. The false positive rate (FP) is equal
to 0.59 (q = 1/2), similar to what we observed in anal-
ysis of simulated RNA-seq data sets. This is substantially
better than binomial (FP = 0.69), but still indicates con-
siderable unaccounted for bias. In comparison, the false
positive rate is 0.26 when q = simulation indicating that
using simulated reads to estimate map bias and incorpo-
rating this measure into the statistical model dramatically
reduces the false positive rate.
For those exons where the interspecific F1 simulated

read counts do not capture the bias indicated by the DNA
controls, we examined other possible sources of the bias.
Using a new mapping tool BWA-MEM [56] and the vari-
ant caller FreeBayes [57], we identified variants not identi-
fied in the initial study [48]. Of the exons where |q−1/2| ≤
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q = simulation (A) and q = 1/2 (B). The n = 617 exons with simulated q �= 0, 1 and |q − 1/2| > 0.2 are shown.
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Table 2 Model comparisons

PG q = DNAcontrols

AB AI

PG AB 0.31 0.18

q = simulation AI 0.11 0.40

(a)

PG AB 0.17 0.11

q = 1/2 AI 0.25 0.47

(b)

Binomial AB 0.13 0.10

AI 0.29 0.48

(c)

Comparison of the PGmodel with q = DNA controls (columns) to (a) the PG
model with q = simulation, (b) the PGmodel with q= 1/2, and (c) the binomial
test. The n = 2,230 exons with simulated q �= 0, 1 and |q−1/2| >0.05 are
considered.

0.05 for q = simulation, there are n = 3, 923 where q =
DNAcontrols indicates there is no AI but the model based
on q = simulation finds AI. Approximately 38% of these
have evidence for previously undetected polymorphism
while only 27% of the n = 14, 338 where both models
indicate no AI is present show evidence for previously
undetected polymorphism. This shows that unidentified
variants are a source of bias captured in DNA controls, but
not in read simulations.
A related source of bias that has been identified as con-

tributing to systematic error in estimation of AI is allele
assignment error. False positives and false negatives in
SNP calls can result in reads either not mapping at all
or to the wrong location, regardless of whether a single
or multiple reference approach is used. To identify allele
assignment error, RNA derived reads from each parent
were aligned onto both the matching and non-matching
reference. An exon was considered to show allele assign-
ment error when reads originating from one parent were
assigned (based on higher quality alignments to the wrong
reference) to the other parent more than 5% of the time.
There were 26, 896 exons for which both bias as mea-
sured by DNA controls and allele assignment could be
assessed. There is a positive association between allele
assignment error and bias as measured by read simu-
lations and these regions account for a portion of the
bias (22%) in DNA controls. However, a large number of
exons (2,129 and 5,376 respectively) show allele assign-
ment error, but do not show bias in DNA controls or in
simulated interspecific F1 read alignments.
Regions for which parental reads show error in allele

assignment may be filtered from the results, as this is
expected to contribute to bias. However filtering exons
which show allele assignment error reduces the amount of
data considered in the analysis, but does not appreciably

reduce the false positive rate. Similarly, Satya et al. 2012
[51] noted that regions where alignment simulations
found strong bias generally showed genome ambiguity.
We assessed genome ambiguity by sequence identity and
read mapping. Comparing genome ambiguity with sim-
ulated bias we found that in nearly all cases where bias
is detected, genome ambiguity is also detected. How-
ever, the reverse is not true. There are many regions
of the genome which show sequence similarity that do
not show strong bias. For approaches which due not
account for bias in the statistical model, a filtering strat-
egy based on both ambiguity and allele assignment error
has a small effect on the resulting percentage of false pos-
itives. However, this eliminates almost a quarter of all
the data available. While simulations will not necessarily
uncover these biases, filtering based upon them does not
improve the overall inferences. Thus, filtering does not
seem to be an effective strategy to control type I error
rate.

Conclusions
Even for cases where no control is available, the PG model
with q = 1/2 is preferable to a binomial test. The PG
model had a consistently lower false positive rate than the
binomial test. Considering extreme values of AI (greater
than 95% of reads from the maternal/paternal allele) the
PGmodel with q = DNAcontrol is the least likely to reject,
followed by the PGmodel with q = 1/2 or q = simulation.
The binomial model always rejects in these cases. The PG
model with q = 1/2 is more conservative even though
bias is not corrected or filtered. This is expected if there
is extra variance that is not accounted for when using the
binomial. This extra variance has been discussed [43,58]
and may well be due to reads being random draws from
a distribution rather than the fixed number of trials the
binomial assumes.
Accounting for bias by using simulated alignments is

a better alternative than using a model in which no bias
is assumed. The PG model with q estimated from sim-
ulated read alignments performs better than using q =
1/2, reducing the false positive rate by more than 50%.
Simulation captures genome ambiguity and map bias, as
well as allele assignment error. When filtering strategies
are coincident with bias identified in simulated align-
ments, they can lower the false positive rate by removing
those regions likely to be affected. However, these strate-
gies also remove regions from consideration that do not
show allele bias in either simulations or in DNA. Filter-
ing does not provide an advantage over incorporating bias
directly into the model and instead removes regions form
consideration that can be evaluated using an appropriate
model.
Unfortunately, there are additional sources of bias not

captured by simulations or filtering strategies. The result



León-Novelo et al. BMC Genomics 2014, 15:920 Page 7 of 11
http://www.biomedcentral.com/1471-2164/15/920

is large type I errors. A large source of this bias is likely
to be variants that were not initially detected. While this
is likely to decrease as variant callers improve, it is worth
cautioning that even small amounts of unaccounted for
bias result in steep increases in type I error rates.
The flexible Bayesian model proposed here allows for

use of DNA controls when they are present. It also
has the ability to use a fixed or random parameter for
the estimate of bias. If desired, the confidence intervals
around θ could be widened by allowing for variation in
q = simulation using an external estimate of variability.
While we have explored the use of an estimate of bias
from read simulations, the model is flexible with respect
to other approaches. For example, in the absence of DNA
controls or simulations an empirical Bayes approach with
a sliding value of bias could be used and the robustness
of AI estimates explored across a range of likely values
of bias. Alternatively, in cases where there is known bias
toward one reference or the other, a single best guess value
of the bias could be used, similar in spirit to the skewed
binomial test [59]. Themodel is general enough to accom-
modate many subtle differences depending on the par-
ticular experimental design and approach to estimating
bias.
As sequencing costs continue to plummet, population

studies of cis regulation are on the horizon. Large popu-
lation studies mean rethinking approaches to evaluating
AI, as DNA controls are no longer a viable prospect. Sim-
ulations can be effective, but hidden variation can cause
significant bias in estimation of AI. Along with improv-
ing modeling capabilities, it will be necessary to improve
variant callers and to spend more time and effort on large
scale population genomic assemblies.

Methods
Simulated reads and alignments
Intraspecific read simulations: We simulated 95 D.
melanogaster genotypes by randomly incorporating
160,000 SNPs into the exonic regions in a single reference
sequence (FlyBase 5.51). All possible one hundred base
pair reads were simulated from each genotype using a
sliding window approach. To create an intraspecific cross
using a reference design, one genotype was selected as a
reference (Tester), simulated reads from the Tester strain
were mixed with each of the remaining 94 genotypes
(Lines). The mixed sets of reads were independently
aligned to the exon regions in the Tester or Line refer-
ences using bowtie [-k1 -m1] [60] and LAST [-l 20] [61].
Alignments were compared to determine which reads
aligned better to the Tester or Line references and which
reads aligned equally well to both the Tester and Line
references. Bias towards the line was calculated by taking
the number of Line specific reads divided by the total
number of allele-specific reads (Tester + Line).

Interspecific read simulations: Starting from the set of
strain specific reference exonic sequences [48], all possible
36 bp reads were created from each exon region for each
parental strain of the F1 interspecific cross. The number
of reads created for each exon region is (L - 36) + 1, where
L is the length of the exon region. Exon regions shorter
than 36 bp (in either reference) were excluded. Reads were
aligned to all exonic sequences in the reference genomes
using bowtie [-k1 -m1] and LAST [-l 20]. Reads were sep-
arated into three categories based on the highest quality
alignment. Reads mapping ambiguously to both refer-
ences were excluded. If a read mapped with equal quality
(and uniquely) to both thematernal (D.melanogaster) and
paternal (D. simulans) references they were assigned to
the ‘both’ category. Reads were assigned to the ‘maternal’
category if they aligned best (and uniquely) to the
maternal reference. Reads corresponding to the paternal
allele were similarly assigned to the ‘paternal’ category.
The value used for q = simulation in the PG model is the
proportion of allele-specific reads corresponding to the
paternal allele.

RNA-seq data set
To measure allelic imbalance, reads from two alleles
were quantified to estimate allele-specific expression from
RNA-seq data for 3 independent replicate samples of
RNA from an interspecific F1 hybrid ([48], GEO accession
number GSE34591). Briefly, reads were aligned to species
references (denoted as maternal and paternal) that were
specific to the genotypes used in the experiment. Each
reference contains the exonic sequences for one of the par-
ents of the F1 genotype. For each exon, reads contributed
to the allele-specific count for each allele (maternal or
paternal) when they aligned better to the corresponding
reference.

DNA-seq data set
To control for bias introduced by alignment error or by
other technical sources, genomic DNA from the same
F1 genotype was collected ([48], SRA accession number
SRA048616). Allele-specific read counts for each exon
were quantified for DNA as for the RNA data. Infer-
ences from the DNA controls and RNA-seq data are
used as the basis by which to compare other models and
approaches.

Identifying ambiguity in the genome
Genome ambiguity was assessed using both sequence
identity and read mapping. For FlyBase 5.26, there were
726 exonic regions with an identical sequence to at least
one other exonic region. These 726 regions could be
grouped into 224 sets of identical sequences. A unique ref-
erence was createdwith all unique exonic regions and only
a single representative from each of the 224 identical sets.
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Next we identified regions where alignment algorithms
would have difficulty uniquely placing reads. All possible
36-mers were simulated from the unique reference using
a sliding window approach. Some exonic regions (1,261)
could not be simulated because they were less than 36 bp.
Simulated reads were aligned back to the reference
uniquely using bowtie [-k1 -m1]. Ambiguous reads were
then re-aligned using bowtie [-k1 -a] placing an ambigu-
ous read at all locations that it mapped. In comparisons
of filtering strategies, an exonic region was considered
ambiguous (6,229) if there was at least 1 ambiguous read
aligning. Ambiguous regions were also identified using
BLAST as the alignment algorithm or with the genome
mappability analyzer (GMA) [62]. Bowtie, BLAST, and
GMA all gave similar results. This process was applied to
both species specific references.

Identifying allele assignment error
Parental RNA from both maternal (D. melanogaster,
n = 6) and paternal (D. simulans, n = 3) lines ([63], GEO
accession number GSE54069) were aligned to updated
genotype-specific references [48]. Reads were aligned
using a multiple step alignment process. First reads were
aligned uniquely using bowtie [-k1 −m1]. Unaligned and
ambiguous reads were then quality trimmed removing low
quality ends. Trimmed reads were then aligned uniquely
a second time using bowtie [-k1 −m1]. Finally unaligned
and ambiguous reads were aligned uniquely using LAST
[-l 20]. For each sample, reads were assigned to a genotype
based upon the highest quality alignment. Reads mapping
equally well to both genotype-specific references were
assigned to a “both” category. In comparisons of filtering
strategies, an exonic region was considered to show evi-
dence of allele assignment error when greater than 5% of
the reads aligned better to the wrong reference.

Model 1- binomial test
Let θ be the unknown proportion of reads from the pater-
nal allele and let n be the total number of reads aligning
to the exon. This is the standard binomial test of the
null hypothesis of no allelic balance H0 : θ = 1/2 vs
the alternative of allelic imbalance H1 : θ �= 1/2. Here
we reject the null hypothesis if |z| > 1.965 where z =
(θ̂ − 1/2)/

√
(1/2)(1 − 1/2)/n, and θ̂ is the observed pro-

portion of paternal reads. The advantages of this test are
that it is easy to implement and that there are statisti-
cal techniques that control for the fact that we are testing
multiple tests at the same time. For example, the false
discovery rate criterion of Benjamini and Hochberg [64].
Nevertheless, the binomial test does not control for sys-
tematic error and bio/tec variation. The standard practice
is to compute a measure of bias based on simulated reads
and alignments, similarly to q = simulation, and remove
biased regions from the analysis.

Model 2- negative binomial- with DNA controls, p = bias in
DNA
Systematic error in inference of allelic imbalance can arise
from asymmetry in genetic differences between reads and
references used in alignments or differences between ref-
erences in ambiguity (e.g., CNVs), in combination with
the specific alignment algorithm used [35,51]. Technical
sources of systematic error arising from library construc-
tion and sequencing may also contribute [52]. Graze et al.
2012 [48] integrated information from a DNA control into
the prior for the model used to estimate allelic imbal-
ance in RNA in a Bayesian approach to inference of allelic
imbalance. This approach adjusts the estimates of allelic
imbalance based on the null expectation for the relative
abundance of the two alleles estimated from the DNA
controls, p. Themodel that estimates bias using DNA con-
trols estimates the p hyper-parameter used in the model
that estimates allelic imbalance in RNA-seq data. In the
Negative Binomial model the number of reads is random,
rather than fixed. For the RNA model: θ is the parame-
ter for the proportion of reads coming from the paternal
(D. simulans) allele, yi and xi is the number of RNA reads
assigned to the paternal and maternal (D. melanogaster)
references, respectively, for the replicate i. Similarly, for
the DNA model: y�

i� is the number of paternal assigned
reads and x�

i� is the number of maternal assigned reads. I
(i = 1, 2, . . . , I) and I� (i� = 1, 2, . . . , I�) are the number
of replicate RNA and DNA sample respectively. The RNA
model is,

xi | yi, θ ∼ Negative Binomial(yi, θ) for i = 1, . . . , I;
θ | p ∼ Beta((1 − p)t, pt);

and the DNA model is,

x�
i� | y�

i� , p ∼ Negative Binomial(y�
i� , p) for i� = 1, . . . , I�;

p ∼ Beta(v, v).
(1)

Here the parameterization of the Negative Binomial dis-
tribution is such that, if η ∼NegativeBinomial(k, ε), then
η ∈ {0, 1, . . . } denotes the number of failures before the
first k successes with probability of success equal to ε.

Model 3- poisson gamma
The PG model can be used when DNA control is not
available by using q (fixed). Unlike the NB model which
incorporates p as a prior, the PG model incorporates the
parameter q (fixed) into the structure of the model. The
model can also be specified with φ (random) if replicate
measures of bias are available as for DNA controls. Let
xi and yi be the maternal and paternal, respectively, RNA
reads in the biological replicate i, i = 1, . . . , I. We assume,

yi | μ, α, βi, q ∼ Poisson(μαβiq) and
xi | μ, βi, q ∼ Poisson(μβi(1 − q)).

(2)
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Here μ is the overall mean, a nuisance parameter. The
parameter βi, i = 1, . . . , I models the biological replicate
variation. q is a constant that incorporates the information
about the bias into the model. q in the PG model plays a
role similar to that of p in the NB model. When we per-
form the simulation we make q equal to the proportion of
simulated reads aligning to the paternal reference.
Whenwe have DNA informationwemake q equal to the

proportion of DNA sequencing reads from an F1 geno-
type aligned to the paternal reference. If DNA information
is present, then a random bias parameter φ can be sam-
pled from the posterior of the DNA model and used as a
true value in the RNA model, and θ can then be sampled
from the posterior, under the RNA model. For example,
we sample φm = p from the posterior of model (1) and
obtain a posterior sample of size 1,

(
αm,μm, βm

1 , . . . , βm
I

) |
q = φm, under model in (2) for every m = 1, . . . ,M. We
flag the exon as in AI if the CI for α does not contain 1
(or, equivalently, the CI for θ does not contain 1/2). When
comparing the PGmodel and the NBmodel we follow this
approach, using p (random) and φ (random). For fair com-
parison, we contrast the PG model with q = simulation
(fixed) and with q = DNAcontrols (fixed). The parame-
ter of interest is the treatment effect, α. If θ is the “real
proportion of reads from the paternal allele”,

θ = μαβi
μβi + μαβi

= α

1 + α
.

So when there is no AI, α = 1 and

E
( yi
xi + yi

)
= E

(E(yi | xi + yi)
xi + yi

)
= q,

the parameters q, θ , x and y in the Poisson Gamma
model play the role of p, θ , x and y in the negative bino-
mial model. We give standard priors to the parameters:
μ ∼ Gamma(aμ = 1/2, bμ = 1/2), β1, . . . , βI ∼
Gamma(1/2, 1/2) and α ∼ Gamma(1/2, 1/2). Here η ∼
Gamma(a, b) is parameterized such that E(η) = a/b.
Note that the model is parameterized to estimate the

abundance of one of the alleles (the paternal), rather than
the relationship between two alleles. If the bias is in the
opposite direction relative to the the paternal allele, then
the Type I error rate will be lower than if the bias is in the
direction of the paternal allele. If it is likely that a global
bias in one direction exists — perhaps due to a difference
in reference quality — and the type I error is a greater con-
cern than power, the model should be parameterized such
that the allele estimated is the allele that is not favored
by bias.
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