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Abstract: Distribution of pesticide residues in the environment and their transport to surface water
bodies is one of the most important environmental challenges. Fate of pesticides in the complex
environments, especially in aquatic phases such as lakes and rivers, is governed by the main properties
of the contaminants and the environmental properties. In this study, a multimedia mass modeling
approach using the Quantitative Water Air Sediment Interaction (QWASI) model was applied to
explore the fate of organochlorine pesticide residues of methoxychlor, α-HCH and endosulfan–sulfate
in the lake Naivasha (Kenya). The required physicochemical data of the pesticides such as molar mass,
vapor pressure, air–water partitioning coefficient (KAW), solubility, and the Henry’s law constant
were provided as the inputs of the model. The environment data also were collected using field
measurements and taken from the literature. The sensitivity analysis of the model was applied using
One At a Time (OAT) approach and calibrated using measured pesticide residues by passive sampling
method. Finally, the calibrated model was used to estimate the fate and distribution of the pesticide
residues in different media of the lake. The result of sensitivity analysis showed that the five most
sensitive parameters were KOC, logKow, half-life of the pollutants in water, half-life of the pollutants
in sediment, and KAW. The variations of outputs for the three studied pesticide residues against
inputs were noticeably different. For example, the range of changes in the concentration of α-HCH
residue was between 96% to 102%, while for methoxychlor and endosulfan-sulfate it was between
65% to 125%. The results of calibration demonstrated that the model was calibrated reasonably with
the R2 of 0.65 and RMSE of 16.4. It was found that methoxychlor had a mass fraction of almost 70% in
water column and almost 30% of mass fraction in the sediment. In contrast, endosulfan–sulfate had
highest most fraction in the water column (>99%) and just a negligible percentage in the sediment
compartment. α-HCH also had the same situation like endosulfan–sulfate (e.g., 99% and 1% in water
and sediment, respectively). Finally, it was concluded that the application of QWASI in combination
with passive sampling technique allowed an insight to the fate process of the studied OCPs and
helped actual concentration predictions. Therefore, the results of this study can also be used to
perform risk assessment and investigate the environmental exposure of pesticide residues.

Keywords: organochlorine pesticides; fate modeling; QWASI model; multimedia; passive sampling

1. Introduction

The contamination of water bodies by pesticide residues that can originate from agricultural
application is considered as one of the most important environmental issues [1,2]. The residues of the
applied pesticides can be transported using surface runoff and pollute the water resources. This issue
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could be influenced by several factors such as physicochemical properties of the pesticides, topography,
soil properties and weather conditions [3]. Among different environmental compartments, surface
water resources are considered as important ecosystems that offer a useful environmental service for
humans and nature. However, it is a fact that these sources are very sensitive as the human activities
cause pollution by chemical emissions [4–6].

When the chemicals are emitted into the environment, their fate and distribution in the multimedia
environments (e.g., aquatic phases such as lakes) is governed by the main properties of the contaminants
such as basic features (e.g., melting point, vapor pressure, partitioning coefficients between soil,
sediment and water) [7]. The natural processes can also change the interaction of the chemicals
among environmental compartments and cause complexity in predicting their pathways by which
the chemicals could enter. Consequently, it is more difficult to study the environmental exposure
to the pollutants, which depends on their fate in the environment [8]. The pollutant properties that
control the tendency of the pollutants to be transported among different phases are important in the
assessment of the pollutants behavior in the environment. This information is the initial input for the
models to describe the fate and variations of the chemicals.

By applying the mathematical equations, it is possible to explain the partitioning, variations of the
chemicals and their movements. For this aim, the chemical properties of the pollutants’ variations such
as their movements to different media and tendency of partitioning, the mechanisms of chemical loss,
the exchange with other media, and their persistency have to be considered. The importance of any one
of these parameters and their influence on the chemical’s fate can also be evaluated using the sensitivity
analysis [9]. There is a series of models with different levels of complexity that are categorized as
Level I, II, and III, which help to fully understand how the properties of the pollutants as well as the
environmental features can affect the fate and conveyance of the chemicals. The main features of these
models have been described by Mackay [10]. Level I explains the equilibrium dispersion of a specific
amount of the pollutant among various environmental phases. Level II model applies the effect of
half-life of the pollutant in different environmental compartments. The Level III model, which is the
most complex level, consists of all the procedures that affect the transport and fate of the pollutants in
an actual environment. In summary, these fugacity models are easy to understand and apply for the
assessment of the long-term variations of chemicals [11].

With regard to the difficulty of studying the chemical variations in the environment (e.g., air,
water, soil, sediment and biota), using multimedia models is necessary to estimate the fate and transfer
of the pesticides [12]. The chemicals that are nonreactive and persistent against degradation can
remain in the environment for a long time and make drastic disasters by entering and accumulating
in the environment. For such pollutants, it is proposed to use models with a multimedia mass
balance approach [11]. The fugacity models [10] that are used for this aim can help by simplifying
the calculations. Among different multimedia models, the fugacity model by Mackay [13] has been
used successfully in many case studies to evaluate the fate of chemicals [12,14,15]. Many of the studies
quantify the fate and exchange of the chemicals in the environment by considering the steady or
unsteady conditions [16–18]. The Quantitative Water Air Sediment Interaction (QWASI) fugacity
model [19] is one of the models that has been used to explore the chemical variations (e.g., pesticides
and heavy metals) by many researchers [12].

The QWASI model was established based on the fugacity perception that has been widely and
freely available for the fate modeling of chemicals in the environment [20]. The QWASI model assumes
a well-mixed aquatic environment as well as mass balance procedure. In this model, the mass balance
equations have been applied to establish a steady state condition for both sediment and aquatic media.
Moreover, this concept is applied for chemicals’ contents using the fugacity model. It is notable that
the model can also be modified to one and two order differential equations for the dynamic situations,
and then be calculated numerically or analytically. The models are easily understood and interpreted
because the procedures are presented using the fugacity concept that allows interpretation of the
pollutant’s diffusion, reaction and advection conveyance [20].
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In this study, the multimedia mass modeling approach was applied to explore the fate of
organochlorine pesticides residues in the lake Naivasha (Kenya). Naivasha lake is one of the most
important fresh water resources in the region. It provides irrigation water for most of the riparian
farms in the area as well as the fresh water for domestic drinking and supports a variety of wildlife
around the lake wetland ecosystem [21]. However, the previous studies showed the residues of some
organochlorine pesticides (OCPs) in the water resources of Naivasha [21,22]. Based on the Secretariat
of the Stockholm Convention on Persistent Organic Pollutants, these pesticides are categorized as
the persistent chemicals [23] that have residues that can remain in the environment for a long time.
In addition to the studies mentioned earlier, several recent researches have applied QWASI or other
kinds of modelling approaches [24–29]. In most of these studies, fugacity models have been applied to
explore the fate of chemical residues in different media. In this study, also the multimedia modeling
approach in combination with measured low concentrations of pesticide residues using the passive
sampling method combined with laboratory gas chromatography of the lake Naivasha water was
applied, which is the novelty of this study, with respect to other studies for predicting the distribution
and fate of pesticide residues. Finally, due to the high concentration of Lindane residue (e.g., α-HCH),
endosulfan–sulfate and methoxychlor [22], it was decided to explore the fate of these residues in the
aquatic environment of Naivasha.

2. Materials and Methods

2.1. Data Acquisition

In this study, the fugacity multimedia model of QWASI [19] was used to evaluate the environmental
exposure to α-HCH, endosulfan–sulfate and methoxychlor pesticide residues. This model is a steady
state non-equilibrium (Level III) multi-media fate and transport model that has been designed
specifically to represent processes operating in lakes [30]. Chemical behavior is represented in the
model using fugacity concepts [10]. The processes considered by the model and the studied area are
depicted schematically in Figure 1.

The model needs the physicochemical data of the pollutants as well as the environmental
properties data as inputs information to calculate the level of pollution in every environmental
compartment. The physicochemical properties of α-HCH, methoxychlor and endosulfan-sulfate are
presented in Tables 1 and 2. After providing information of molar mass, vapor pressure, solubility
of the chemicals, and the temperature, the model is able to calculate the Henry’s law constant as
well as the air–water partitioning coefficient (KAW). Based on different studies [20,31], the measured
KAW amounts that are reported in the literatures are significantly different than each other among
which the analytical technique established by Xu and Kropscott [31] is the most suitable method [20].
The Henry’s law constant and the air–water partitioning coefficient (KAW) were calculated as follows:

H= P/S ×M (1)

where H is Henry’s law constant, P is vapor pressure (Pa), S is the chemical solubility in water (mg/L),
and M is the molar mass (g/mol). Consequently, the KAW coefficient was calculated by considering the
Henry’s constant and the temperature as follows:

KAW = H/RT (2)

where H is Henry’s law constant, R is the gas constant (8.314 J K−1 mol−1) and T is the temperature
at the Kelvin scale (K). Mackay et al. [20] also used the next equation to calculate KAW at a specific
temperature:

KAW(T) = KAW(Tr).exp
(∆UAW

R

( 1
Tr
−

1
T

))
(3)

with ∆UAW = 92.7 kJ/mol.
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The next coefficient that is used by the model is the organic carbon–water partition coefficient
(KOC). Karickhoff [32] found that this factor could almost totally govern the sorption capability of
sediment. Consequently, the partitioning tendency between water and sediment, which is represented
as KOC coefficient, can be connected to the octanol–water partitioning coefficient (KOW). He developed
the relationship between these two coefficients using experiments with different soil organic matter
percentage and pollutants that had different KOW [33]. Then the KOC factor is calculated from KOW

as follows:
KOC = 0.41Kow (4)

Additionally, the model takes the half-lives of chemicals into account both in the aquatic and
sediment environments to evaluate their fate. The half- life of every individual chemical depends on
both the physicochemical properties of the pollutant and the environmental properties. The model
estimates the reaction half-life at different temperatures using the activation energy (J/mol) in a desired
temperature (◦C) as this:

τT = τ298.15exp
[EA

R

( 1
T
−

1
298.15

)]
(5)

where EA is the activation energy (J/mol), T is the temperature (converted from ◦C to K), and R is gas
constant (8.314 J K−1 mol−1).

In addition to the chemicals data, the QWASI model needs the environment data to predict
the fate of pollutants. The details of the environmental input data (Table 2) are explained in the
following section.

Table 1. Physicochemical properties of the pesticides used in the model calibration.

Compounds α-HCH Endosulfan–Sulfate Methoxychlor

Property Initial Value Fitted Value Initial Value Fitted Value Initial Value Fitted Value

KOC 3257 3151.71 1874 2771 35,000 49,292
logKow 3.9 3.72 3.6 3.8 4.5 5.08

Half-life water(hrs) 7884 8600 3600 5800 7200 8800
Half-life sed. (hrs) 9600 10,000 4270 6400 8500 10000

KAW 0.42 0.52 0.003 0.0054 0.000781 0.000781
Molar mass (g/mol) 290.83 290.83 422.9 422.9 345 345
Melting point (◦C) 159 159 181.5 181.5 87 87

Vapor pressure (Pa) 0.0033 0.0033 0.000037 0.000037 0.0056 0.0056
solubility in water (mg/l) 2 2 0.22 0.22 1 1

Henry’s law constant 0.48 0.48 0.071 0.071 1.93 1.93

Table 2. Environmental properties used in the model calibration.

Property Initial Value Fitted Value

Surface area (m2) 145 × 10 6 145 × 10 6

volume (m3) 850 × 10 6 850 × 10 6

Mean lake depth (m) 6 6
Organic C fraction in sediment (g/g) 0.045 0.03

sed. active layer(m) 0.0075 0.005
Sediment deposition rate(g/m2.day) 1.815 1.21

Sediment burial rate(g/m2.day) 0.75 0.5
Sediment resuspension rate (g/m2.day) 0.06 0.04

Aerosol dry deposition rate(m/h) 10 30
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Figure 1. Schematic profile of the lake Naivasha and representation of the QWASI model (reproduced
partly from Whelan (2013) [28]) for different environmental compartments.

2.2. Environment Characteristics

Lake Naivasha is one of the fresh water resources in the Eastern Rift valley of Kenya with a latitude
of 00◦46’ to 00◦52’ and longitude 36◦15’ to 36◦25’ in zone 37S UTM (Figure 1). The most important
streams in the Lake Naivasha basin are Malewa, Gilgil and Karati rivers. The main inflow to the lake
is Malewa river, which provides up to 80% of the total inflow into the Lake [34], but there is not any
identifiable outlet from the lake. Another input to the lake comes from the rainfall, which occurs from
March to June as the long wet season and from October to early December as the short wet season.
The dry months also start from December to February and from July to September, but these durations
may change over the years. Agriculture is one of the major parts of the basin that can cause a high
potential of pollution in the water resources of the region by using agrochemicals.

The main environmental parameters of the lake Naivasha as inputs of QWASI model are presented
in Table 2. Some of these parameters such as the lake dimensions, inflow, suspended sediments,
and organic carbon content were measured in the field for this study, but there are several studies also
that have already reported environmental parameters of the lake Naivasha [35–37]. The volume of
the lake was determined using remote sensing data for the lake surface area, bathymetric data and
geographic information system (e.g., GIS tools). It is obvious that the depth of the lake changes during
the dry and wet seasons. However, in this study, we used the average depth of the lake during the
sampling in June–July 2016.

The thickness of the active sediment layer is also a required parameter as an environmental input
for the model. This parameter can be changed both temporally and spatially and is difficult to directly
measure. Therefore, the initial amount of this input data was selected as the default value in the model



Int. J. Environ. Res. Public Health 2020, 17, 2727 6 of 18

and finally was fitted in the calibration process. The concentration of the solids was measured during
the field data collection using a 0.45-µm filter paper. For the remaining parameters such as aerosol
deposition, volatilization, sedimentation and sediment resuspension, the initial amounts in the model
were used, then they were modified during the calibration process.

2.3. Pesticides Properties

In this study, the fate of three kinds of pesticides residues was explored. Lindane is an insecticide
for protecting fruits, vegetables and animals against the insects. The isomers of Lindane (e.g., α-HCH,
β-HCH, γ-HCH, δ-HCH) can remain in the environment for a long time and are considered as
persistent organic pollutants (POPs) by Stockholm Convention on Persistent Organic Pollutants [38].
The environmental properties and interchanges between this pesticide and the environment can
influence its fate. The environmental fate of α-HCH is governed by environmental effects and its
interactions with the environment as well as its inherent properties (e.g., physical and chemical) [39].
Based on environmental conditions, methoxychlor also can have a half-life of less than 5 h to several
months [40]. For instance, the sediment has a half-life of 28 days and more than 100 days in anaerobic
and aerobic conditions, respectively [40]. These properties allow the methoxychlor to remain in the
environment for a long time and enter the water bodies via different ways such as wind and runoff.
Endosulfan–sulfate also, as another POP, has high acute toxicity and can remain in the environment [41].
However, the fate of endosulfan–sulfate also, like other chemicals, is up to the environmental conditions.
When it is emitted to the water resources, its residues can be adsorbed by the suspended particles
while in the soil its fate is governed by the KOC value, which has a slow movement [41].

In this study, the physicochemical properties of the mentioned pesticides were taken in to account
for modeling their fate. It is noticeable that as these parameters are variable and direct measuring in the
field is almost impossible, the initial values in the literatures were used, and then based on the measured
concentrations of the pesticide residues were revised. Moreover, the concentration of the pesticide
residues in the lake and the rivers that inflow to the lake also was measured using the passive sampling
method followed by laboratory gas chromatography (GC-ECD and GC-MSMS) [22]. In addition to the
concentrations in water, some reference samplers were used to measure the pesticide’s concentration
in the air that showed the pesticide’s content in the air was below detection limit. Therefore, in this
study, we assumed that the concentrations of the pesticides in the air were zero as the model input.

2.4. Sensitivity Analysis and Calibration

Usually the input data for the modeling process are subjected to uncertainties. Therefore, the effect
of the uncertainty of the data was explored using sensitivity analysis [42] for which most influencing
parameters were selected carefully. For this aim, the sensitivity analysis using one at a time (OAT)
approach was conducted for evaluating the chemical and environmental parameters [30,43]. In this
method, the values of desired parameters were changed gradually and their effect on the results was
explored. The magnitudes of the yield parameters as Y and the input parameters as X were considered
and resulted as the S-matrix below [20]:

S =
δ ln(y)
δ ln(x)

=

(
dy
y

)
(

dx
x

) ∼
(∆y

y

)
(

∆x
x

) (6)

Where ∆x/x is the partial changes in the input data, and ∆y/y represents the fractional change in
the result. It is noticeable that the results can be positive or negative that explain if changing the inputs
can increase or decrease the outputs.

Moreover, as the initial values of the input data are mostly different from the actual values to
match the model with the measured data, the results can contain an error that requires a suitable
calibration to decrease the uncertainty of the outputs. Therefore, the model was calibrated based on
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the most sensitive parameters. The values of the parameters were adjusted until the best fit between
measured and simulated results was observed (Tables 1 and 2). The average of the calibrated model’s
estimates was compared to the measured concentrations graphically. In addition to this, the results of
the calibrations were evaluated using the objective functions R-squared (R2) and root mean square
error (RMSE). These two functions show how well the model is calibrated as the more R2 is close to 1
and RMSE is smaller, the better the model has been calibrated.

3. Results and Discussion

The results of sensitivity analysis of the parameters in the model are demonstrated in Figures 2–4
and consequently the fitted values for the calibrated model are represented in Tables 1 and 2. The results
showed that the five most sensitive parameters were KOC, logKow, half-life of the pollutants in water,
half-life of the pollutants in sediment, and KAW. It is noted that the uncertainties of some of these
parameters, such as the half-lives were included, as they have been reported in different studies
for other conditions. Therefore, defining a constant value was not reasonable; thus the calibration
procedure allowed estimating a suitable amount in the reported ranges [39,40]. The sensitivity analysis
showed that the percentage of the variations of the outputs (e.g., the concentration of the pollutants
in either sediment or water) against the change of the input parameters was significantly different
(Figures 2–4). Moreover, the behaviors of the three studied pesticides residues were obviously different
from each other. For example, the range of changes in the concentration of α-HCH residue was between
96% to 102%, while for methoxychlor and endosulfan–sulfate it was almost between 65% to 125%. This
means that selecting the correct amount of parameters for modeling the methoxychlor has a higher
effect on the results than the modeling of α-HCH. It is notable that mass balance models simplify the
complex processes of the chemical’s fate. However, the results of such a model should be able to reflect
the fate and the movement procedure of the pollutants [20]. Moreover, it is important to explain the
scale of the uncertainties, which could be involved in the modeling results [20,43,44].
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With regard to analyzing the sensitivity of different pesticide fate responses to the parameter
changes, we assumed that the environmental dimensions were certain enough. Then, all of the
environmental features were limited to some parameters such as sediment active layer, sedimentation
and similar factors or chemical interaction factors in different media that can govern the fate and
transformation of the chemicals [30]. The parameter of KOC was found to be the key factor in the
sensitivity analysis of α-HCH concentrations, both in the water and sediment, in which by increasing
the amount of this parameter, the variations of the concentration were also increased. However,
this parameter was of lower importance in changing the concentration of endosulfan–sulfate and
methoxychlor residues in water and sediment. It was found that the half-lives of the chemicals also
had an important role in governing the fate of all three studied pesticides, which could confirm that
the interaction of the pollutants with the environment as well as their physicochemical properties
had a significant effect on their existence in different environmental media. Moreover, from the
variations of the pollutants’ concentrations against the physical parameters, it could be understood
that some parameters such as sedimentation or sediment resuspension could influence the amount of
pesticide residues in the sediment media than the aquatic phase. Therefore, it is concluded that for
determining the fate of the pesticides in any one of the phases (e.g., water or sediment), estimating
precise environmental parameter inputs was required.

With regard to the outcome of the sensitivity analysis, the model was calibrated based on the
sensitive parameters. Comparing the average of measured concentrations to the results of the calibrated
model (Figure 5) demonstrated that the model was calibrated reasonably. The statistical evaluation of
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the model calibration also showed an R-square of 0.65 and RMSE of 16.4, respectively. Therefore it can
be concluded that the model predicts the concentration of the pollutants properly. Based on the study
by Moriasi et al. [45], the model results with R-square between 0.30 to 0.65 is considered as satisfactory.
In addition to this, using the passive sampling method helped calibrate the model with a high quality
database and consequently produced more reliable results.
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In comparison to other studied lakes using QWASI (e.g., study by Mackay et al. [20]), lake Naivasha
is a low volume and short retention time lake. Therefore, the modeling was based on well-mixed water
assumption and there were no spatial differences in the lake chemical concentrations. While for the
large lakes, the average concentration of the chemical has to be used and a multi compartment model
that considers the variations has to be applied [20,46]. The D values (mol. Pa−1 h−1) are presented
in Figure 6. These values are based on the fugacity amounts and show the process rate (mol/h) or
the transformation of the chemicals [47]. In other words, the rate of the pollutants process in the
environment is the product of these D values as well as the fugacity. However, with regard to the process
that can affect the fate of pollutants, the results of mass balance modeling of the pesticides residues in
the lake are presented in Figure 7. The results showed that there was a significant difference between
environmental fate of methoxychlor and the other two kinds. These differences can be explained
by the different half-lives and partitioning coefficients (e.g., KOC, LogKOW and KAW) that influence
the tendency of the pollutants for different levels of sedimentation, volatilization or suspension [48].
For example, the volatilization of methoxychlor is less due to the lower KAW, which is significantly
less than α-HCH and endosulfan–sulfate (Table 1). The factor of KOC is linked to the suspended
compounds in the aquatic environment. It was found that methoxychlor had a higher amount of
the sedimentation in which the KOC value was more than 18 times larger than that of α-HCH and
endosulfan–sulfate. Figure 7 shows the distribution of the chemicals among different media in which
the amount of partitioning of α-HCH and endosulfan–sulfate to the sediment is similar (e.g., less than
1%) while it is significantly higher (e.g., almost 30%) for methoxychlor. This result can confirm the effect
of the KOC parameter on the fate and trend of the chemicals in the environment. The overall residence
times of the chemicals were 351, 567 and 384 days for α-HCH, endosulfan–sulfate, and methoxychlor,
respectively. The most important point of these residence times is that, although they are influenced by
the half-life of the chemicals, they do not have a linear relation. This is because the residence time and
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Figure 7. Mass balance diagram of different pesticides (α-HCH, endosulfan–sulfate and Methoxychlor)
residues in the lake Naivasha.

Comparing the predicted amounts of pesticide residue concentrations in the water column and
the sediment compartment showed that the OCP residues had different levels of pollutions (Table 3).
It is noticeable that these amounts are the outcome of the combination of different factors such as
physicochemical properties of the compounds, the emission rates and the environmental criteria.
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However, based on the available input data for the model, the results showed that methoxychlor had
a mass fraction of almost 70% in the water column and almost 30% of the mass fraction in the sediment.
In contrast, endosulfan–sulfate had the highest fraction in the water column (>97%) and just 2.2%
in the sediment compartment. α-HCH also had the same situation of endosulfan–sulfate (e.g., 99%
and less than 1% in water and sediment, respectively), and the absolute magnitude of this compound
concentration falls between endosulfan–sulfate and methoxychlor. Generally, it can be concluded that
in comparison to two other pesticides, methoxychlor had a higher affinity to sediments that can be
mostly related to its high KOC and low KAW values, which highlights the role of these coefficients in the
fate of pesticides residues. From the aspect of the emission rate also, there was a higher concentration
of endosulfan–sulfate in the lake inflow, which comes from the lake catchment and resulted in more
pollution in the lake.

Table 3. Predicted concentration of the OCPs compounds.

Pesticide
Con. In
Water
(ng/L)

Con. in sed.
(ng/g dry

wt.)

Mass in
Water
(kg)

Mass in sed.
(kg)

Fraction in
Water

(%)

Fraction in
sed.
(%)

α-HCH 21.80 0.019 18.50 0.020 99 <1

Endosulfan–sulfate 30.00 1.600 25.50 0.560 97.8 2.21

Methoxychlor 4.46 4.650 3.80 1.620 70.1 29.9

With regard to the pollution sources of the Lake Naivasha, it is notable that this lake is under
the effect of the anthropogenic activities in the Naivasha catchment. In addition to this, the lake is
also located beside Naivasha town. Then it can receive both hydrological and urban surface runoff

and can be polluted by a number of point (e.g., sewage from the residential houses) or nonpoint
(e.g., agricultural area) sources. Although importing and using OPCs in Kenya have stopped, there is
still a potential for OCPs residues that can remain from the last or current usage [22]. There are some
studies about OCPs pollution in the lake [21,49] that can confirm this statement. This study, which was
based on the database of the passive sampling campaign [22], could highlight the existence of some
OCPs residues in the water–sediment media of the lake. It is mentionable that there is not a long series
of pesticides data in the water column or in the sediment to also do a time series evaluation. However,
compared to conventional grab samplings, passive sampling allowed measuring chemicals in a low
concentration, which was the strong point of the applied data of this modeling.

Among the various physicochemical properties that contribute to the distribution and exchange of
pollutants among the different media, air–water partitioning is important for more volatile compounds.
For example, also pollutants that originate from air pollution can contribute to water pollution. This
evaluation is based on their KAW parameter and shows the importance of this factor to determine
the affinity of the chemicals to the air or water bodies and vice versa [50]. Moreover, it is necessary
to include the environmental properties also in the fate of the pollutant and the modeling results.
For instance, the amount of evaporation loss has an inverse relation to the depth of water in which
the less the water depth is, the more the evaporation rate increases [48]. Similarly, by increasing the
content of suspended solids, more chemicals can be captured by the suspended particles and reduce
the losses rate by evaporation. Moreover, by considering the environmental parameters (e.g., boundary
conditions and the physicochemical properties of the pollutants), it can be understood that as these
parameters vary, therefore, the results of the model also can be influenced. Organochlorine pesticides
residues are mostly persistent in the environment and can remain in the nature (e.g., in aquatic phases)
for a long period. However, their fate might be changed under the environmental variations that
differ from the model predictions. In this study, QWASI allowed an insight into the fate process of
the studied OCPs and helped with actual concentrations predictions. Therefore, it can be used to
do risk assessment for the environmental exposure of pesticide residues. In different studies using
QWASI model [20,30,51,52] or similar studies that applied the mass modeling to explore the fate of the
chemicals, the capability of this modeling approach when combined with accurate field sampling and
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measurement was confirmed. In these studies, the sensitivity of the input data also was investigated
and shows the importance of finding the most suitable parameters and selecting accurate amounts. In
the current case study, the sensitivity analysis showed that KOC had an important role in predicting
the concentration, which was in harmony with the study by Whelan [30]. Finally, it is necessary to
monitor data, by which the results of the modeling can be applied for long series.

4. Conclusions

The behavior of the pesticides residues and the controlling processes in the environment are
governed by different physicochemical properties. Finding the relationship between the influencing
criteria can help in understanding the fate of pollutants. However, this is a complex issue, and a model, in
which all of the factors are included, is needed to explore the mechanisms that are related to partitioning,
degradation features and environmental properties in the dynamic environment conditions. In this
study, the QWASI model was used to find out the fate of some OCPs residues (namely α-HCH,
endosulfan–sulfate and methoxychlor) in lake Naivasha. The lake was considered as a well-mixed
environment in the modeling approach, and the data of the passive sampling campaign [22] as
well as the environmental and physicochemical properties of the pesticides was used as the input
data of the model. The physicochemical and the environmental data were also collected during the
campaign or were found in the literatures. Because of the uncertainty that some of the parameters had,
a sensitivity analysis and model calibration was accomplished. It was found that the model results were
most sensitive to KOC and the half-lives of the pesticides’ residues. In addition to these parameters,
the coefficient values also had a meaningful effect on the output of the model and consequently the
fate of the pollutants. All of the sensitive parameters were included in the calibration process in which
the model could predict the fate of pesticide residues in the aquatic phase. Moreover, the results of
modeling showed that because of the difference in the half-lives and the partitioning coefficients of the
pesticides residues, there was a substantial difference between the fate of methoxychlor and α-HCH as
well as endosulfan–sulfate. This difference was mostly expressed in volatilization from the water phase
and sedimentation of the contaminants. The mass balance of the chemicals among different media
showed the amount of partitioning of α-HCH and endosulfan–sulfate to the sediment was similar and
was less than 1%, while this amount increased to almost 30% for methoxychlor.

Finally, the QWASI model allowed understanding the distribution of the chemicals among
different environmental media. This output allows exploring the environmental exposure of tropical
lakes to pesticide residues. Using reliable chemical data was also of high importance. In this study,
applying data of the passive sampling method, which can help in measuring the chemicals at very low
concentrations, was a strong point in modelling the fate of pesticides residues.
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