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Abstract: Graphite materials for commercial Li-ion batteries usually undergo special treatment to
control specific parameters such as particle size, shape, and surface area to have desirable electro-
chemical properties. Graphite surfaces can be classified into basal and edge planes in the aspect of
the structure of carbons, with the existing defect sites such as functional groups and dislocations.
The solid-electrolyte interphase (SEI) mostly forms at the edge plane and defect sites, as Li-ions only
intercalate through these non-basal planes, whereas the electrochemical properties of graphite largely
depend on its surface heterogeneity due to the difference of reactivity on each plane. In order to
quantify the detailed surface structure of graphite materials, local-absorption isotherms were utilized,
and the analyzed nanostructural parameters of various commercial graphite samples were correlated
with the electrochemical properties of each graphite anode. Thereby, we have confirmed that the
fraction of non-basal plane and fast-charging capability has strong linear relations. The pore/non-
basal sites are also related to the cycle life by affecting the SEI formation, and the determination of
surface heterogeneity and pores of graphite materials can provide powerful parameters that imply
the electrochemical performances of commercial graphite.

Keywords: adsorption-energy distribution; fast-charging; cyclability; commercialized graphite

1. Introduction

Graphite is an excellent anode material for Li-ion batteries in terms of energy density,
due to its low operating voltage (~0.1 V), acceptable theoretical capacity (372 mAh g−1),
high electrical conductivity, and relatively low volume expansion (~13%) during lithia-
tion/delithiation [1–3]. Most of all, low cost makes graphite more attractive as an anode
material for current and post Li-ion batteries than other candidates (Si, Sn-alloying type,
Li4Ti5O12, Li metal, etc.) [4–11]. On the other hand, because of the anisotropy and kinetic
properties of flakes, graphite is used after some post treatment to achieve the desired
electrochemical properties rather than using the raw material [12–14].

Due to the growing demand for electric vehicles and high energy storage systems,
implementing rate capability and stable cycle performance of graphite has become more
important. According to various fundamental and experimental studies, exposure of edge
planes to electrolytes can be advantageous in terms of fast-charging characteristics, as diffu-
sion of Li-ion is 4 orders of magnitude faster than that across the basal plane [15–18]. Also,
many groups have confirmed that the cycle life of graphite electrode is majorly affected
by the solid-electrolyte interphase (SEI) formation on the graphite surface, as a thin and
dense SEI layer can suppress additional side reactions [19–21]. Our group also confirmed
that the exposed pores in graphite, which can act as sites to promote SEI formation, are
defective planes that reduce the cyclability of the graphite anode [22]. As stated above, it is
clear that the surface and particle conditions of the graphite is closely related to the cycle

Nanomaterials 2021, 11, 1813. https://doi.org/10.3390/nano11071813 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-8661-5545
https://orcid.org/0000-0002-3776-4392
https://doi.org/10.3390/nano11071813
https://doi.org/10.3390/nano11071813
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11071813
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano11071813?type=check_update&version=1


Nanomaterials 2021, 11, 1813 2 of 13

performance and rate capability [23–26]. However, as the reactions on graphite anodes are
kinetically different from the actual site on the surface, it is not easy to predict the actual
performance with the surface characteristics of graphite materials. In order to correlate
the complex relations of graphite surfaces and electrochemical performances more clearly,
surface characteristics of graphite are required with more details.

To study the underlying relation between the surface and electrochemical perfor-
mances, the characteristics of exposed surface planes should be characterized, in addition
to the actual surface area. To determine the surface area and pore structure of graphite, it is
typical to obtain a Brunauer–Emmett–Teller (BET) specific surface area through nitrogen-
adsorption analysis [27]. However, the BET specific surface area is different from the actual
graphite surface area because of the assumption that different graphite surfaces have the
same physisorption energies [28–30]. Therefore, it is necessary to obtain specific surface
areas with distinguishable edge, basal, and defect sites. To this end, the adsorption-energy
distribution (AED) model can be utilized to classify the physisorption of gas on hetero-
geneous surfaces, based on the study of Ross and Olivier [31]. The basal plane, having a
higher areal carbon density, will adsorb nitrogen more strongly than the less dense edge
plane. In contrast, lattice defects in the graphene layers enhance the adsorbent–adsorptive
interactions and lead to higher adsorptive energy [32–34].

Along with the above method, we have conducted nanostructural analysis to char-
acterize various commercial graphite materials to examine the relation between graphite
characteristics and electrochemical properties. First, the surface heterogeneity of each
graphite sample is classified via analyzing the adsorption-potential energy. The tendency
of the electrochemical performances was examined by comparing the fast-charging charac-
teristics and lithium-ion kinetic properties through the non-basal plane (edge and defect
sites). Various commercial artificial and natural graphite exhibited predictable linear
relations with the fast-charging capability and cyclability in the full-cell battery.

2. Materials and Methods
2.1. Preparation of Graphite Samples

Various graphites with different surface properties were used in this work. The
commercial artificial graphites were labelled after their electrochemical performances as
follows: FG (fast-charging) and QG (fast-charging with high specific capacity) artificial
samples, and AG (artificial graphite) and CG (good cyclability artificial) samples were
prepared (particle size D50 ∼= 10 µm). For natural graphites (particle size D50 ∼= 17 µm),
NG (natural spherical graphite) and TPP (triphenylphosphine-treated NG) were used [22].
All graphites used in this work were supplied by Samsung SDI Co., Republic of Korea.

2.2. Materials Characterization

The measurement of the volumetric nitrogen adsorption isotherms was conducted
by Micrometrics ASAP (Micrometrics, Nacross, GA, USA) up to 1 bar at 77 K. Brunauer–
Emmet–Teller (BET) methods and Barre–Joyner–Halenda (BJH) methods were performed to
analyze the distributions of surface areas and pore size of samples, respectively. Adsorptive-
potential distribution was calculated from the adsorption isotherms utilizing the software
from Micrometrics, based on the DFT model. Samples were characterized using X-ray
diffraction (D8 Advance: Bruker, Billerica, MA, USA) and field-emission scanning electron
microscopy (SIGMA: Carl Zeiss, Germany) to analyze the crystal structures and morpholo-
gies, respectively. Chemical properties on the sample surfaces were analyzed via Raman
spectroscopy (LabRAM HR Evolution: Horiba, Japan) with a 532-nm laser. Particle size
distribution of the samples was measured by laser diffraction (HELOS (H3173) & RODOS:
Sympatec GmbH, Germany).

2.3. Electrochemical Measurements

The graphite electrodes were fabricated using graphite as active materials, and styrene-
butadiene rubber (SBR) and sodium carboxymethyl cellulose (CMC) were used as binders



Nanomaterials 2021, 11, 1813 3 of 13

(weight ratio of 96.5:1.5:2.0). The binders were provided by Samsung SDI Co., Republic of
Korea. The mixed slurry was deposited on the Cu foil by the doctor-blade method, and
calendared by roll press, followed by the drying step at 110 ◦C in a vacuum overnight.
The mass loading for the electrode was 14 mg cm−2, and the electrode was prepared to
be thick enough (thickness of 98 µm) to have the electrode density of 1.55 g cm−3. For
the electrolyte, 1.15 M LiPF6 in ethylene carbonate (EC)/dimethyl carbonate (DMC)/ethyl
methyl carbonate (EMC) (volume ratio of 2:4:4, Panax Etec, Republic of Korea) was used
with the addition of 1.5 wt.% of vinylene carbonate (VC). The cells were assembled in an
Ar-filled glove box using CR2032.

WBCS3000S (WonATech Co., Republic of Korea) was used for the charge/discharge test
of half-cells between 0.01 V and 1.5 V. In order to assemble the full cell, LiNi0.88Co0.10Al0.02O2
(NCA) was applied as a cathode material, and the capacity ratio of negative to positive elec-
trodes (N/P ratio) was fixed to 1.1. The mass loading of NCA electrode was 22 mg cm−2,
and its practical capacity was 200 mAh g−1. Electrochemical performance of the full cell
was tested at the rate of 1 C (= 4.3 mA cm−1) for the first two cycles to form an SEI layer,
and the cycle life was assessed for 300 cycles at 0.2 C between 2.5–4.2 V (CC–CV mode).

The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were
conducted with the potentiostat (ZIVE MP1: WonATech Co., Republic of Korea). For the
fabrication of the symmetric cells (graphite/graphite), two graphite electrodes with the
state of charge (SOC) of 0% and 50% were employed, where both are collected from the
identical half cells (graphite/Li). The EIS measurements for the symmetric cells were
performed at the open-circuit voltage (OCV). For coin-type half cells, the measurement
was carried out at 0.1 V, and the frequency range of the AC perturbation was 100 kHz to
10 mHz with an amplitude of 10 mV.

3. Results and Discussion
3.1. Heterogeneity Classification of Graphite Surface

Graphite lattices can be divided into two planes, a basal and an edge plane. In addition,
the surface of a graphite lattice is defective, as point defects, surface steps and functional
groups exist. Along with the adsorption-energy distribution (AED) of the graphite [28–31],
values of the specific surface areas can be obtained (Figure 1a). The adsorption-potential
energy of nitrogen has been obtained from the van der Waals force model, with the potential
region at approximately 60 K for the basal plane, ~26 and ~44 K for the edge plane, and
~86 and 96 K for the defect site (by kB T where kB = 8.617 × 10−5 eV K−1) [32–36].

The representative adsorptive potential distributions of six commercial graphite sam-
ples with Lorentzian fitting are displayed in Figure 1b, with the detailed description of
samples in the experimental part. Among the artificial graphite, FG (38% for the fraction
of the non-basal plane, as shown in Table S1) and QG (34%) samples have excellent fast-
charging capability, compared to AG (25%) and CG (29%) samples with good cyclability.
For natural graphite, not only natural spherical graphite (NG) but also triphenylphosphine-
coated NG (TPP) were used with an expectation that the phosphorus treatment can modify
the ratio of basal/non-basal planes and reduce nanopores on the graphite surface. Notably,
TPP (17%) has a larger non-basal plane than the NG (8%) sample. Apparent particle size
distributions are shown in Figure S1.

SEM images in Figure 2a exhibit that artificial graphites have flake shapes, and natural
graphite samples are potato-like, similar to the typical commercial spherical graphites.
The sample with triphenylphosphine (TPP) shows no significant morphological changes
from SEM. XRD analysis confirms that artificial graphites have larger lattice constants in
the c-axis direction than natural graphite samples (Figure 2b), similar to those reported
in other studies [37–39]. The TPP treated sample shows a slight increase in the lattice
constant, probably due to phosphorus [22]. The nonuniform distribution of local strains
of artificial graphites is higher than that of the natural graphites, which is considered to
be an effect generated during the graphitization process [40,41]. However, the grain sizes
in the c-axis direction are quite similar among the six graphite samples. Compared to the
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XRD analysis, which identifies all the structural states of graphite (with the X-ray effective
depth of ~20 µm), Raman analysis further shows some structural changes of the graphite
surface (in the range of ~100-nm depth) (Figure S2).

3.2. Correlation between the Fraction of Non-Basal Plane and Fast-charging Capability

In order to design a high C-rate electrode, it is well known that overall properties of
active materials (particle size, shape, active area, etc.) and electrodes (tortuosity, loading
level of active materials, etc.) need to be carefully optimized [23,24,42–44]. In addition,
the overall rate performance of the electrode can be changed by adjusting the crystallo-
graphic orientation of the exposed planes, due to the Li+-diffusivity difference by a factor
of ~104 between [100] and [001] directions in graphite [15–18]. Therefore, the graphite
electrodes having a lower proportion of exposed basal plane are expected to show better
rate performance.

To confirm the relation of non-basal planes with a fast-charging (lithiation) capability,
the capacity values at different C-rates (0.5 C, 1 C, and 2 C compared to 0.2 C) with
half cells are plotted with the non-basal-plane fraction (Figure 3a). It can be shown that
the fast-charging capability increases linearly with the increased non-basal plane, and
capacity decreases with the increasing C-rate, but still exhibits similar linear relationships.
Compared to the NG with smaller non-basal planes, the AG shows higher overpotential and
more constant-voltage stages in the lithiation profile (Figure S3). In order to confirm that
the factors affecting the fast-charging capabilities are more dominant due to the non-basal-
plane fraction of the graphite itself than the electrode condition, different cell configurations
are tested, depending on the thickness of the electrode with/without additives. Still, the
fraction of the non-basal plane affects the fast -charging capability linearly rather than the
condition of the electrode (Figure 3a–d). It can be seen that the nanostructural properties
of graphite, including lattice constant, local strain, grain size, surface area and Raman
analyses have negligible impacts on the fast-charging capability (Figure S4). Although
the particle size can affect the diffusion length of Li-ion and the fast-charging eventually,
recalling Li-ion only intercalates through non-basal planes ensures that the fraction of
the non-basal plane is the more dominant factor. In order to exclude the influence of the
Li-metal counter electrode on the observed linearity, the full cell with LiNi0.88Co0.10Al0.02O2
(NCA) was tested and the strong correlation of non-basal-plane ratio and fast-charging
capability of electrodes was also confirmed in the full cell (Figure 3d). The coefficients of
these linear correlations are detailed in Table S2.

Electrochemical impedance spectroscopy (EIS) are performed with symmetric cells of
pristine graphite electrodes to determine the effect of the non-basal plane on the kinetic
properties. The ionic resistance (Rion) values fitted to the transmission line model [45–47] are
shown as dashed lines, and it can be seen that the Rion values are smaller for the electrodes
with larger non-basal planes (Figure 4a). In order to confirm the correlation between the
kinetic properties and non-basal-plane configurations, an alternative electrode parameter,
complex capacitances consisting of real (C′) and imaginary (C′′) parts during the non-
faradaic process, was derived from the electric double-layer formation model [45,48,49].
As shown in Figure 4b, all of the samples exhibit peak-shaped curves, which implies
that the position of the peak frequency in the plot of C′′ equals approximately the time
constant reflecting the response time of electric double-layer formation [45,50]. The Li-ion
response frequency f 0 also improves, as the fraction of non-basal planes enhances the
kinetic properties of the graphite electrode. In addition, the apparent Li-ion diffusivities
are measured to support the strong correlation between the non-basal-plane ratio and the
kinetic properties of the graphite electrode. Li-ion apparent diffusivities are estimated by
both cyclic voltammetry (CV) and EIS, and these values exhibit linear relationships with
the increased non-basal plane (Figure S5) [5,9].
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by the adsorption energy. The characteristics of four artificial-graphite and two natural-graphite powders are as follows: FG (fast-charging), QG (fast-charging with high specific capacity),
CG (cyclability), AG (artificial graphite), NG (natural spherical graphite), and TPP (triphenylphosphine-treated NG).
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Figure 2. Structural characterization of graphite samples. (a) SEM images of graphite powders. (b) Lattice constant, non-uniform distribution of local strain, and grain size along the [001]
direction, from the X-ray diffraction analysis.
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Figure 3. Correlations between fraction of non-basal plane and fast-charging capability with coin cells. Half-cell conditions:
(a) ~100-µm thick electrode with electrolyte additive, (b) ~100-µm thickness without electrolyte additive, and (c) ~70-µm
thickness with electrolyte additive. (d) Full-cell condition: ~100-µm thick graphite electrode with electrolyte additive and
LiNi0.88Co0.10Al0.02O2 (NCA) cathode.

3.3. Correlation of Pore/Non-Basal Sites to the Cyclability Caused by the Thick SEI Formation

Since the voltage of electrolyte decomposition occurs in the operation voltage of the
graphite, cycle performance can be drastically reduced, as continuous decomposition
occurs unless stable SEI is formed on the graphite surface [51–56]. Recent studies have
reported that irreversible capacity increases linearly with non-basal planes, and the exposed
pores in graphite promote SEI formation [22,57–59]. In this study, we have additionally
examined how non-basal sites affect the cycle life of graphite anodes as well as the pore
volume [22]. In order to investigate the correlation between the pore/non-basal sites and
cyclability, constant-current charge/discharge cycling tests of these graphites with an NCA
cathode (Figure 5) were conducted. The retained specific capacity of full cells at 300 cycles
is lower with more pore/non-basal sites. We have also confirmed the cycle life with the
pore volume of 1–10 nm in diameter, and the negative linear relationship of the cyclability
according to the pore volume was more pronounced than the tendency according to the
non-basal site (Figure 5b,c). The BJH method assumes that the pores are cylindrical, but
since it is also applied to slit-shaped pores, pores of 1–10 nm appearing in graphite can
be considered as defective sites, such as steps or surface roughness [32–34]. The pore
distributions of graphite samples are shown in Figure S6, and it can be shown that the
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non-basal sites are not perfectly proportional to the pore volume (Figure S6c). This can
be attributed to the volumetric difference of the non-basal constituents, as the edge plane
occupies a high portion of non-basal sites, and the nature of defects are more pronounced
in the pores with high curvature.
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Figure 4. Kinetic properties of graphite symmetric electrodes. (a) Impedance spectra at the pristine state (before lithiation)
where the intercept at the x-axis indicates ionic resistance (Rion/3) in a porous electrode (top). Dependence of the fraction of
non-basal planes on the inverse of the ionic resistance (Rion)−1 (bottom). (b) Imaginary part of complex capacitance (top)
where the dashed line indicates the frequency for the maximum value (f 0). Dependence of the fraction of non-basal planes
on the Li-ion response frequency (f 0) (bottom).

Impedance analyses using symmetric cells were performed to compare the SEI for-
mation of six different graphites with 50% lithiation after the 1st, 11th, and 50th cycles
(Figure 6a,b). The frequencies of semi-circle regions are over 100 Hz, indicating the re-
sistance region attributed to the SEI [22,60–63]. Although there are differences among
the samples, the SEI resistance generally increases as the cycle progresses. For instance,
the buildup in the 50th-SEI resistance is significantly larger than the 1st and 11th cycles,
indicating the cell degradation. As cycles progress, the degradation accelerates, and the
SEI resistance increases as more SEI layers become formed from the previously formed
SEI [60–63]. Such catalyzed degradation looks more pronounced with a higher content of
non-basal sites and pores, which means that the SEI formation can occur continuously at
the pore and non-basal sites (Figure S7).
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(retention%/m2 g−1), respectively.
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Figure 6. Symmetric-cell electrochemical impedance spectroscopy with various graphite electrodes. (a) Impedance spectra
of graphite samples at 0.1 V (~50% lithiation). The dashed line predominantly arises from the SEI resistance. (b) Changes in
the SEI resistance after the 1st, 11th, and 50th cycles of graphite samples.

4. Conclusions

In this work, the electrochemical properties of commercial graphites were categorized
with its nanostructural properties and surface heterogeneity of graphite. By careful quan-
tification of the surface heterogeneity, we confirmed that a higher proportion of exposed
non-basal (edge and defect) planes is strongly related to the kinetic performance of graphite
electrodes. Notably, fast-charging capability has enhanced proportionally to the non-basal
sites. On the other hand, the cyclability of the graphite electrode was confirmed to be
strongly correlated with the pores. As the impedance analysis on the cycled symmetric
cells have exhibited that the increased pore volume have increased the SEI resistance more
significantly as the cycles progress, this tendency is valid even when the non-basal site is
large. We believe the determination of surface heterogeneity plus pores of graphite materi-
als are powerful parameters that can predict the important electrochemical performances
of commercial graphites, and thereby are advantageous for the practical anode design of
energy storage materials.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11071813/s1. Table S1: BET surface area, basal plane area, edge plane area, defect
site area, and total surface area of graphite samples, derived from the nitrogen adsorption data,
Table S2: The correlation between the rate capability and fraction of the non-basal plane, Figure
S1: Particle size distribution of graphite samples; Figure S2: Raman spectra of graphite samples
and structure parameters obtained through D, G, and D’ peaks, Figure S3: Fast-charging capability
of graphite samples, Figure S4: Comparison of correlation between fast-charging capability of
graphite anodes and other parameters, Figure S5: Kinetic properties of graphite electrodes, Figure S6:
Characterization of pores in graphite samples, Figure S7: Comparison of structural parameters from
nitrogen adsorption and SEI resistances for six graphite samples.
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