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ABSTRACT

Motivation: Existing microarray genotype-calling algorithms adopt
either SNP-by-SNP (SNP-wise) or sample-by-sample (sample-wise)
approaches to calling. We have developed a novel genotype-calling
algorithm for the Illumina platform, optiCall, that uses both SNP-wise
and sample-wise calling to more accurately ascertain genotypes at
rare, low-frequency and common variants.
Results: Using data from 4537 individuals from the 1958 British Birth
Cohort genotyped on the Immunochip, we estimate the proportion
of SNPs lost to downstream analysis due to false quality control
failures, and rare variants misclassified as monomorphic, is only
1.38% with optiCall, in comparison to 3.87, 7.85 and 4.09% for
Illuminus, GenoSNP and GenCall, respectively. We show that optiCall
accurately captures rare variants and can correctly account for
SNPs where probe intensity clouds are shifted from their expected
positions.
Availability and implementation: optiCall is implemented in C++
for use on UNIX operating systems and is available for download at
http://www.sanger.ac.uk/resources/software/opticall/.
Contact: optiCall@sanger.ac.uk
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1 INTRODUCTION
Burgeoning whole-genome and whole-exome sequencing projects
are likely to require large-scale microarray-based follow-up studies.
Already, custom arrays, such as Metabochip and Immunochip,
utilize SNPs identified through population-based sequencing efforts
such as 1000 genomes to better survey loci known to underpin
variation across related phenotypes (Trynka et al., 2011). Typically,
the allelic probes on these custom arrays have undergone less
stringent quality control (QC) compared to those that make it onto
mass-produced GWAS arrays. This drop in probe quality, in addition
to a greater focus on low-frequency and rare variants (those with
minor allele frequencies 0.5–5% and <0.5%, respectively; The 1000
Genomes Project Consortium, 2010) presents many problems for
existing genotype-calling algorithms.

Genotype-calling algorithms use normalized measures of DNA
binding to allele specific probes to ascertain the genotype of an
individual at a given SNP. As an example, a wild-type homozygous
genotype at a particular SNP would have a high intensity value
for the wild-type allelic probe, and little or no intensity for
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the alternative allelic probe. A heterozygous sample would have
intermediate intensities for both probes. Existing callers vary in both
the statistical models they apply, and how they utilize the intensity
data across individuals and SNPs.

Illumina’s proprietary genotype-calling software, GenCall, uses
a custom clustering algorithm that encompasses several biological
heuristics to determine genotypes from intensity clouds obtained
by gathering all individuals at a single SNP. If less than three
well-defined genotype clusters are observed, GenCall uses a neural
network model to estimate the location and shape of the undefined
clusters. GenCall is designed to work on Illumina arrays and, being
based on a pretrained neural network, its performance on a new
dataset is dependent on how close the new data matches the data
used to train the network.

Another commonly used genotype-calling algorithm, Illuminus
(Teo et al., 2007), also designed for Illumina arrays, again clusters
intensity data across samples on a per SNP basis, using an
unsupervised clustering method based on a mixture model of
Student’s t-distributions. This unsupervised approach removes the
need for a called training set. However, low-frequency SNPs
and/or small sample sizes can result in poorly defined clusters and
inaccurate genotype calls due to the small number of rare allele
observations. Giannoulatou et al. (2008) discovered within-sample
intensity data also tended to cluster into three distinct genotype
groups. On the basis of this observation, they created GenoSNP, a
within-sample genotype-calling algorithm. Clustering within sample
can be advantageous for rare variants and small sample sizes, as
three well-defined clusters are always observed. A drawback of the
approach is that intensity variation between SNPs is not accounted
for, resulting in inaccurate genotype calls for SNPs where intensity
clusters are shifted from their expected positions.

We have developed optiCall, a novel genotype-calling algorithm
that uses both within and across sample intensity data to accurately
ascertain genotypes from across the minor allele frequency
spectrum. In the following sections, we describe optiCall and
compare its output to that from existing algorithms using 4537
samples from the 1958 British Birth Cohort (Power and Elliott,
2006) genotyped on the Immunochip, an Illumina iSelect HD custom
array (Cortes and Brown, 2011).

2 METHODS

2.1 Data
Illumina uses a six degree of freedom affine transformation to normalize data
for channel-dependent background and global intensity differences. The data
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input to the algorithm have a normalized intensity point x=(
x(1),x(2)

)
for

each sample and SNP on the array, indicating the binding strength of the
sample’s DNA to the probes for each of the two alleles being interrogated at
the SNP.

2.2 Creating the within and across sample prior
optiCall first takes a random subset S of intensity values from the data (by
default |S| is the minimum of 50 000 and the size of the dataset). Every
element in S is a

(
x(1),x(2)

)
normalized intensity point for a random sample

at a random SNP. This subset, of both within and across sample intensities,
is used to create a data-derived prior distribution on the intensity space,
defining regions of high probability for each genotype class. A four-class
mixture model of Student’s t-distributions is used to model the data, with
a class corresponding to each genotype and one class to catch outliers of
unknown genotype. So for each element xj in S, there is a latent genotype
variable gj ∈{1,2,3,4} and the joint probability density function (pdf) of(
xj,gj

)
under the mixture model is given by

p
(
xj,gj|θ

)=
4∏

i=1

[
πipi

(
xj|θ

)]I(gj=i)
(1)

and for the entire subset S×G={(
xj,gj

) :xj ∈S
} :

p
(
S×G|θ)=

∏
j

p
(
xj,gj|θ

)
(2)

where πi are the class probabilities, such that the πi sum to 1, I is the
indicator function, and each pi is the pdf of a Student’s t-distribution with
location parameter μi, covariance �i and scale parameter vi, for simplicity
all represented by the parameter vector θ .

The model is fitted to the data by inferring values for the πi,μi,�i to
maximize the likelihood of the data by an expectation maximization (EM)
procedure (Dempster et al., 1977). The parameters μi,�i are fixed for the
unknown class [by default (0,0) and 100×I2, where I2 is the 2 × 2 identity
matrix] so that the probability density is even over parameter space, and
outliers are assigned unknown. The vi for all classes are also fixed at 1.

When performing inference, initial values for the μi,�i of the genotype
classes are obtained from a run of the k means ++ clustering algorithm for
k equal to three (Arthur and Vassilvitskii, 2007), and all the πi are each set to
0.25. Using the EM algorithm, the initial parameter values are altered so that
they maximize the log-likelihood of the data. The unknown class is treated
like the genotype classes during inference, except for its mean and covariance
parameters remaining fixed. The EM algorithm obtains a (possibly local)
maximum for the log-likelihood by alternating between an expectation (E)
step, and a maximization (M) step. For the E-step, the expected value of
the log likelihood is calculated, with respect to the latent variable given the
current values of the parameters. Next the M-step finds the parameters to
maximize this expected log-likelihood, the parameter values are updated,
and the algorithm moves to the next iteration of EM steps.

Equation (2) is the expression for the likelihood of the data, and the
log-likelihood expression is shown in (3).

ln
(
p
(
S×G|θ))=

∑
j

4∑
i=1

zij ln
(
πi

)+zij ln
(
pi

(
xj|θ

))
(3)

with the latent variable zij being the value of I
(
gj = i

)
The zij are updated

on the E-step, being set to the posterior probabilities of class membership—
given the current estimates for θ , and the θ are set on the M-step. The
derivation of the latent variable and parameter update equations of the EM
algorithm for a mixture of t-distributions can be found in McLachlan and
Peel (2000). The EM algorithm is halted after 30 iterations, but stops early
if genotype calls are unchanged for more than three consecutive iterations,
and final parameter values are subsequently taken.

The across sample and SNP clustering happens only once, and the resulting
mixture model provides prior information in subsequent per SNP, across
sample, clustering steps.

2.3 Genotype calls across samples with prior
information across SNPs

optiCall next goes through the intensity data SNP-wise, gathering all sample
intensities at a SNP, and clustering with another mixture model of Student’s
t-distributions. The mixture model again has four classes, one for each
genotype, and an additional one for outliers. However, instead of maximizing
the likelihood, a prior is incorporated on the model parameter vector θ , based
on the clustering of S, and the posterior is maximized to get the Maximum
A-Posteriori estimate for the parameters θ . Thus, ignoring the term p(S×G)
which is unaffected by the choice of θ , optiCall aims to find the θ maximizing:

p
(
θ |S×G

)∝p
(
S×G|θ)

p
(
θ
)

(4)

which in our case is shown in (5):

p
(
θ |S×G

)∝
∏

j

4∏
i=1

[
πipi

(
xj|μi,�i,νi

)
pi

(
μi,�i

)]I
(
gj=i

)
(5)

For the three genotype classes (i=1, 2, 3), we put a Normal–Wishart
prior distribution on the location and precision matrix of each genotype’s
t-distribution:

pi
(
μi,�i

)=N
(
μi|αi,�i/βi

)
W

(
�−1

i |γi,Si

)
; i=1,2,3 (6)

where αi, βi, γi, Si are hyperparameters assigned values based on the
clustering step from (2.2). The αi are set to the optimal μi obtained from
the results of the clustering in (2.2); similarly the Si are set to the inverse
of the optimal �i. The βi are set to 1, and the γi to 100. For the unknown
class (i=4), the μi,�i are fixed as in (2.2), meaning the prior distribution
p4

(
μ4,�4

)
essentially assigns all its probability density at these values of

μi,�i. The vi similarly are set to 1 for all classes apart from the heterozygous
class, which is set to 1.3.

To infer the values of the πi, μi, �i we use a modified EM procedure,
with starting points for the πi set to their optimum values found in (2.2).
Initial values for μi and �i are also their optimal equivalents from (2.2) but
multiplied (element-wise) by the scaling factors:

max

(
μ̂(1)

μhet (1)
,

μ̂(2)

μhet (2)

)
and

⎡
⎢⎢⎣

σ̂ 2
(1)

σ̂ 2
S (1)

σ̂(1) σ̂(2)
σ̂S (1) σ̂S (2)

σ̂(1) σ̂(2)
σ̂S (1) σ̂S (2)

σ̂ 2
(2)

σ̂ 2
S (2)

⎤
⎥⎥⎦

to account for SNP specific intensity shifts. μ̂ and σ̂ are the mean and
SD of the intensity data of the current SNP, μhet is the optimal μi of the
heterozygous class from (2.2), σ̂S is the SD of the random subset S from
(2.2), and bracketed subscripts show the allele (1 or 2) over which the
mean or SD is calculated, for points

(
x(1),x(2)

)
. The modification to the

EM procedure occurs at the E-step when calculating the expected value
of zij . If the maximum genotype posterior probability for an intensity point
p
(
gj = i|xj

)
is above 0.9, according to the model inferred in (2.2), the expected

value for zij is calculated using these genotype posteriors, instead of the
values of πi in the current clustering. This way, points with highly confident
genotype posteriors by the model in (2.2), but possibly forming a sparse
cluster, can still guide the current clustering (Fig. 1b). The EM algorithm
runs for 15 iterations but stops early if genotype calls are unchanged for
more than three consecutive iterations.

Once the optimal parameter values are inferred, genotype posterior
probabilities for a data point from the model are calculated according to (7).
The μi,�i and vi are from the results of the current SNP-wise clustering,
while π ′

i are the genotype posterior probabilities for xj calculated using vi

and optimum values for πi,μi,�i from (2.2). Using π ′
i in this way helps

in clustering rare variants, which may be only a few points, but falling in
a high probability region according to (2.2). Genotypes are called for any
points with a class posterior probability of at least 0.7 (by default), with those
falling below this threshold called unknown.

p
(
gj = i|xj

)= π ′
i pi

(
xj|μi,�i,vi

)
∑4

k=1π ′
kpk

(
xj|μk,�k,vk

) (7)
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Fig. 1. Calling a SNP with optiCall. In (a) intensity data is taken from all
samples at the SNP. Then, using a data-derived (within and across sample)
prior, and adjusting class membership probabilities based on the prior in an
EM procedure (b and c), a mixture model of Student’s t-distributions is fitted
to the data (d)

2.4 Measuring clustering quality and reclassifying
poorly clustered SNPs

optiCall uses deviation from Hardy–Weinberg equilibrium (HWE) as an
indicator of clustering quality. A χ2 test is used to test HWE unless sample
size is small (<50 expected counts of any genotype, assuming HWE or
allele counts of <100 for either allele), in which case an exact test is used
(Wigginton et al., 2005). SNPs with a HWE P-value less than a given
threshold (P<5×10−15 by default) are deemed to be poorly called. optiCall
attempts to improve the genotype calls at these SNPs by again running a
Student’s t-based mixture model, but this time omitting the SNP and sample-
wise prior. This rescue step is primarily implemented to give better genotype
calls at SNPs where the genotype intensity clouds lie outside of the expected
regions defined by the within and across sample prior. The statistical model
is as described in (1) and (2), with the intensity values first transformed
according to (8), to improve calling of SNPs with shifted intensities (Teo
et al., 2007).

y(1) =
⎧⎨
⎩

x(1) −x(2)

x(1) +x(2)
x(1) +x(2) �=0

0 x(1) +x(2) =0
(8)

y(2) = ln
(
x(1) +x(2) +1

)

Inference is as in (2.2), by the EM algorithm . The νi are fixed at 1 for all
classes except the heterozygous class, which is fixed at 1.3. The values of
μi,�i for the unknown class are fixed with identical values to (2.2).

All four classes have initial class probabilities set to 0.25, and for the
three genotype classes initial covariance matrices are set to

(
2c/N

)×I2 with
c the cost (Arthur and Vassilvitskii, 2007) of a k means ++ clustering on the
data, and N the number of intensity points. The transformation of intensities
has accounted for shifts, and so location parameters of the two homozygous
classes can be initialized to the extremes of y(1), and the heterozygous class

will then fall somewhere in between, thus the μi are initialized to

μ1 =(
max

(
yj(1)

)
,ȳj(2)

)
μ2 =(

k
[
min

(
yj(1)

)+max
(
yj(1)

)]
,ȳj(2)

)
(9)

μ3 =(
min

(
yj(1)

)
,ȳj(2)

)
where the min/max are taken over a filtered version of the intensity data,
with the lowest 1% of untransformed intensity values in the x(1) direction
and lowest one percent in the x(2) direction removed. ȳj(2) is the mean of
the yj over the second axis, and k is a shift parameter for the location of the
heterozygous class, that takes one of three values, 0.45, 0.5 or 0.55, resulting
in three sets of initial values dependent on the value of k. For each set of
starting values, the EM algorithm is run until genotype calls are concordant
for two consecutive iterations, and the optimal parameters are chosen to be
the final values with the highest likelihood.

Genotype calls are made using genotype posterior probabilities [using the
πi inferred from this step unlike (2.3)] with a 0.7 call threshold. By default,
SNPs that fail the HWE test subsequent to this step have all genotypes called
unknown.

In our experiments, we have found the occurrence of the rescue step, and
the subsequent chances of a successful rescue, to vary with the quality of the
dataset. On a number of Immunochip datasets, rescue steps tended to occur
on between 3 and 10% of SNPs, with 30–50% being successful.

3 RESULTS
To test the performance of optiCall, and compare it to existing
algorithms, we used data from 4537 individuals from the 1958
British Birth Cohort who were genotyped using the Immunochip,
an Illumina iSelect HD custom array designed for deep replication
of autoimmune disease genome-wide association study results and
fine-mapping within 184 known autoimmune disease loci (Trynka
et al., 2011). Genotypes were called at 192 402 SNPs using optiCall,
GenCall, Illuminus and GenoSNP. Default parameters were used
when running each of the algorithms.

The genotype data from each algorithm underwent a simple QC
protocol to reflect a typical association study. SNPs failed QC if
they had a call rate <98% or HWE P<10−5. Table 1 shows the QC
results for each caller across the dataset.

Calls from Illuminus and GenoSNP produce the most discordant
results at QC (with 5157 and 8815 unique QC passes and fails,
respectively) whereas GenCall and optiCall appear to have more
overlapping QC outcomes with other callers.

3.1 SNPs passing/failing QC
In an association study, if many SNPs fail QC because of poor
genotype calling, potential casual variants may be missed. However,
too many calls incorrectly passing QC would result in increased
false-positive associations, and more overheads in subsequent
follow-up and replication.

To assess clustering quality and accuracy, 600 unique QC pass
SNPs and 600 unique QC fail SNPs were selected at random and
manually called using a modified version of Evoker (Morris et al.,
2010). All manual calling was carried out blind to genotype calls
from any of the algorithms. The 1200 SNPs were split into four
subsets, each manually called by a different person. Any SNPs
deemed difficult to call were blind re-called by all four human
callers, and the consensus genotypes were taken forward. Manually
called genotypes were then compared to those from each of the
genotype-calling algorithms, classifying SNPs passing QC for both
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Table 1. Summary statistics of calling and QC results on 192 402 Immunochip autosomal SNPs

Caller Mean call Number with Number with Number of Number of unique Number of unique
rate (%) call rate <98% HWE P<10−5 QC fails QC passes QC fails

Illuminus 99.44 6311 8096 10 263 2305 2852
GenoSNP 97.63 19 432 15 239 22 572 310 8505
GenCall 96.01 13 861 9413 15 665 156 1454
optiCall 97.06 7440 7210 10 006 796 168

Call rate is defined as the proportion of genotype calls for a SNP assigned a genotype other than unknown. The QC threshold is set at a call rate of
<98% or <10−5 HWE P-value. A unique QC pass/fail is a SNP that passed/failed QC uniquely to the given caller.

Table 2. Comparison of QC passes and failures across 1200 manually called
SNPs

Caller TP FP TF False-fail Sensitivity/specificity

Illuminus 574 260 134 232 0.71/0.34
GenoSNP 196 13 381 610 0.24/0.97
GenCall 519 33 361 287 0.64/0.92
optiCall 650 92 302 156 0.81/0.77
Manual 806 0 394 0 1.00/1.00

TP, manual pass and algorithm pass. FP, manual fail and algorithm pass. TF, manual
fail and algorithm fail. False-fail = manual pass and algorithm fail.

the algorithm and manual call set as true-pass (TP) SNPs, and SNPs
failing QC in the manual calls but passing QC for the given algorithm
as false-pass (FP) calls. Similarly, SNPs failing QC for both the
manual calls and the algorithm were classified as true-fail (TF)
SNPs, while false-fail (FF) SNPs fail QC for the given algorithm
only. Sensitivity and specificity were then calculated for each of the
algorithms (Table 2).

For the sampled data optiCall yielded the highest sensitivity,
but with a lower specificity compared to GenCall and GenoSNP.
GenoSNP’s sensitivity was significantly lower than its counterparts,
as was Illuminus’ specificity. Anecdotally, many of GenoSNP’s
FFs occurred at SNPs where intensity data were shifted from the
expected positions, a drawback of the within-individual clustering
approach.

R-squared values (Pearson correlation coefficient where
genotypes are placed on a 0, 1, 2 scale and unknown genotypes
are assigned the numerical mean genotype) to the manual calls for
TP SNPs were high across all three callers (0.995 for Illuminus,
0.983 for GenoSNP, 0.990 for GenCall and optiCall), suggesting
that SNPs passing QC are called accurately by all algorithms.

3.2 Missed rare variants
Genetic association studies are increasingly focusing on identifying
rare variation underlying disease susceptibility (Manolio et al.,
2009). To investigate how well each of the algorithms captures such
variants, we randomly selected 600 SNPs that were monomorphic
in one algorithm but had a minor allele frequency between 4×10−4

and 0.01 in at least another two. Manual calling was carried out
as described in Section 3.1. Of the 600 manually called SNPs,
Illuminus misclassified 354 rare SNPs as monomorphic, while
GenoSNP, GenCall and optiCall misclassified only 3, 13 and 1,
respectively. This high number of misclassified rare variants is

a direct consequence of Illuminus’ within SNP, across sample,
approach to genotype calling.

3.3 Comparison to manually called genotypes across
chromosome 21

To assess how well each of the algorithms performed across a
random selection of SNPs on the Immunochip, we manually called
the 1868 SNPs on chromosome 21 using the same procedure as
outlined in Section 3.1. Again, SNPs with a call rate <0.98 and/or
HWE P<10−5 were deemed to have failed QC. QC results from the
genotype-calling algorithms were then compared to those from the
manually called genotypes. Although less pronounced than previous
comparisons, which specifically focused on SNPs at which the
genotype-calling algorithms disagreed, the same general trends were
observed (Table 3). Of the 1810 SNPs passing QC in the manually
called data, optiCall passed the most (1785 with a sensitivity of 0.99)
and GenoSNP the least (1668 with a sensitivity of 0.92). GenCall
and Illuminus lay in between (GenCall passing 1737 SNPs and
Illuminus 1761, with sensitivities of 0.96 and 0.97, respectively).
GenoSNP and optiCall did not misclassify any of the low-frequency
SNPs as monomorphic, while GenCall misclassified just one and
Illuminus misclassified 21. As expected, SNPs correctly passing
QC and then correctly called polymorphic for each algorithm have
highly concordant calls to the manual call set (r2>0.993 for all
callers).

By combining the FF rate and the number of misclassified
rare variants across each genotype-calling algorithm, the loss
percentages over the 1868 SNPs of chromosome 21 are 3.87, 7.85,
4.09 and 1.38% for Illuminus, GenoSNP, GenCall and optiCall,
respectively. Extending this result over the entire Immunochip, we
estimate that 7440, 15 094, 7865 and 2657 ‘callable’ SNPs will be
falsely removed from analysis using Illuminus, GenoSNP, GenCall
and optiCall, respectively.

4 DISCUSSION
Complex disease genetic association studies are increasingly
focusing on rare and low-frequency variants, either using off-the-
shelf genome-wide products such as the Illumina HumanOmni5-
Quad or mass-produced targeted custom arrays such as the
Metabochip, Immunochip or Exomechip. To improve genotype
calling for such arrays, we have developed a new algorithm,
optiCall, which uses both within and across sample intensity data
when calling genotypes. Considering both sets of information
simultaneously means optiCall captures the rare and low-frequency
variants some purely SNP-wise genotype-calling algorithms can
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Table 3. Chromosome 21, comparison to manual calls

Caller QC Monomorphic
SNPs (of which
rare misses)

Mean r2 to
manual calls

TP FP TF FF Sensitivity/specificity

Illuminus 1761 25 33 49 0.97/0.57 164 (21) 0.993
GenoSNP 1668 2 56 142 0.92/0.97 85 (0) 0.996
GenCall 1737 7 51 73 0.96/0.88 173 (1) 0.997
Optical 1785 14 44 25 0.99/0.76 172 (0) 0.997
Manual 1810 0 58 0 1.00/1.00 188 (0) 1.000

Monomorphic SNPs = the number of SNPs a genotype-calling algorithm calls monomorphic from its TPs, with the subset of missed rare variants
(when compared to manual calls) shown in brackets. r2 is as in Section 3.1 and is calculated over the true QC pass SNPs which were polymorphic
according to both the caller and the manual calls.

miss, while remaining robust to genotype intensity clouds lying
away from their expected positions. Given that the allelic probes
on custom arrays have undergone less stringent QC compared to
those that make it onto mass-produced genome-wide SNP arrays, the
ability to correctly call such SNPs can greatly increase the number
of SNPs passing QC (and thus increase power to detect association).

We have shown that, of the existing genotype-calling algorithms,
optiCall has the highest sensitivity in terms of SNPs passing
basic QC. This is significant because each SNP that is removed
from a study due to poor genotype calling is potentially a missed
association. Furthermore, with reduced linkage disequilibrium
observed at rare and low-frequency SNPs (in comparison to common
variants), it is less likely that an association to such a variant
will be detected through additional tag SNPs. This increase in
sensitivity does also yield a small decrease in specificity but, given
that cluster plots of associated variants can be manually checked
prior to embarking on replication studies, the consequences of this
in terms of false-positive associations are likely minimal.

Unlike some existing genotype-calling algorithms, optiCall
estimates the positions of the genotype classes using the given
intensity data and does not require a training dataset or predefined
cluster file. This removes genotype-calling errors that manifest
through differences between the training dataset and that under
study. As more studies attempt to jointly analyze data from different
genotyping laboratories and across many different ethnicities, such
errors have the possibility to not only reduce power but also
to increase false-positive associations. When using optiCall, we
recommend that divergent populations (such as African-Americans
and white Europeans) be called separately so population specific
within and across sample priors are used. Some existing calling-
algorithms allow users to manually re-position the predefined
clusters to better match discordant datasets whereas optiCall
automates this potentially labor intensive procedure. Importantly,
optiCall’s use of both within and across sample intensity data ensures
it is more robust to small sample sizes than mixture model-based
algorithms that only use SNP-wise data. Recently, Li et al. (2012)
published a genotype-calling algorithm for the Illumina platform,
M3, that also uses both within and across sample information when
making genotype calls. M3 runs a two-step calling process. The
first step involves calling across sample, and then selecting a set
of possibly poorly called SNPs (based on call rate and minor allele
frequency) to call using across SNP information. optiCall differs
from M3 in that it makes genotype calls using both within and across
sample information simultaneously. M3 is written in Matlab, and

we did not possess the necessary software to make a quantitative
comparison.

A drawback of optiCall’s genotype-calling approach is that it
is very sensitive to intensity outliers (because these prevent the
mixture models from fitting well). If no intensity outlier removal
is performed prior to running optiCall, we recommend running
optiCall’s built in outlier removal. This process calculates the mean
intensity difference x(1) −x(2) over SNPs for each sample and those
with a mean intensity difference more than 2 SD away from the
mean are removed before genotype calling.

In summary, we have developed a new genotype-calling algorithm
for Illumina arrays that uses both SNP-wise and sample-wise calling
to more accurately ascertain genotypes at rare, low-frequency and
common variants, even when genotype intensity clouds are shifted
from their expected positions.
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