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Drug discovery can benefit from a proactive-knowledge-attainment philosophy which
strategically integrates experimentation and pharmacokinetic/pharmacodynamic (PK/PD)
modeling. Our programs for Alzheimer’s disease (AD) illustrate such an approach. Com-
pounds that inhibit the generation of brain beta amyloid (Aβ), especially Aβ42, are being
pursued as potential disease-modifying therapeutics. Complexities in the PK/Aβ relation-
ship for these compounds have been observed and the data require an advanced approach
for analysis. We established a semimechanistic PK/PD model that can describe the PK/Aβ

data by accounting for Aβ generation and clearance.The modeling characterizes the in vivo
PD (i.e., Aβ lowering) properties of compounds and generates insights about the salient
biological systems. The learning from the modeling enables us to establish a framework
for predicting in vivo Aβ lowering from in vitro parameters.
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INTRODUCTION
The pharmaceutical industry has been experiencing a decrease in
productivity despite increasing R&D investment (FDA, 2004; Bun-
nage, 2011). Approaches for improving performance have been
proposed from organizational (Sams-Dodd, 2005), operational
(Bunnage, 2011; Johnstone et al., 2011; Knutsen, 2011; Elebring
et al., 2012), and scientific perspectives (FDA, 2004; EMEA, 2007;
Zhang et al., 2008; Morgan et al., 2012). Some researchers have
argued that an increase in productivity may arise from a revamp
of early discovery (Dimitri, 2011; Knutsen, 2011). Choosing the
appropriate targets and optimal compounds in discovery should
increase the probability of success at later stages (Bunnage, 2011;
Maurer, 2011).

In the neuroscience area, Alzheimer’s disease (AD) and demen-
tia represent an urgent and significant unmet medical need. Drugs
which temporarily alleviate some symptoms are on the market,
but disease-modifying drugs which slow AD progression remain
unavailable. While there are still uncertainties about AD etiology,
the current leading hypothesis, known as amyloid cascade hypoth-
esis (Hardy and Higgins, 1992), posits that AD is caused by an
abnormal accumulation in the brain of amyloid beta (Aβ), a pro-
tein with a molecular weight of ∼4 kDa. Aβ is generated through
sequential enzymatic cleavages of amyloid precursor protein, first
by beta secretase (BACE1) and then by gamma secretase (GSI;
reviewed in De Strooper et al., 2010). Aβ has numerous forms
depending on the exact cleavage site which dictates the length of
the resulting amino acid sequence. Aβ40 and Aβ42 are the main
forms found in the amyloid plaques in Alzheimer’s brains (Grav-
ina et al., 1995), and Aβ42 is the predominant toxic form (El-Agnaf
et al., 2000). Reduction of Aβ, particularly Aβ42, in the brain there-
fore has been proposed as a potential disease-modifying treatment
for AD. Potential therapies include small molecules that inhibit

BACE1 (BACEi) or gamma secretase (GSI) to lower total Aβ pro-
duction, or that modulate gamma secretase (GSM) to lower Aβ42
selectively. All three approaches are being pursued in the pharma-
ceutical industry (reviewed in Ghosh et al., 2008; Imbimbo, 2008;
Pettersson et al., 2011).

BACEi, GSI, or GSM programs seek compounds to test
rigorously and definitely the amyloid cascade hypothesis in
the clinic. Such compounds should be capable of distribut-
ing to the target site, interacting with the target, and elicit-
ing sufficient pharmacodynamic (PD) response, i.e., Aβ low-
ering, in humans at concentrations that afford an acceptable
safety margin. Preclinical identification of such compounds is
based on intensive evaluation of pharmacokinetics (PK), PD,
and safety in in vitro assays and preclinical animal models.
This identification process is more efficient when the in vivo
pharmacology and relevant biological systems are well under-
stood.

A relevant in vivo measure of modulating secretase activities is
brain Aβ42 lowering, which in practice can be assessed only in pre-
clinical species, typically rodents. In addition, CSF Aβ40 and Aβ42
are often monitored for their potential use as biomarkers for brain
Aβ lowering. Numerous data sets from in-house and external stud-
ies have demonstrated complexities in the PK/PD relationship for
Aβ lowering agents which pose challenges for both characterizing
compounds’ in vivo PD properties and translating effects across
species. We have established a semimechanistically based PK/PD
model to analyze PK/Aβ data, and through its application have
obtained reasonable characterization of compounds’ in vivo PD
properties and Aβ clearance kinetics (Wang et al., 2010; Lu et al.,
2011, 2012a,b,c). Here, I summarize our systematic learning from
quantitative modeling of the Aβ data, and advocate for the integra-
tion of experimentation and PK/PD modeling using the BACEi,
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GSI, and GSM projects as an example. In this article, PD therefore
refers to Aβ lowering in the brain or CSF. Whether or not lowering
brain Aβ in patients will translate to clinical benefits is beyond the
scope of this article.

COMPLEXITIES IN PK/Aβ DATA
The relationship between the PK and Aβ data for BACEi, GSI, and
GSM is complex. First, Aβ lowering after compound treatment
shows hysteresis (Figures 1A,B; Hawkins et al., 2011; Lu et al.,
2011, 2012c), a tendency for an effect profile to lag temporally
behind an exposure profile. Plotting Aβ levels vs. the concurrent
exposures yields a hysteresis loop; the effect does not correlate
strictly with concentration, and instead also depends on time (as
can be seen in Figure 1B). Second, within a given species (mouse,
rat, or guinea pig), the data from single-time-point sampling often
show stronger Aβ lowering in CSF than in brain with the dis-
crepancy widening as the dose increases (Figure 1C; Wang et al.,
2010; Lu et al., 2012c). Third, following dosing the time courses of
CSF and brain Aβ diverge from one another. Figure 1A illustrates
this behavior observed in the mouse, rat, and guinea pig; CSF
Aβ decreases and returns to baseline more rapidly than brain Aβ

(Lu et al., 2011, 2012c). The separation is increasingly pronounced
with dose (Wang et al., 2010). Fourth, the shape of the CSF Aβ pro-
file varies across species. The shape becomes more blunted with
increasing body size (Figure 1D). These observations provoke a
series of critical questions:

• How should we appropriately characterize a compound’s in vivo
PD properties (potency and efficacy)?
• Why are there differences in the effect size and temporal profile

between brain and CSF and across species?
• Is CSF Aβ a valid biomarker for brain Aβ lowering given the

discrepancy in Aβ lowering between the two compartments?
• Are the mouse and rat suitable pharmacology models for

humans, and if yes, how should we scale an Aβ lowering effect
from these species to humans?

Each question represents a substantial hurdle for rational and
efficient discovery. It is therefore critical to seek a sound mech-
anistic understanding of the complexities and obtain answers to
these questions.

A SEMIMECHANISTICALLY BASED PK/PD MODEL FOR
ANALYZING Aβ DATA
The hysteresis precludes the use of the classical sigmoidal model
which assumes that the PD results from the concurrent drug
concentration. A more sophisticated model is thus necessary.
We established a semimechanistic model that can describe the
complex PK/Aβ data by taking Aβ generation and clearance into
consideration (Lu et al., 2011, 2012a,c). As shown in Figure 1E, this
model assumes that the level of steady-state Aβ in a compartment is
maintained via the balancing of a zero-order generation rate (Kin)
and a first-order clearance process (with a fractional turnover rate
of kout). Consistent with the mode of action of BACEi, GSI, or
GSM, an inhibitory effect is described by a sigmoidal term that
modifies the generation rate Kin (Eq. 1). The drug concentration
(C) may be that in plasma, brain, or CSF depending upon the data

available. This model represents a biologically reasonable simpli-
fication of Aβ homeostasis and its pharmacological modulation.

dAβ

dt
= Kin ×

(
1−

Imax × Cγ

I C50
γ + Cγ

)
− kout × Aβ (1)

To remove potential confounding non-specific effects, the
absolute Aβ levels in treatment groups are expressed as percent-
ages of the concurrent vehicle control and the normalized time
courses are then modeled. By fitting the normalized data, the
model produces estimates for the unknown parameters: kout, I max

(maximum inhibition of K in), IC50 (concentration at which 50%
of I max is achieved), and γ (Hill coefficient). At steady-state, Eq. 1
simplifies to K in= 100%× kout since in this scenario the Aβ level
is constant at 100% of the basal level. Once kout is estimated, K in

can be readily calculated.

INSIGHTS FROM PK/PD MODELING
The PK/PD modeling extracts, from complex PK/Aβ data, para-
meters that allow appropriate characterization of the properties
of compounds’ in vivo pharmacology and the pertinent biological
systems.

CHARACTERIZATION OF A COMPOUND’S IN VIVO PD PROPERTIES
A compound’s in vivo potency and efficacy for lowering Aβ can be
defined by the modeling-derived IC50 and I max, respectively. For
estimation of steady-state average Aβ lowering after treatment, a
relationship between exposure and the modified Aβ generation
rate, Rgen as a fraction of the control is defined by Eq. 2

Rgen =

Kin ×

(
1− Imax×Cγ

I C50
γ+Cγ

)
Kin

= 1−
Imax × Cγ

I C50
γ + Cγ

(2)

This exposure – Rgen relationship defines the intrinsic PK/PD
relationship for a BACEi, GSI, or GSM. It is devoid of confounds
arising from PK behaviors or Aβ turnover kinetics. Mathemati-
cally, this intrinsic PK/PD relationship is equivalent to the relation-
ship between an exposure and time-weighted-average Aβ lowering
at steady-state after repeated dosing.

Empirical non-modeling based analyses of PK/Aβ data may
involve several approaches, such as single-time-point exposure/Aβ

assessment, area-under-the-concentration-curve (AUC) vs. max-
imum Aβ lowering, or AUC vs. area-under-the-Aβ-curve assess-
ment. As discussed earlier (Lu et al., 2011), these approaches have
serious flaws and limitations. They not only lack necessary pre-
dictive or extrapolating power, but also likely yield misleading or
erroneous potency estimates for a compound. Therefore, for the
discovery of Aβ lowering therapeutics, these approaches should be
replaced by quantitative PK/PD modeling.

CHARACTERIZATION OF PERTINENT BIOLOGICAL SYSTEMS
The biological systems involved in the discovery of Aβ lowering
therapeutics include in vitro assays for high throughput screening
and animal models such as mice, rats, guinea pigs, dogs, monkeys,
or humans for in vivo pharmacology evaluation.
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FIGURE 1 | Continued
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FIGURE 1 | Inherent complexities in PK/Aβ data (A–D), the
semimechanistically based PK/PD model (E) for analyzing Aβ data, and
the insights from the modeling (F). The complexities in the data are
reflected by hysteresis (A,B), differences in the effect size between brain and
CSF (A,C) and in the temporal profiles for brain and CSF Aβ (A), and variation
of CSF Aβ temporal profile across species (D). (A): Time course data from
129/SVE mice treated orally with LY450139 (GSI) at 150 mg/kg (Lu et al., 2011).
The effect time courses lag temporally behind the brain concentration time
course. (B) The time course data in (A) plotted as Aβ vs. exposure to illustrate
the hysteresis loops, where the effect does not correlate strictly with drug
concentration, and instead also depends on time. (A,B) suggest a delay
between drug concentration and manifestation of an effect, a phenomenon
known as hysteresis. (C) Data at 3 h post-dosing from 129/SVE mice treated
subcutaneously with LY2811376 (BACEi) at 1, 3, 10, 30, and 100 mg/kg
(reproduced from Lu et al., 2012c with permission from American Society for
Pharmacology and Experimental Therapeutics). Each symbol represents an
individual animal. The individuals in the 1–2 ng/g range are vehicle controls,
adjusted from the actual concentration of zero for illustration on the
logarithmic scale. (D) The mean time course profiles of CSF Aβ40 in the
129/SVE mouse, Sprague-Dawley rat, cynomolgus monkey, beagle dog, and
healthy human subject treated with LY2811376 at 100 mg/kg, subcutaneously,

50 mg/kg, orally, 20 mg/kg, orally, 5 mg/kg, orally, and 90 mg, orally,
respectively. (E) The semimechanistic model assumes that the Aβ level is
controlled by a zero-order generation rate, which is modified by an inhibitory
effect due to BACEi, GSI, or GSM, and a first-order clearance process. (F) The
modeling enables characterization of compounds’ in vivo PD properties and
the relevant biological systems. The plot of allometric scaling of CSF Aβ40 k out

is reproduced from (Lu et al., 2012a) with permission from S. Karger AG,
Basel, Switzerland, and updated with inclusion of the rat. By reversing the
directions of all arrows, this figure illustrates an integrative framework for
projecting compounds’ in vivo PD behaviors from in vitro and system
parameters. Hysteresis: A tendency for an effect profile to lag temporally
behind an exposure profile after drug treatment. Plotting Aβ levels vs. the
concurrent exposures yields a hysteresis loop; the effect does not correlate
strictly with concentration, and instead also depends on time. Hysteresis
demonstrates an apparent lack of exposure-response relationship. Analysis of
PK/PD data with hysteresis requires complex models, such as a link model,
an indirect response model, or a mechanistically based model (Mager et al.,
2003; Danhof et al., 2007). Cb, drug brain concentration; K in, Aβ generation
rate; k out, first-order rate constant for Aβ clearance; Imax, maximum inhibition
of K in; IC50, concentration that causes half-maximum inhibition of K in; γ, Hill
coefficient; BW, body weight.

In vitro assays
An in vitro assay provides a measure of potency (IC50), which is
one of the primary in vitro parameters for directing synthesis of
new compounds and for triaging, rank ordering, and prioritizing
among existing compounds. Before an in vitro assay can be relied
upon, a validation from the translational pharmacology stand-
point has to be conducted to assess how the in vitro potency is
correlated with in vivo potency. With in vivo potency estimated
by PK/PD modeling, an in vitro – in vivo potency correlation
(IVIVC) may be established. The IVIVC will allow selection of the
most relevant in vitro assay and determination of the quantitative
in vitro – in vivo translation.

Animal models
Through PK/PD modeling of extensive data sets, we have deter-
mined the turnover rate (kout) for Aβ in the brain and CSF in the
mouse (non-transgenic), rat, and guinea pig. The kout in brain
is slower than in CSF in all three species. In the mouse, the kout

for brain Aβ42 is approximately threefold lower than that for CSF
Aβ40 (0.49 vs. 1.42/h; Lu et al., 2012a), and in the rat and guinea
pig, the kout for brain Aβ42 is about twofold lower than that for
CSF Aβ42 (Lu et al., 2012c). The difference in the kout leads to
distinct Aβ profiles and effect sizes at a given sampling point in the
two compartments following treatment (Lu et al., 2012a).

We have also determined the kout for CSF Aβ40 in the rat,
dog, monkey, and human in addition to the mouse. The kout

value scales allometrically across these five species, following the
equation kout= 0.415×BW−0.36, where BW represents the body
weight (Figure 1F). The decrease in the kout with body weight
causes the increasingly blunted shapes of the CSF Aβ40 time course
(Lu et al., 2012a).

CSF Aβ is thought to be primarily derived from the brain. As
long as the PK/PD relationship for Aβ lowering in CSF is consis-
tently related to that in brain, CSF Aβ may serve as a biomarker
for brain Aβ lowering despite the discrepancy in Aβ profiles in the
two compartments. Our modeling analyses of seven compounds,

across the three mechanisms (BACEi, GSI, and GSM), in three
species (mouse, rat, and guinea pig) demonstrated a consistent
overlap of the intrinsic PK/PD relationships for brain and CSF
over the range of 0–50% lowering in Rgen (Lu et al., 2012c). This
analysis supports CSF Aβ as a potential biomarker for brain Aβ

lowering from the clinical trial standpoint.
Another conundrum that modeling can shed light on is which

preclinical species are suitable pharmacology models for evaluat-
ing BACEi, GSI, and GSM. The choice is generally a compromise
between multiple factors, such as animal cost (direct cost, hus-
bandry, and genotyping if applicable), animal size (relevant to
chemical scale up), homology of Aβ sequence (human shares the
same sequence with the guinea pig, dog, and monkey, but not mice
or rats), streamlined operation (preferentially the same species for
pharmacology evaluation, absorption, distribution, metabolism,
and elimination profiling, and safety characterization), and pre-
dictivity for human Aβ lowering. The predictivity for human Aβ

lowering can be assessed based on interspecies comparisons of the
intrinsic PK/PD relationship. When the interspecies translation is
understood, a rational choice of the suitable model may be made.
In this regard, two examples have been reported. (1) The trans-
genic Tg2576 mouse (Hsiao et al., 1996) has been recognized as
a model for AD, and traditionally has been used to identify GSI
despite the tremendous cost. Since the primary PD endpoint for
GSI is Aβ lowering in the central compartments, a non-transgenic
strain may be suitable if the PK/PD relationship in this strain
is predictive of that in humans. Therefore, we undertook com-
prehensive PK/PD analyses for several GSI compounds, including
LY450139 and BMS-708163, in the Tg2576 mouse, non-transgenic
129/SVE mouse, rat, guinea pig, dog, monkey, and human. Our
analyses indicated that the intrinsic PK/PD relationship for brain
Aβ42 and CSF Aβ40 in the 129/SVE mouse is consistent with, and
hence predictive of, that observed for CSF Aβ in humans (Lu et al.,
2011). As a result, we suggested the 129/SVE mouse as a reason-
able model for the discovery of GSI (Lu et al., 2011), allowing for
a drastic reduction in the cost on animals. (2) For identification
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of GSM, the guinea pig was thought to be a preferred model due
to its Aβ sequence being identical to that of human. This choice
was not ideal as guinea pigs are generally not used for PK or safety
profiling. To address the conflict, we collected PK/Aβ data for
two structurally distinct GSM in the two species. Our modeling
analyses demonstrated a similar intrinsic PK/PD relationship for
Aβ42 lowering in the central compartments in guinea pig and rat
(Lu et al., 2012b). Although the predictivity of these species for
humans remains unknown due to lack of available clinical data,
this result suggests that the difference in the Aβ sequence has no
bearing on the PD response and thus justifies the substitution of
rats for guinea pigs for GSM evaluation.

USES OF PK/PD MODELING AND SIMULATION
An Aβ time course profile is determined by three components,
exposure time course, intrinsic PK/PD relationship, and Aβ

turnover rate (Lu et al.,2011). Once understood, these components
may be re-integrated using a PK/PD model to predict the time
course of Aβ concentrations after a treatment (Lu et al., 2012a,c).
This exercise has several advantages for discovery research. First, it
may replace studies that do not necessarily generate new informa-
tion. For example, if a compound is characterized for its PK/PD
relationship for Aβ lowering at 5 and 30 mg/kg subcutaneously,
one may later be interested in its effects at 10 mg/kg orally. With
an oral PK time course at 10 mg/kg, along with the intrinsic PK/PD
relationship and Aβ turnover rate derived earlier, a PD profile can
be predicted from simulations (see an example in Figure 2; the data
set not used in the model development is predicted adequately by
the model.) As such, the oral PD time course study is obviated. Sec-
ond, it can guide design of preclinical studies and clinical trials.
The predictions of Aβ time courses facilitate selections of appro-
priate doses and sampling time points to ensure the outcomes are
informative. We have been using this approach routinely to design
our studies in multiple preclinical species. The high quality of
the data from such studies has been appreciated internally. Third,
modeling and simulation is a useful tool for hypothesis testing.
While preclinical PK/PD characterization is often conducted in
an acute, single-dose setting, a chronic, repeated-dosing regimen
is generally clinically relevant. It is therefore necessary to assess
whether the PK/PD relationship shifts after repeated dosing. With
the null hypothesis of no shift, the simulations of Aβ profiles after
chronic treatment are then compared with observations from a
subsequent chronic preclinical study. The agreement or disagree-
ment between the two allows inference of failure to reject the null
hypothesis or not. These applications of the modeling and sim-
ulation ensure a return of informative data and knowledge on a
given resource investment.

SUFFICIENT EXPERIMENTAL DATA TO ENABLE PARAMETER
ESTIMATION
The utility of PK/PD modeling and simulation is contingent on
reliable estimation of the unknown parameters, kout, I max, IC50,
and γ, which, in turn, is driven by sufficiently informative data.
Note that “sufficiently informative data” is fundamentally differ-
ent from “lots of data;” rather, it is characterized by wide coverage
of the dynamic range (from minimal to near maximum lowering
of Aβ) and ample time course sampling points (capturing the

FIGURE 2 |The time courses of brain Aβ42 in the mouse after an oral
dose of a BACEi are predicted adequately using the PK/PD model with
the I max, IC50, γ, and k out determined from a separate study with
subcutaneous administration of the same compound. This example
demonstrates the predictivity of the PK/PD model suitable for enhancing
the discovery research.

effect onset and offset phases). Single-time-point dose – response
studies, commonly conducted for the BACEi, GSI, and GSM pro-
grams in the industry, carry less information because they only
capture a snapshot of whole time courses. In our practice, we have
de-prioritized dose – response studies and directed resources to
well-designed time course studies (Wang et al., 2010; Lu et al.,
2011, 2012a,b,c). While time course studies appear to require
more resources, we believe that the value that these studies bring
warrants the investment.

REACTIVE DATA COLLECTION VS.
PROACTIVE-KNOWLEDGE-ATTAINMENT
It is common that a discovery process is driven by identification
of key compounds. That is, once meeting certain criteria, a com-
pound is fully profiled for PK and PD properties. If a detrimental
liability is later identified, the compound, along with all the rele-
vant data, is then abandoned. As soon as another compound hits
the criteria, the next cycle starts. In this process, data are collected
reactive to the identification of presumably viable compounds,
and little systematic knowledge is accumulated along the way. The
insights from and uses of modeling discussed above stem from the
proactive-knowledge-attainment philosophy implemented in our
BACEi, GSI, and GSM programs. With this philosophy, a discovery
program can be executed in two phases: accumulating neces-
sary systematic knowledge using compounds of diverse properties
irrespective of their druggability, and applying the knowledge to
guide lead optimization, compound selection, and pharmacolog-
ical translation to the clinic. This strategy is likely to enhance the
efficiency of discovery research, and is of similar spirit to the pro-
posals by other researchers (Mager et al., 2009; Maurer, 2011; van
der Graaf and Benson, 2011).

SUMMARY
Small molecule BACEi, GSI, and GSM have been pursued as
potential disease-modifying drugs for AD. The preclinical pharma-
cological activities of these compounds are assessed primarily with
the reduction in brain and CSF Aβ. Complexities in the PK/Aβ data
for these compounds have been observed, and require improved
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approaches for analysis. Using a semimechanistically based PK/PD
model, we are able to characterize reasonably the in vivo PD prop-
erties of compounds and the relevant biological systems. This
characterization enables establishment of an integrative frame-
work for predicting a compound’s in vivo PD behaviors from
in vitro parameters. The proactive-knowledge-attainment philos-
ophy has driven the research operations of our BACEi, GSI, and
GSM programs. With intensive experimentation and modeling
analyses, we have achieved a plausible mechanistic understand-
ing of the apparent discrepancy of Aβ lowering profiles across
compartments and across species, and have been able to choose

suitable species, e.g., non-transgenic over Tg2576 mouse, rat over
guinea pig, for preclinical in vivo assessment. Given the values it
has brought, this proactive-knowledge-attainment philosophy is
expected to enhance our ability to select high quality compounds
for clinical testing.
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