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Abstract: Modern approaches to resuscitation seek to bring patient interventions as close as possible
to the initial trauma. In recent decades, fresh or cold-stored whole blood has gained widespread
support in multiple settings as the best first agent in resuscitation after massive blood loss. However,
whole blood is not a panacea, and while current guidelines promote continued resuscitation with
fixed ratios of blood products, the debate about the optimal resuscitation strategy—especially in
austere or challenging environments—is by no means settled. In this narrative review, we give a brief
history of military resuscitation and how whole blood became the mainstay of initial resuscitation.
We then outline the principles of viscoelastic hemostatic assays as well as their adoption for providing
goal-directed blood-component therapy in trauma centers. After summarizing the nascent research
on the strengths and limitations of viscoelastic platforms in challenging environmental conditions,
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we conclude with our vision of how these platforms can be deployed in far-forward combat and
austere civilian environments to maximize survival.

Keywords: viscoelastic testing; far forward; austere environment; resuscitation; goal-directed therapy;
whole blood; blood-component therapy

1. Introduction

Resuscitation in far-forward combat zones has its roots in the early 19th century based
on insights gained during the disastrous French invasion of Russia during the Napoleonic
wars. Grande Armée surgeon Dominique-Jean Larrey noted that injured soldiers who
were bivouacked nearest to campfires had higher rates of gangrene and death compared
to those who remained in colder locations. Larrey concluded that this phenomenon was
due to “asphyxia” of the affected limb(s), which could “preserve its life . . . if the cold was
removed by degrees, or if the person affected by it pass into a more elevated temperature by
degrees” [1]. In Larrey’s time, amputation was the definitive treatment for severe trauma.
Thus, hypothermic vasoconstriction was preferred because it resulted in less blood loss and
pain. Physiologist Walter Cannon noted a similar phenomenon during his experiences on
the Western Front in World War I, but took an opposite view on hypothermia. He believed
that patients should be kept warm to maximize perfusion until prompt surgical intervention
could definitively control bleeding [2]. Despite having no knowledge of coagulopathy,
he was an early proponent of whole-blood (WB) transfusion over saline-based infusions
because WB was “the most effective means of dealing with cases of continued low blood
pressure, whether due to hemorrhage or shock” [3]. From these and many other insights,
Cannon would go on to accurately describe the core mechanisms of hypovolemic shock,
many of which are still valid today [2,3].

Despite their delayed publication, Cannon’s views were widely shared during World
War I, and the US Army Medical Department quickly adopted citrated WB administra-
tion to combat shock. Early in World War II, plasma administration was initially used
in far-forward resuscitation techniques when WB could not be obtained. However, by
1945, plasma had completely replaced WB because WB was prioritized for pre-operative
stabilization. By the Korean War it was lamented by Dr. Walter L. Bloom, “how quickly the
World War II experience seemed to have been forgotten and how the tendency was again
evident to concentrate on agents other than WB in the management of combat and other
casualties” [4]. The difficulty of sourcing and storing sufficient quantities of WB and blood
products, as well as the high risk of hepatitis from transfusions, gradually led to an empha-
sis on crystalloid infusions to achieve targeted blood pressures in combat resuscitations
during the Vietnam War [4]. However, this technique was similarly prone to failure, largely
due to the poor understanding of the coagulopathy of traumatic blood loss. Post-Vietnam
War, experimental work by G.T. Shires in the late 1960s and early 1970s supported replen-
ishment of interstitial sodium with crystalloid, which promulgated standard ratios of 3:1 of
crystalloid to blood products [5,6]. Civilian Advance Trauma Life Support (ATLS) guide-
lines also incorporated this 3:1 ratio and recommended 2 L crystalloid at initial resuscitation
for hemorrhaging patients [4]. However, this recommendation was largely misapplied
and resulted in high mortality secondary to rapid dilution of coagulation factors that were
already depleted by severe trauma. Thus, far-forward combat methods of resuscitation
were primed for a paradigm shift back to balanced blood-component resuscitation [7].

The shift back to WB began in the early 1990s (Figure 1). A sentinel event by the US
Armed Forces in Somalia facilitated this transition. On 3 September 1993, a medical team
experienced a shortage of blood products while treating Spec. Edward J. Nicholson, a
soldier who was the victim of a severe shark attack off the coast of Mogadishu, Somalia.
The division immediately organized an emergency WB collection program under the
direction of Col. Denver Perkins. Unfortunately, Nicholson did not survive, but the
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division accumulated a stockpile of 120 units of WB. One month later, during the Black
Hawk Down incident, this stockpile was critical in early resuscitations at the October 3rd
Battle of Mogadishu [4,8]. This experience led the military to initiate an extensive review of
resuscitation protocols under Lt. Col. John Holcomb, which culminated with the inclusion
of WB use in the Army’s extensive third revision of the Emergency War Surgery handbook [9].

Concurrently, a civilian trial of 598 patients with hypotension secondary to penetrating
torso trauma showed that delaying fluid therapy until bleeding was surgically controlled
reduced overall mortality as well as in-hospital morbidity [10]. This and other work led
to a consensus statement in 2003 that directly challenged the role of crystalloid in early
trauma resuscitation [11], notably citing Cannon as an early critic of such resuscitation
strategies. From 2003 to 2005, during Operation Iraqi Freedom, the military was able to test
the strategies that had been developed since Somalia. Borgman et al. found that massive
resuscitation of military trauma patients with a 1:1 ratio of fresh frozen plasma (FFP) to red
blood cells (RBCs) resulted in a 60% reduction in mortality compared to patients treated
with a 1:8 ratio [12]. As the evolution of standard therapies progressed from crystalloid
driven protocols to fresh WB in the combat theatres of Iraq and Afghanistan, the ability of
forward-deployed medics to effectively collect and administer WB in the austere setting has
progressed. Use of WB is now embedded in far-forward military resuscitation strategies
for hemorrhaging patients [8,13].

The recognized improvements in outcomes from transfusion protocols that mirrored
WB led to a call for increased focus on addressing early coagulopathy in far-forward
resuscitation [14]. In 2008, Plotkin et al. published a landmark study that detailed how
viscoelastic hemostatic assays (VHAs) had been a better guide to predict coagulopathy and
the need for massive transfusion (MT) of injured soldiers in a combat hospital compared
to conventional coagulation assays (CCAs) (e.g., aPTT, PT/INR, fibrinogen, and platelet
count) [15]. This was the first study demonstrating the feasibility of using point-of-care
(POC) VHAs in the far-forward combat environment and suggested that WB protocols
may be augmented by individualized and goal-directed blood-component therapy (BCT)
guided by VHAs.

For the remainder of this review, “WB” refers to the complete range of WB storage and
processing types: warm-fresh WB, cold-fresh WB, and cold-stored (processed) WB. The
quality differences among these three storage methods of WB are beyond the scope of this
review. The definition of “WB” itself is not uniform and depends on local and institutional
standards for storage length and temperature, transfusion-transmitted infection screening,
leukoreduction, and antibody titer threshold. Military and civilian austere environments
traditionally rely on fresh WB, which is likewise not uniformly defined and largely depends
on the local transfusion specialists’ discretion. Warm-fresh WB for trauma resuscitation
is variably defined as blood stored at room temperature for a maximum of 24 h. Cold-
fresh WB is variably defined as refrigerated blood stored <48 or <72 h. Cold-stored WB is
refrigerated >48 h and up to 21 days at some centers [7,16–18].
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[24]. Initially, they were focused on straightforward civilian applications of lessons 
learned in military theaters—such as resuscitation during the transport of trauma patients 
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lishment of WB administration in far-forward combat and civilian austere and urban en-
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Figure 1. Brief overview of the evolution of trauma resuscitation since the early 1900s in military and
civilian settings [4,10,12,15,19–23]. ATLS, Advanced Trauma Life Support; BCT, blood-component
therapy; CCAs, conventional coagulation assays; MT, massive transfusion; ROTEM, rotational
thromboelastometry; TEG, thromboelastography; r-TEG, rapid thromboelastography.

2. Modern Resuscitation in Civilian Environments

In 2011, a worldwide collaboration between civilian and military personnel set out to
develop and implement improved protocols for severe trauma in challenging settings. The
initiative began as a collaboration between the North Atlantic Treaty Organization (NATO)
and the Norwegian Naval Special Operations Commands to establish remote damage
control resuscitation (DCR) for a rural prehospital WB program which was organized
under the title of Trauma Hemostasis and Oxygenation Research (THOR) Network [24].
Initially, they were focused on straightforward civilian applications of lessons learned in
military theaters—such as resuscitation during the transport of trauma patients in rural
settings—but over time they expanded their scope to include exotic settings such as civilian
maritime cruises where blood products and hospital services are lacking [24]. THOR
researchers have also pushed the field of resuscitation philosophically by arguing that
the benefits of ubiquitous use of O+ blood in resuscitation vastly outweighs the risks [25].
Numerous scientific contributions from different sources have added to the establishment
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of WB administration in far-forward combat and civilian austere and urban environments
commonly used today [24–31].

In 2020, approximately 24% of all level 1 trauma centers in the United States used
WB for resuscitation [32,33]. However, total WB utilization generally ranges from two
to six units during prehospital transport [34–36]. The largest United States survey of
8494 patients resuscitated for severe hemorrhage has recently confirmed that the number of
WB units given was a small fraction of the total number of units that patients received [37].
Specifically, of these 8494 patients, 280 received WB as an adjunct to BCT within the first
24 h of resuscitation. Only 1 unit of WB was given for 95% of the 280 patients and only 5%
received 2 units of WB. It is also generally given “blind,” in the sense that little is known
about the patient’s hemodynamic or coagulopathic state at the time of WB administration
aside from severe ongoing hemorrhage.

VHAs (thromboelastography [TEG®; manufactured by Haemonetics Corporation,
Boston, MA, USA] and rotational thromboelastometry [ROTEM®; manufactured by Werfen,
Barcelona, Spain]) allow physicians to augment the optimal standard of care with individu-
alized changes which is analogous to modern approaches to cancer that involve pharma-
cogenomics to find the individualized drug regimen. Following fixed ratio 1:1:1 guidelines
may lead to preventable deaths because trauma-induced coagulopathy (TIC) lies upon a
spectrum wherein several factors contribute to the individual patient’s hemostatic derange-
ment (e.g., presence of traumatic brain injury, penetrating or blunt mechanism, initial resus-
citation methods, time from injury, genetic hematologic makeup of the patient) [34,35,38,39].
In this light, the question is not whether VHAs should be employed in these settings, but
rather how early in the patient’s care VHAs can be used to improve outcomes in patients
needing resuscitation. Initial resuscitation with WB ideally occurs within the “golden hour”
or even within the “platinum 10 min.” For example, in the military soldiers receive blood
products from the “golden hour boxes” in the field as soon as possible after combat-related
injuries [40]. Shortly following initial resuscitation with WB, and once more advanced
medical support is available (e.g., at a battalion aid station or during air/ground transport),
VHAs may play a pivotal role in preventing death.

The Shock, Whole Blood, and Assessment of TBI (SWAT, NCT03402035), Pragmatic,
Prehospital, Type O, Whole Blood Early Resuscitation (PPOWER, NCT03477006), and
Type O Whole Blood and Assessment of Age During Prehospital Resuscitation (TOWAR,
NCT04684719) trials in the United States and the Sang Total pour la Réanimation des
Hémorragies Massives (STORHM) trial in France were initiated to definitively study the
role of WB [36,41,42]. Importantly, each of these studies will use VHAs to guide goal-
directed therapy after initial WB administration.

VHAs are uniquely positioned to provide important information at the time of WB
administration and during subsequent resuscitation [43]. Evaluation of trauma patients in
combat has revealed that early TIC is associated with mortality; in tandem, the earlier the
coagulopathy is addressed, the better the prognosis. There is a developing interest in using
VHAs to aid in goal-directed BCT of the bleeding trauma patient as close to the scene of
injury as possible, whether that injury occurred in the far-forward combat area, or the civil-
ian austere or urban environments [44,45]. Incidence of TIC has been reported in 24–36%
of all trauma admissions to the emergency department, further increasing the importance
and usability of POC VHAs in prehospital environments for improved results upon ar-
rival [46–50]. The use of versatile and portable VHAs in the urban environment have been
increasingly adopted for the immediate use in trauma resuscitation scenes and in studies
concerning prehospital resuscitation [51,52]. VHAs and to some extent CCAs, predict
mortality in far-forward combat and civilian austere or urban environments [44,53–60].

The use of VHAs to monitor transfusion requirements has been widely employed
in adult and pediatric trauma [61,62], liver transplantation [63], cardiac surgery [64,65],
traumatic brain injury [66,67], and postpartum hemorrhage [68]. VHAs have also shown
to be cost-neutral compared to CCAs [69]. However, despite VHA’s capability to provide



J. Clin. Med. 2022, 11, 356 6 of 20

timely information that enables goal-directed therapy, its use outside of operating theaters
and similarly controlled settings has generally been limited.

Recently, VHA-guided resuscitation was challenged by the implementing Treatment
Algorithms for the Correction of Trauma-Induced Coagulopathy (iTACTIC) trial [70]. This
trial demonstrated no significant difference in 28-day mortality between those patients
who received VHA-guided care versus standard therapy; yet many confounding variables
must be considered. First, there was a relatively low incidence of TIC in both groups
despite high injury severity scores. This was reflected by the low percentage of patients
who received MT under the traditional definition (defined as ≥10 units RBCs in 24 h).
Only 26% of patients in the VHA-guided group and 28% in the standard therapy group
received MT at 24 h post-injury. Therefore, one of the study limitations was a patient
population predominated by less acutely ill patients. Second, the study used a per-protocol
analysis that excluded patients who died within 60 min of CCA or VHA testing. Because
the study excluded patients who presumably died within or close to the golden hour, it
thereby excludes patients who may have derived the most benefits from early VHA-guided
resuscitation because the pathophysiology of TIC is best corrected by intervention within
the first few hours of injury [71]. Third, among the seven centers involved in the iTACTIC
trial, the authors reported challenges in achieving performance homogeneity with regard
to VHA-guided care. In tandem, this raises concern for the validity of the VHA-guided
group because there is a learning curve with any new test, such as VHAs, and thresholds
for administering BCTs vary based on hospital protocols and VHAs [72,73]. While some
centers had years of experience with VHAs in trauma, other centers only began VHA use
at the start of the trial. Finally, there was a high incidence of traumatic brain injury which
confounds causal links to death by exsanguination [67]. Consequently, VHA-guided BCT
for trauma remains controversial.

For the remainder of this review, we shall shift our focus to the two primary VHA
platforms, TEG®/ROTEM®, their capabilities and limitations, and current barriers to their
more widespread adoption. We will conclude with specific future applications of VHAs in
both far-forward combat and austere civilian environments.

3. Thromboelastography (TEG®) and Rotational Thromboelastometry (ROTEM®)

VHAs were first developed as WB assays based on work performed by Hartert after
World War II [74]. VHAs assess the entire coagulation cascade from clot initiation and
formation through clot termination including fibrinolysis. While both TEG® and ROTEM®

yield similar graphical outputs, their modalities differ in ways that are potentially signif-
icant under adverse environmental conditions, which are discussed later in this review.
Small technical and nomenclature differences exist between TEG® and ROTEM®. For exam-
ple, maximum clot strength is the surrogate endpoint measurement (maximum amplitude
[MA] on TEG® or maximum clot firmness [MCF] on ROTEM®). A decreased MA on TEG®

(or MCF on ROTEM®) may indicate transfusion of platelets or fibrinogen concentrates. A
prolonged reaction (R)-time on TEG® (or clotting time [CT] on ROTEM®) indicates coagu-
lation factor deficiency/aberrancy and may indicate treatment with plasma, prothrombin
complex concentrate, or factor concentrates. Results are generated in minutes and can be
interpreted in real time to provide information about the best course of treatment. There
are varying transfusion thresholds depending on the specific assay and activators and/or
inhibitors of coagulation used, whether in TEG® or ROTEM® [73,75–77].

VHAs represent venous flow in vitro and do not account for the high shear rates and
endothelial contribution of in vivo arterial flow. Thus, VHAs have not demonstrated sensi-
tivity to von Willebrand factor activation which occurs with exposure to subendothelial
collagen [78–80]. One recently described solution to account for these limitations of VHAs
has been microfluidic channels lined with animal endothelium [81]. This ex vivo method
may more accurately reflect vascular hemodynamics. Additionally, VHAs are not sensitive
to Factor Xa inhibitors, direct thrombin inhibitors, or warfarin without the addition of spe-
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cialized reagents [82–84]. Likewise, platelet receptor inhibition and antiplatelet medications
are only detectable by specialized assays such as TEG PlateletMapping® [85,86].

However, with the increased availability of highly reproducible POC devices such
as the TEG® 6 s, ROTEM® Sigma, ClotPro®, and Haemosonics Quantra®, prior operator-
dependent pipetting variability is being overcome. The recent US Food and Drug Adminis-
tration approval of the cartridge system-based TEG® 6 s specifically for trauma has also
paved the way for prehospital use [87–89]. Specifically, the TEG® 6 s is smaller, lightweight,
portable with a handle, and has a readout that occurs directly on the device screen. More-
over, the TEG® 6 s addresses the legacy TEG® 5000′s need for expert operators, titration of
reagents, and frequent recalibration [51,89–91].

4. TEG®/ROTEM® in the Far-Forward and Austere Environment

Trauma in the far-forward and austere environment differs from urban trauma in
several respects, the most significant of which is the difference in transport times. Urban
civilian populations generally have access to prompt emergency medical services, whereas
the conditions present in many military and civilian austere environments can often prevent
transport for hours to days. This is what initially led to the use of WB in far-forward
resuscitation strategies. However, as with urban settings, WB is given in these settings as
a default in the initial hour of resuscitation. Subsequent treatment generally follows set
blood product ratios coupled with CCA monitoring [92].

Military trauma specialists took note of their civilian colleagues’ use of VHAs and
employed VHAs throughout the Iraq and Afghanistan conflicts to impressive effect (sum-
marized in Table 1) [15,22,93–95]. For example, at the Bagram Airfield, Afghanistan, a
significant improvement in adherence to DCR 1:1 FFP: RBC guidelines was observed af-
ter the deployment of ROTEM® in the field [94]. Moreover, the ROTEM-guided group
received 2 times and 4 times as many units of platelets and cryoprecipitate, respectively.
No mortality benefit was detected between the two groups at 24 h or 30 d; however, the
optimization of BCT therapy when guided by ROTEM® did significantly decrease primary
cause of death by exsanguination within the first 24 h (p < 0.03).

Table 1. Summary of military literature investigating VHA-guided resuscitation.

Article Participants Type of Study and Setting Conclusions

Plotkin et al., 2008 [15] 44 military personnel with
penetrating injuries

Retrospective Observational
Setting: US Army Combat
Support Hospital in Iraq

TEG® as an adjunct to platelet counts and
hematocrit was more predictive of blood

transfusion than PT, aPTT, and INR together.
Specifically, a reduced MA on TEG® within 24 h
of admission correlated with more administered

blood products.

Doran et al., 2010 [93] 31 military personnel
(19/31 received MT)

Prospective Observational
Setting: United Kingdom
Military; Camp Bastion,

Helmand province, Afghanistan

ROTEM® is feasible in the military setting and
has a greater sensitivity for coagulation

abnormalities compared to PT and aPTT.

Prat et al., 2017 [94]
219 military personnel

(85 received ROTEM®-guided
transfusion)

Retrospective Observational
Setting: US Craig Theater

Hospital, Bagram Airfield in
Afghanistan

ROTEM® did not significantly improve
mortality or MT protocol activation. However,

the ROTEM®-guided group received significant
increases in PLT and CRYO transfusions (4× and
2×, respectively). ROTEM® increased adherence

to DCR protocol.
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Table 1. Cont.

Article Participants Type of Study and Setting Conclusions

Cohen et al., 2019 [95] 40 military casualties
Prospective Observational

Setting: NATO Hospitals in
Afghanistan

ROTEM® detected hemorrhagic coagulopathy
and need for MT with greater sensitivity than

INR alone. ROTEM® should be included in MT
protocols.

Lammers et al., 2020 [22]
3320 military personnel (594
received VHA-guided initial

resuscitation)

Retrospective Observational
Setting: US-led NATO Role III

Multinational Medical Unit

VHA-guided resuscitation was independently
associated with a decreased mortality (OR, 0.63;

p = 0.001) and a 57% reduction in overall
mortality (7.3% vs. 13.1%, p = 0.001).

aPTT, activated partial thromboplastin time; CRYO, cryoprecipitate; DCR, damage control resuscitation; INR,
international normalized ratio; MA, maximum amplitude (TEG® Parameter); MT, massive transfusion; PLT,
platelet; PT, prothrombin time; ROTEM®, rotational thromboelastometry; TEG®, thromboelastography; VHA,
viscoelastic hemostatic assay.

Additional studies have used ROTEM® to evaluate the longitudinal effects of DCR
on TIC in the combat setting [93]. One such study by Lammers et al. collected data
from 3320 patients who received far-forward resuscitation at the US-led NATO Role III
Multinational Medical Unit in Kandahar, Afghanistan between 2008 and 2016. Of those
3320 patients, 594 patients received goal-directed therapy that was guided by ROTEM® [22].
The use of ROTEM® allowed for more targeted treatments than those who received the
standard fixed ratio of blood products. Specifically, targeted treatments involved less
crystalloid and cryoprecipitate use during the first four hours of resuscitation. Additionally,
the ROTEM® cohort received more RBC units than the non-ROTEM® cohort. Accordingly,
the ROTEM® cohort had a higher percentage of patients who met the definition for MT
(more than 10 units of RBCs) compared to the non-ROTEM® cohort. As a result, the
ROTEM® cohort also received more plasma-rich resuscitation. In the end, those 594 patients
experienced significantly less coagulopathy, shock, and mortality than the non-ROTEM®

cohort [22].
Some results of Lammers’ study, such as the decreased use of crystalloid, were not

altogether surprising. However, other results, such as the preferential use of plasma over
cryoprecipitate and the number of patients requiring MTs, were unexpected. It has been
noted that these and similar results show that not all hemorrhages can be treated the same,
and a reliance on 1:1:1 paradigms may lead to preventable death [34].

The use of VHAs in combat and prehospital settings to help guide resuscitation has
unique logistics challenges. The preparation, handling, storage, and in-flight transport of
samples in special containers has also facilitated the widespread adoption of prehospital
assessment of hemostatic integrity of patients in need of resuscitation for severe hemorrhage.
In particular, the TEG® 6 s has been tested in ground transport and during simulated and
live aviation evacuation [51,96,97]. In these areas, newer generation VHAs (e.g., TEG® 6 s,
ROTEM® sigma) correlate well with the traditional VHAs [88,90,97–100]. However, the
correlation is not linear and is influenced by environmental factors such as temperature
and barometric pressure as well as aeromedical-induced vibratory interference [51,97,99].

As a result, these preliminary experiences demonstrated that prehospital assessment
of hemostatic integrity with VHAs is near at hand. For example, there has been a growth of
POC devices which provide reliable and portable assays for blood chemistry, coagulation,
and routine blood counts. Most recently, the importance of early detection of fibrinogen
contribution and/or deficiency in the pathophysiology of early TIC has demonstrated that
highly reproducible and portable assays for fibrinogen can be performed with 3–5 min and
are available for use in-flight [56,101].

The use of WB was first championed in the far-forward combat area by Cannon in
World War I, then in civilian austere environments, and now in urban environments. The
use of VHAs during the first step of patient care has continued to expand, whether at the
combat support hospital, the critical access hospital, or at the urban fixed trauma center.
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5. Considerations for TEG®/ROTEM® Platforms in the Field
5.1. Transport

Given that transport from the far-forward and austere environment can take con-
siderable time, en route [or prehospital] care is arguably the next best setting to develop
protocols for the use of VHAs. Prehospital VHAs in the far-forward combat and civilian
austere environment may be useful to guide (1) initial resuscitation before transport, (2)
resuscitation en route by air or ground transport, and (3) additional resuscitation on arrival
to the combat support or rural hospital [102]. Expansion of VHA use in the prehospital
setting as an adjunct to the administration of WB is necessarily limited by the reliability of
TEG®/ROTEM® under commonly encountered environmental insults. However, research
into these unique transport challenges is as nascent as the concept of using VHAs in the
far-forward venue (Table 2).

In 2019, Roberts et al. utilized a porcine trauma model to show that a TEG® 6 s
device operating during ground transport demonstrated results similar to those from a
control, stationary TEG® 5000 device [99]. However, a key difference between the transport
from far-forward and austere environments versus urban settings is that the former are
primarily air-based. Therefore, there has been recent interest in assessing the performance
and fidelity of VHA platforms on rotary and fixed-wing aircraft. In a simulation trial
with cartridge system TEG® 6 s, reliability of the tests for R, K, α-angle, and MA were
assessed during artificially generated vibration patterns that mimicked those experienced
during helicopter take-off, flight, and landing. It was suggested that future non-simulation
testing be conducted for the cartridge VHAs [96]. Additional testing in simulated [97],
non-human [99], and human [102] rotary flight environments showed that TEG® 6 s could
not be relied upon as an in-flight diagnostic tool. However, Bates et al. suggested that
samples could be drawn in-flight and used in the TEG®/ROTEM® platform immediately on
touch-down at the fixed trauma facility to guide continuing resuscitation efforts [102]. Yet,
in-flight blood draws are impractical in many situations, indicating the need for innovative
VHA technologies that use finger sticks. Additional prehospital studies are underway to
assess in-flight use of VHAs.

Introducing hospital-based resuscitation tools into the prehospital environment to test
their feasibility is not a new concept. Extracorporeal membrane oxygenation (ECMO) and
mechanical ventilation have been deployed in aeromedical evacuation from far-forward
combat support hospitals to advanced fixed facilities outside the military field (e.g., Land-
stuhl Regional Medical Center in Germany) [103]. However, there are often delays in this
process, and many patients who go on ECMO in far-forward combat hospitals would bene-
fit from earlier intervention [104]. This has led to recent calls for “ECMO packs” to be placed
in combat support hospitals to improve survival. However, such packs would introduce
further problems because ECMO patients are challenging to transport due to their hemody-
namic instability and hypercoagulability induced by ECMO [105,106]. TEG®/ROTEM® are
frequently cited in ECMO algorithms as useful adjuncts in guiding therapy for the spectrum
of coagulopathies induced by ECMO [107,108]. Therefore, widespread deployment of such
ECMO packs may likewise need to be accompanied by far-forward TEG®/ROTEM® kits to
provide adequate information for hemostasis therapy guidance.

Table 2. Summary of literature investigating environmental influence on VHA accuracy.

Article Participants Type of Study and Setting Conclusions

Cundrle et al., 2013 [109]
30 civilians treated with

hypothermia for ROSC after
cardiac arrest

Prospective Observational
Setting: St. Anne’s University

Hospital Brno, Czech Republic

Temperature adjustment for kaolin TEG® or
r-TEG® are of little clinical utility due to low

precision of TEG® measurements; in vivo
temperature TEG® analysis is unnecessary.

Hunt et al., 2015 [61] 430 military and civilian
(3 total studies)

Systematic Review and
Meta-analysis

Due to insufficient studies, the authors
found no evidence on accuracy of TEG® and
little evidence on accuracy of ROTEM® to
diagnose TIC when compared to PT/INR.
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Table 2. Cont.

Article Participants Type of Study and Setting Conclusions

Jeppesen et al., 2016 [110]
40 civilians treated with

hypothermia for ROSC after
OHCA

Prospective Observational
Setting: Aarhus University Hospital,

Denmark

At 33 ◦C, ROTEM® demonstrated a slower
initiation of coagulation compared to 37 ◦C.

The authors recommended that VHA
analyses be maintained at 37 ◦C regardless

of the patient’s body temperature.

Gill et al., 2017 [97] One healthy volunteer

Comparative Methodological
Analysis

Setting: Sydney Children’s
Hospitals Network, New South

Wales, Australia

With the TEG® 6 s, all measured parameters
were significantly different while testing was

subjected to motion.

Meledeo et al., 2018 [51] 3 healthy donors

Prospective Observational
Setting: US Army Institute Surgical
Research Blood Bank, San Antonio,

Fort Sam Houston, Texas

TEG® 6 s was more robust against motion
and temperature stresses compared to the
ROTEM® delta and TEG® 5000. TEG® 6 s
may be useful in austere environments.

Scott et al., 2018 [96]

148 TEG® 6 s samples
(72 AW139 Helicopter flight

simulators with CAE
3000-series, 76 ground)

Comparative Analysis
Setting: Toll ACE Training Centre,
Bankstown Airport, Sydney, NSW,

Australia

TEG® 6 s was a reliable test in rotary wing
flight conditions and demonstrated minimal

variance compared to stable ground tests.

Roberts et al., 2019 [99] 8 swine on venovenous
ECMO

Comparative Analysis
Setting: San Antonio Military

Medical Center, Fort Sam Houston,
Texas

TEG® 6 s during ground or aeromedical
transport is feasible; however, method

agreement was stronger at sea level and
while stationary compared to mobile ground

or altitude transport.

Bates et al., 2020 [102] 8 healthy donors

Prospective Observational
Setting: Gold Coast University

Hospital ICU, Gold Coast,
Queensland, Australia; and in a

LifeFlight Retrieval Medicine
operated Leonardo AW139

Helicopter

ROTEM® sigma and TEG® 6 s were
unreliable during flight, however remained
calibrated post-flight and provided sound

results over time.

Boyé et al., 2020 [45] 3 healthy donors
15 military ICU patients

Comparative Analysis
Setting: ICU of the Military Medical
Center Laveran (Marseille, France);

simulated vibration at 100 Hz;
simulated altitude of 8000 ft in a

hypobaric chamber

TEG® 6 s parameters at simulated 0 ft and
8000 ft were consistent for 9 of

13 parameters. TEG® 6 s showed promise
for aeromedical evacuation due to its ease of

use and reliability.

INR, international normalized ratio; OHCA, out-of-hospital cardiac arrest; PT, prothrombin time; r-TEG®, rapid
thromboelastography; ROSC, return of spontaneous circulation; ROTEM®, rotational thromboelastometry; TEG®,
thromboelastometry; TIC, trauma-induced coagulopathy.

5.2. Altitude

Rapid changes in altitude can have profound effects on physiology in general and coag-
ulopathy in particular. These changes can alter the baseline VHA results and consequently
their interpretation. In an early study of 17 healthy volunteers who ascended from sea level
to 5300 m, Martin et al. found that the TEG® parameters R and k increased by 2.74 min
(31%) and 2.59 min (107%), respectively; the α angle decreased by 6.1◦ (10%); and the
maximum amplitude (MA) remained unchanged [111]. These changes are consistent with
a hypocoagulable state, and a failure to account for these changes in either the far-forward
or austere environment could lead to inappropriately aggressive or delayed treatment. The
effects of full acclimatization on coagulation as measured by TEG® were reported in 2018,
by Rocke et al. [112]. In this study, 63 participants who resided at sea level ascended to
5200 m over 7 days. They initially became hypocoagulable, in agreement with Martin et al.,
but eventually they developed a hypercoagulable state, which agrees with epidemiological
data on stroke risk at high altitudes [113]. Lastly, the TEG®/ROTEM® platforms themselves
are susceptible to errors at barometric extremes. In a 2020 report, Boye et al. found that
a TEG® 6 s placed in a hypobaric chamber set to simulate ~2500 m of altitude differed
in output compared to a sea-level TEG® 6 s in 4 of 13 parameters [45]. Taken together,
such insights highlight the need for more research on the specific situational challenges of
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bringing TEG®/ROTEM® platforms to the far-forward and austere environment. These
data could make a notable impact on treatment strategies in such austere environments
as the Himalayas, where amateur mountaineering trauma is on the rise, and in the Hindu
Kush, a zone of potential conflict.

5.3. Hypothermia

Hypothermia is known to induce coagulopathy, and this can have a significant impact
on VHA output and interpretation. Several studies have shown that TEG® measurements
are significantly different from expected values in patients being treated for cardiac arrest
with therapeutic hypothermia [110,114]. Similar effects have also been reported in neonates
treated for hypothermia [115]. While these studies were performed in the hospital setting
in non-trauma patients, they have applications in austere settings as well. For example, the
number of trauma patients that arrive at the hospital with hypothermia has been estimated
at 23–67% [116,117]. Patients with hypothermia have the highest risk of morbidity and
mortality due to coagulopathy. In such cases, TEG®/ROTEM® assays can provide critical
information on the unique contributions of trauma and hypothermia to the patient’s
coagulopathy. However, some have raised the point that the VHA differences noted in
a patient progressing from a hypothermic to normothermic state are smaller than those
seen between repeat measurements of the same normothermic patient [109]. While this
temperature discrepancy was measured with the legacy TEG® 5000 platform, the early work
of Cundrle Jr. et al. showed that further research is needed to optimize TEG®/ROTEM®

operating conditions and output interpretation for hypothermic patients.

5.4. Time to Actionable Information

For nearly a decade, the TEG®/ROTEM® platforms have been known to produce
results faster than standard coagulation panels [21]. However, the “standard” TEG® utilizes
kaolin as an activating reagent of the intrinsic pathway, and the full test requires 30 min to
an hour to obtain the entire suite of outputs. This time is greatly reduced in the rapid-TEG®

(r-TEG®) protocol, which uses tissue factor and kaolin to activate the extrinsic pathway
and thereby reduce the reaction time (R) [118]. r-TEG® can produce all conventional TEG®

results within 15 min. Like all TEG® assays, the r-TEG® reagents are stable and stored at
2–8 ◦C (35.6–46.4 ◦F). Other groups have attempted to adapt predictive algorithms to obtain
the key results from standard TEG® assays based on early reaction conditions [119,120].
A more recent effort by Pressley et al. analyzed 873 r-TEG® readings and developed an
algorithm that could predict the need for transfusion of platelets or RBCs in 4 and 5 min,
respectively [121]. This work makes the cheaper and more accessible standard TEG®

arguably on par with the r-TEG® run time. However, there is still more to be done because
Pressley and coworkers could not predict LY30 or the need for plasma infusion using
this algorithm.

6. Future Direction
6.1. Towards a Common-Sense Approach to VHAs in the Far-Forward Setting

We were unable to find studies on the use of on-scene (pre-transport) VHAs in the
far-forward or austere environment. Additionally, there are no standard recommendations
for the immediate use of VHAs for patients given WB or BCT in the field, whether in
the combat, austere, or urban environments. However, studies in the prehospital urban
population are in process, and we expect those insights to be similarly adapted in the
far-forward environment as they have been in the past. While individual circumstances
may still present challenges that will require further study to mitigate, we broadly envision
VHA utilization in a stepwise manner in both far-forward and the austere environments
similar to that initially proposed by Bates et al. (Figures 2 and 3) [102].
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ronment. The hemorrhaging soldier is initially transfused WB (or fixed ratio) according to military
protocol and blood product availability. While being resuscitated and prior to evacuation, the medics
may obtain a blood sample and start the viscoelastic hemostatic assay (VHA). While the patient
is en route to the Battalion Aid Station, the VHA result from the far-forward is transmitted to the
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First responder medics obtain a blood sample and begin running a viscoelastic hemostatic assay
(VHA) at the site of injury, which likely will result while the patient is in transport. The VHA
result is transmitted to the Critical Access Hospital. Here, the austere VHA and new VHA upon
arrival to the Critical Access Hospital enables continued resuscitation comprising goal-directed
blood-component therapy.

However, with extensive experience at the most highly developed, efficient, and
mature evacuation systems in Afghanistan—where there was complete communications
and air superiority—military transfusion specialists understand that the transmission of
even basic information such as blood pressure and treatments given on scene be quite
challenging due to a lack of a ubiquitous communication system, multiple radio relays,
and difficult terrains. As such, the most reliable information about care in the far-forward
may typically be found on casualty cards written with permanent marker pen [13,122]. Sig-
nificant message degradation results over the multiple nodes of communication such that
when the patient arrives to the Battalion Aid Station, other than the occasional vital signs or
initial treatment on the casualty card, little information is available about prehospital course.
For this reason, VHA use on the scene is not feasible in the far-forward combat setting
at this time. At the Battalion Aid Station where resuscitation is continued, it is crucial
that VHAs be used as guide blood products as it would be done at any civilian hospital
regardless of size. The use of handheld VHAs, for which there are prototypes currently
under investigation [123], may allow POC testing at the scene by special operations medics
who may carry these tools in golden hour backpacks. For now, the initial use of VHAs in
the far-forward combat setting would be limited to the Battalion Aid Station where the
initial resuscitation occurs.

For example, we envision that at the initial site of trauma while emergency services
are administered and the patient is prepped for transport, the blood collected on scene will
be analyzed by r-TEG® (enhanced with either tissue factor or a rapid analysis package).
The information from this device will likely be completed before the transport is underway
and will therefore guide the medics for both initial resuscitation during transport as well as
the transport path. For example, if a patient’s VHA results showed that blood products
were indicated but were not available on the transport, a diversion to a nearer facility
may be more appropriate than to attempt the entire transport at once. Because VHA is
unlikely to be adapted to air transport in the near-term (and there are likely many ground
transport situations in far-forward and austere environments to which VHA is poorly
adapted), VHA would next be used either at the next physical stopping point or at the final
destination. Importantly, the blood sample can be run as soon as the transport is stationary,
which allows for reassessment of the patient’s coagulopathy much faster than traditional
testing. Should ECMO be indicated at this midway point, then VHAs also provide the most
rapid way of assessing the patient’s ECMO-induced hypercoagulability during transport.
Similarly, if a patient scheduled for aeromedial transport had a midpoint VHA indicating
that a patient’s coagulopathy required more immediate attention, then the flight plan could
be adjusted to obtain necessary blood products. Finally, it is important to note that this
paradigm is possible even with an unaugmented VHA platform. The device can simply
be left with far-forward personnel, who would then radio results to the aeromedical or
ground transport.

6.2. Conclusions

VHA use in the far-forward and austere environment is probably feasible in the near
future and may improve survival. However, it is clear from the literature review above that
more work must be done before VHAs can be relied upon in these settings. The logistics
of deploying VHAs on various platforms needs additional investigation. Similarly, it will
be necessary to elucidate the appropriate corrections needed to interpret the VHA results
obtained while in specific environmental conditions. Additional understanding of the
coagulopathies induced by altitude-related hypoxia, ECMO, and trauma will augment the
interpretation of VHA results. Because of the large number of unknowns, it is unlikely that
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the next steps will be high-powered randomized clinical trials. Instead, as with the lessons
learned by pioneers from Larrey and Cannon to Holcomb and military trauma specialists
in the modern era, advancements in the use of VHAs in the far-forward will come in the
form of individual practitioners applying state-of-the-art medicine to individual patients
according to each patient’s needs.
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Abbreviations

aPTT Activated partial thromboplastin time
BCT Blood-component therapy
CCA Conventional coagulation assay
CFT Clot formation time (ROTEM® parameter)
CRYO Cryoprecipitate
CT Clotting time (ROTEM® parameter)
DCR Damage control resuscitation
ECMO Extracorporeal membrane oxygenation
FFP Fresh frozen plasma
INR International normalized ratio

iTACTIC
implementing Treatment Algorithms for the Correction of Trauma-Induced
Coagulopathy (clinical trial)

K Clot formation time
LI30 Lysis index at 30 min (ROTEM® parameter)
LY30 Lysis at 30 min (TEG® parameter)
MA Maximum amplitude (TEG® parameter)
MCF Maximum clot firmness (ROTEM® parameter)
ML Maximum lysis
MT Massive transfusion
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NATO North Atlantic Treaty Organization
POC Point-of-care

PPOWER
Pragmatic, Prehospital, Type O, Whole Blood Early Resuscitation
(clinical trial)

PROPPER
Pragmatic Randomized Optimal Platelet and Plasma Ratios
(clinical trial)

PT Prothrombin time
R Reaction time (TEG® parameter)
RBC Red blood cells
ROTEM® Rotational thromboelastometry®

r-TEG® Rapid-thromboelastography®

STORHM Sang Total dans les Hémorragies Massives (clinical trial)
SWAT Shock Whole blood and Assessment of TBI (clinical trial)
TEG® Thromboelastography®

THOR Network Trauma Hemostasis and Oxygenation Research Network
TIC Trauma-induced coagulopathy

TOWAR
Type O Whole Blood and Assessment of Age During Prehospital
Resuscitation (clinical trial)

VHA Viscoelastic hemostatic assay
WB Whole blood
α-angle Alpha angle
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