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ABSTRACT: In materials informatics, a mathematical model constructed between the synthesis
conditions of materials and their properties and activities is used to design synthesis conditions in
which the properties and activities have the desired values. In process informatics, a mathematical
model constructed between the process conditions for devices and industrial plants and product
quality and cost is used to design process conditions that can produce the desired products. In this
study, we propose a method to simultaneously design the synthesis conditions of materials and the
process conditions of products by integrating materials and process informatics in the reverse
water-gas shift chemical looping (RWGS-CL) reaction, which produces CO from CO2 using metal
oxides via the RWGS-CL process. Four methods: Gaussian process regression-Bayesian
optimization (GPR-BO), Gaussian mixture regression−Bayesian optimization (GMR-BO),
GMR-BO-multiple, and GPR-GMR-BO were investigated for the optimization. All four proposed methods outperformed the
results of a random search. GPR-BO achieved the highest performance and proposed 27 promising candidates for the synthesis
conditions and metal oxides. The selected metals did not include Cu and Ga, which tended to have high predicted CO2 and H2
conversion rates, but Fe and La, which had slightly lower predicted CO2 and H2 conversion rates. These results indicate that a
combination of metal oxides with lower predicted CO2 and H2 conversion rates and optimized process conditions was important for
the optimization of both materials and processes, which was achieved by integrating materials and process informatics via the
proposed method. Thus, we confirmed that it is possible to simultaneously optimize the combination of metals, composition ratios,
synthesis conditions of the material or the metal oxide, and the process conditions using experimental datasets, process simulations,
and machine learning, such as GPR, GMR, BO, and multiobjective optimization with a genetic algorithm.

■ INTRODUCTION
Various chemicals are manufactured from fossil fuels, such as
crude oil, coal, and natural gas, using chemicals and polymers
such as ethylene and propylene. After use, some chemicals are
recycled; however, most are incinerated or landfilled. A large
amount of carbon dioxide (CO2) is emitted during the
manufacture and incineration of chemicals, which is known to
cause global warming.
Many efforts have been made to capture and recycle CO2

emitted from factories, power plants, and other sources. In this
study, we focused on the reverse water-gas shift chemical
looping (RWGS-CL) reaction,1 which produces carbon
monoxide (CO) from CO2 using metal oxides (MOx,
MOx−1) as oxygen carriers. The RWGS-CL reaction proceeds
via two separate half-reactions, as follows:

V+ +H MO H O MOx x2 2 1 (1)

V+ +CO MO CO MOx x2 1 (2)

The RWGS-CL reaction can achieve a higher efficiency than
the RWGS reaction because the reaction of H2O and CO
(water-gas reaction) is irreversible. In addition, a lack of
contact between H2 and CO prevents side reactions and
methanation. Furthermore, because H2O and CO need not be

separated, a distillation column need not be installed. The
RWGS-CL reaction can be used to investigate the effects of
metals such as Cu, Sr, La, Ca, Co, and Mn on perovskite
oxides2−7 and supports such as alumina and silica8−13 and
process analysis based on thermodynamic data,14 to find metal
oxides with high CO2 and H2 conversion rates and their
experimental and process conditions. However, because the
redox reactions in eqs 1 and 2 are repeated, the RWGS-CL
reaction is difficult to control, and the CO2 and H2 conversion
rates vary significantly with metal oxides and their synthesis
conditions. Owing to the trade-off between them, high CO2
and H2 conversion rates necessitate the development of metal
oxides and synthesis and process conditions.
Manufacturing the desired product via the RWGS-CL

reaction process requires metal oxide and process designs
and testing in pilot and actual plants. In recent years, both

Received: September 16, 2022
Accepted: November 22, 2022
Published: December 6, 2022

Articlehttp://pubs.acs.org/journal/acsodf

© 2022 The Authors. Published by
American Chemical Society

46922
https://doi.org/10.1021/acsomega.2c06008

ACS Omega 2022, 7, 46922−46934

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ryo+Iwama"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hiromasa+Kaneko"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.2c06008&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06008?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06008?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06008?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06008?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/7/50?ref=pdf
https://pubs.acs.org/toc/acsodf/7/50?ref=pdf
https://pubs.acs.org/toc/acsodf/7/50?ref=pdf
https://pubs.acs.org/toc/acsodf/7/50?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.2c06008?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


metal oxide15 and process designs16 have been conducted
using machine learning. A statistical model y = f(x) is
constructed using a dataset between x and y, which represent
the synthesis conditions and the properties and activities,
respectively, and the dataset is an experimental dataset in metal
oxide design. In models wherein x and y represent the process
condition and product quality, respectively, the dataset is a
simulation dataset in process design. By substituting various
values of x, such as synthesis and process conditions, into the
statistical model, property, activity, and product quality values
can be estimated without experiments and simulations.
Experiments and simulations are conducted only under
synthesis and process conditions that have desirable property,
activity, and process quality values, allowing an efficient search
for target synthesis and process conditions. However, in
conventional material and product development, the synthesis
conditions with the target property and activity values and
process conditions for the target process are designed
independently and separately. Thus, information on the
process is not considered while designing metal oxides and
that on the metal oxides is not considered during process
design, preventing the determination of promising synthesis
and process conditions from both perspectives and a global
optimum solution incorporating both material and process.
The objective of this study is to simultaneously optimize

metal oxides, their synthesis conditions for high CO2 and H2
conversion rates, and process conditions in an actual plant and
to integrate metal oxide and process designs. The synthesis
conditions of new metal oxides and process conditions were
proposed via the Bayesian optimization using a mathematical
model in which x represents the synthesis conditions and metal
oxide descriptors and y is the experimental CO2 and H2
conversion rates and another mathematical model in which x
represents the predicted results of the first mathematical model
and process conditions in the RWGS-CL process and y is the
target process requirement. Gaussian process regression
(GPR)17 and Gaussian mixture regression (GMR)18 are
regression model construction methods. The GPR model can
predict not only the y values but also their variance, by the
inputting x for which the experimental and simulation results
are unknown. From the prediction results, the x values with a
high probability of achieving the target process requirements
are predicted. The GMR model can directly predict x values by
inputting target y values into the model; this is called direct
inverse analysis.19,20 The process simulations of the RWGS-CL
were then conducted for the designed x values to obtain the y
values. By repeating the GPR and GMR model construction
for designing the x values, and the process simulations using
them, both the synthesis conditions of the optimal metal
oxides and the optimal process conditions for the target
process requirements were achieved via a few process
simulations.

■ RESULTS AND DISCUSSION
Data and Simulation. Figure 1 shows the RWGS-CL

process flow diagram.21 The raw materials, CO2 and H2, are
switched in the oxidation state of the metal oxide. The blue
and red arrows indicate the flow for the reactions in eqs 1 and
2, respectively.
Experimental data and descriptors of metal oxides, such as

Pymatgen22 and Materials project descriptors,23 were obtained
from a previous report,15 and regression models were
constructed to predict CO2 and H2 conversion rates as

previously reported.15 In the case of the CO2 conversion rate, x
represented the experimental conditions and Pymatgen and
materials project descriptors. For the H2 conversion rate,
represented the experimental conditions and Pymatgen
descriptors. The GPR models were constructed using transfer
learning. Figure 2 shows the results of double-cross-

validation24 for each prediction model construction method.
It was confirmed that GPR models can predict CO2 and H2
conversion rates with a certain degree of predictive ability, even
for new metal oxides. Using the GPR models, we predicted the
CO2 and H2 conversion rates at 500 and 650 °C and obtained
the reaction-rate equations shown in eqs 3 and 4, respectively.
All equipment and operating conditions were set as x for the

process conditions, based on the PFD shown in Figure 1.
Table 1 presents the process conditions and their ranges. The

flow rate of the product, CO, and the cost of production were
set to y. The cost was the sum of the construction, operation,
metal oxide, and feedstock costs, and y was calculated via a
process simulation based on the reaction-rate equations in eqs
3 and 4 and set as the process conditions.
Normally, target y values are set based on the performance

and cost required in a plant. However, in this study, to verify
the efficiency and effectiveness of the proposed method, 1000
samples of synthesis and process conditions were randomly
selected, and the Pareto optimal solution obtained from the

Figure 1. Process flow diagram of RWGS-CL. The blue, red, and
black lines represent H2O synthesis, CO synthesis, and common
flows, respectively.

Figure 2. Plots of the actual and predicted y in DCV. (a, b) Mean
CO2 conversion rate and H2 conversion rate, respectively.

Table 1. Settings of the Process Conditions

unit
place in
Figure 1

lower
limit upper limit

pressure of CO2 bar compressor 5 10
temperature of CO2 K HX 400 1.00 × 103

pipe length m PFR 1 6
inner diameter of the
pipes

m PFR 0.01 0.1

number of pipes PFR 10 3.00 × 103

pressure of H2 bar compressor 5 10
temperature of H2 K HX 500 1.00 × 103
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1000 simulations was set as the target y value. Figure 3 shows
the results of the 1000 simulations. The maximum and
minimum values of the red points, corresponding to the Pareto
optimal solutions in Figure 3a, were used as the target y values.
Thirty candidates for the synthesis and process conditions

were randomly selected as the initial dataset of x to construct
the GPR and GMR models. The simulations were run 30 times
to obtain the y values and construct the first GPR model in
GPR-BO or the first GMR model in GMR-BO between x and
y.

Design of Materials and Processes. In GPR-BO, the
GPR model was constructed using x as the experimental
condition, metal oxide features, CO2 and H2 conversion rates,
and process conditions and y as the CO flow rate and cost. The
results of the cross-validation evaluation showed that the CO-
flow and cost prediction models had r2 = 0.642 and 0.584,
respectively. After the model construction, 30 candidates for an
x with a high PTR were investigated using the non-dominated
sorting genetic algorithm (NSGA-II), and three candidates
were selected via D-optimal programming. Figure 4 shows the

Figure 3. Results of running simulations with randomly selected synthesis and process conditions. (a−c) Mean CO flow versus cost, CO flow per
simulation, and cost per simulation, respectively. The gray regions, gray points, red points, and yellow star represent the target ranges, randomly
selected samples, Pareto optimal set of gray points, and target point, respectively.
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results of 100 iterations of this process. The gray, red, and blue
points represent the random results, Pareto optimal solutions
for the gray samples, and GPR-BO results, respectively.
Although no samples reached the target point, as shown in
Figure 4a, we could propose candidates for x that exceeded the
Pareto optimal solution. As shown in Figures 4b,c, y values
closer to the target region were obtained with increasing
number of simulations, because the GPR model appropriately
evaluated the extrapolation regions of x and trained the
relationship between x and y near the target region. The two y
variables had a trade-off relationship, and the target y values

were realistically unattainable, making it more difficult for the
cost to converge than the CO flow rate. In an actual operation
using the proposed method, setting realistic target y values
would facilitate convergence.
Table 2 shows five examples of the 27 candidates that

exceeded the Pareto optimal solution and had relatively high
CO2 conversion rates. Table 3 shows the results for the metal
oxides that were found to have high CO2 and H2 conversion
rates. Oxides of metals containing 0.3−0.5 mole fractions of
Cu and Ga, the remaining being alkali metals or alkaline earth
metals, tended to yield high CO2 and H2 conversion rates. By

Figure 4. Results of running simulations with synthesis and process conditions selected via GPR-BO. (a−c) Mean CO flow versus cost, CO flow
per simulation, and cost per simulation, respectively. The gray regions, gray points, red points, yellow star, and blue points represent target ranges,
randomly selected samples, Pareto optimal set of gray points, target point, and samples selected via GPR-BO, respectively.
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simultaneously optimizing the synthesis and process con-
ditions, the metal oxides that did not achieve the highest CO2
and H2 conversion rates were selected because even metal
oxides with somewhat lower predicted CO2 and H2 conversion
rates could be optimal solutions if optimized simultaneously
with the process conditions. The candidates shown in Table 2
were also selected owing to a difference in the temperature
dependence. The difference in the CO2 conversion rate
between 500 and 650 °C for the candidates selected via
GPR-BO was 15−20%, while that for the candidates with
higher predicted CO2 and H2 conversion rates was 5−10%.
The GPR-BO candidates could convert the raw material CO2
without waste in the reaction kinetic equation. As indicated by
the process conditions of the proposed candidates in Table 2,
the process conditions often had minimum or maximum
values, owing to the characteristics of BO in the extrapolated
regions of x.
In GMR-BO, the GMR model was constructed using x as

the experimental condition, metal oxide molar ratio, and
process condition and y as the CO flow rate and cost. The
results of the cross-validation evaluation showed that both the
CO-flow and cost prediction models had r2 = 0.001. Although
highly predictive models could not be constructed, subsequent
data analysis was performed. After the GMR model had been
constructed, the target y values (CO flow = 8.3 kmol h−1; cost
= 13,500 $) were input, and a mixture of multivariate normal
distributions of x was output. Thirty candidates of x, with high-
probability-density constraints of the mixture of x were
investigated using GA, and subsequently three candidates
were selected using D-optimal programming. For the three
candidates, a process simulation was performed to obtain the y
values, and the GMR model was then updated. Figure 5 shows
the results of 100 iterations of this process. The gray, red, and
blue points represent the results of random selection, Pareto
optimal solutions of the gray points, and results of GMR-BO,
respectively. Although no samples reached the target point as
shown in Figure 5a, we could propose candidates that
exceeded the Pareto optimal solution; the reason for a smaller
number of candidates exceeding the Pareto optimal solution
than GPR-BO was that a GMR model with a high predictive

ability could not be constructed. However, as shown in Figures
5b,c, y values closer to the target region were obtained with
increasing number of simulations. Compared to Figures 4b,c,
the y values became more consistent and convergent with each
simulation, especially for the CO flow rate.
Table 4 shows that the results for the three candidates

exceeded the Pareto optimal solution for the GMR-BO. In all
three candidates, Fe, W, and Zr were chosen as the metals,
which would have affected the convergence of the y value in
Figure 5. From the candidates of the process conditions
proposed in GMR-BO, no minimum or maximum values were
obtained, whereas the candidates in GPR-BO reached
minimum or maximum values for the process conditions.
Realistic x values were designed instead of the maximum or
minimum values because the GMR model could account for
the correlation between the x variables of the dataset.
Fixed metals were proposed in GMR-BO because the target

y values were too far away from the training data; therefore, the
target y values were changed and set as multiple points. This
method is called GMR-BO-multiple. Three target y points
(CO flow [8.3 kmol h−1]; cost [$]) = (8, 25,000), (7, 19,000),
and (5, 15,000) were set near the Pareto optimal solution. The
GA was run 10 times for each target y point, and the samples
with the highest probability density value were selected,
resulting in a total of three candidates. For the three
candidates, a process simulation was performed to obtain the
y values, and the GMR model was then updated. Figure 6
shows the results of 100 iterations of this process. Although
Figure 6a indicates that no samples reached the target y point,
we could propose candidates exceeding the Pareto optimal
solution, with results similar to those shown in Figure 5.
Additionally, the metals were fixed, as was the case with GMR-
BO. Thus, the proposed metals were not fixed because of the
effect of the target y values.
Finally, we studied a method combining GPR-BO and

GMR-BO, called GPR-GMR-BO. In GPR-GMR-BO, two
candidates of x were selected via the GPR model and one via
the GMR model. The process simulation was run with a total
of three candidates of x to obtain the y values. The GPR and
GMR models were then updated based on the results of 100
iterations of this process, which are shown in Figure 7. The
gray, red, and blue points represent the randomly selected
results, Pareto optimal solutions, and GPR-GMR-BO results,
respectively. Although no samples reached the target y point, as
shown in Figure 7a, we could propose candidates that
exceeded the Pareto optimal solution. All samples that
exceeded the Pareto optimal solution were those proposed
via GPR-BO, while those proposed via GMR-BO had a
combination of metals fixed to Gd, Zn, and Zr. Although the
metal combination changed from Fe, W, and Zr to Gd, Zn, and

Table 2. Five Candidates in GPR-BO That Exceeded the Pareto Optimal Set of Randomly Selected Samples

metal ratios in metal oxides Mn0.01Fe0.02La0.97 Y0.31Zn0.42La0.27 Mn0.23Fe0.73W0.04 Ca0.03Fe0.87Bi0.10 Mg0.43Al0.44K0.13
CO flow [kmol/h] 6.45 7.24 7.2 7.38 7.66
cost [$] 1.66 × 104 2.46 × 104 1.92 × 104 2.34 × 104 2.40 × 104

CO2 conv. [-] 62.2 90.8 56 71.6 60.9
H2 conv. [-] 1.76 23.1 29.7 44 15
reactor length [m] 1 1 1.73 6 6
reactor diameter [m] 0.1 0.1 0.0463 0.0492 0.0492
number of tubes [-] 1.92 × 103 1.97 × 103 2.98 × 103 1.37 × 103 2.13 × 103

temp. (CO2/H2) [K] 1.00 × 103/1.00 × 103 1.00 × 103/500 1.00 × 103/1.00 × 103 500/500 500/1.00 × 103

pressure (CO2/H2) [bar] 8.00/5.00 8.00/5.00 8.00/5.00 8.00/5.00 8.00/5.00

Table 3. Candidates Whose Predicted CO2 and H2
Conversion Rates Were Both High

metal ratios in metal oxides CO2 conv. [-] H2 conv. [-]

K0.18Cu0.51Ga0.31 86.92 77.81
Mg0.17Cu0.45Ga0.38 86.93 76.20
Ca0.14Cu0.43Ga0.43 83.43 74.36
Cu0.47Ga0.34Sr0.19 84.97 69.22
Mn0.12Cu0.46Ga0.42 79.26 57.31
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Zr, there were no effects on the optimization efficiencies of
GPR-BO and GMR-BO. The metal combination was fixed to
Gd, Zn, and Zr in GMR-BO because the characteristics of the
metal oxides were not considered in the features of x, which is
an issue to be addressed in the future.
Table 5 shows five of the ten candidates that exceeded the

Pareto optimal solution in GPR-GMR-BO. Zr, which was not
selected via GPR-BO, was one of them, which could have been
owing to the influence of Gd, Zn, and Zr, which were selected
via GMR-BO. For the process conditions, the results with the
maximum or minimum values were fewer compared to the

GPR-BO results. As with the metal oxides, the process
conditions were also believed to have been affected by GMR-
BO.
The initial 30 samples for the four proposed methods were

changed five times for comparison. Figure 8 shows box plots of
the number of candidates that exceeded the Pareto optimal
solution. GPR-BO was the most stable among the four
proposed methods in terms of affording a large number of
promising candidates, because it properly evaluated the
extrapolation region of x by considering the variance of the
predicted y values, even in the initial dataset of 30 samples. In

Figure 5. Results of running simulations with synthesis and process conditions selected via GMR-BO. (a−c) Mean CO flow versus cost, CO flow
per simulation, and cost per simulation, respectively. The gray regions, gray points, red points, yellow star, and blue points represent target ranges,
randomly selected samples, Pareto optimal set of gray points, target point, and samples selected via GMR-BO, respectively.
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contrast, GMR-BO proposed more than 20 candidates only
once; however, it did not propose a stable number of
candidates, indicating that it was dependent on the initial
dataset.

■ CONCLUSIONS
In this study, we developed methods to simultaneously
optimize the components of metal oxides, their synthesis
conditions, and RWGS-CL process conditions to achieve
target values of CO flow and cost in the RWGS-CL process.
The synthesis and process conditions were designed
simultaneously using an adaptive design of experiments
employing various models for predicting the CO2 and H2
conversion rates from compositions of metal oxides and their
synthesis conditions and the CO flow rate and cost from
process conditions including the metal oxides used. GPR and
GMR were considered for model construction; GPR was used
as the regression analysis method in GPR-BO, and NSGA-II
was used to determine an x with a high probability of achieving
the target y values. Simulations were run using three candidates
of x with high probabilities, and if the targets were met, the
design was terminated; otherwise, the GPR model was updated
with the simulation results. In GMR-BO, the GMR model was
used as the regression analysis method: the target y values were
input into the GMR model, and a mixture of multivariate
normal distributions of x was output. GA was used to
determine constrained x values with high probability densities.
Simulations were run using the three candidates of x with the
highest probability densities, and if the targets were met, the
simulation was terminated; otherwise, the GMR model was
updated with its results.
In addition to GPR-BO and GMR-BO, GMR-BO-multiple

and GPR-GMR-BO were also discussed. In GMR-BO-
multiple, three target y values were selected near the Pareto
front optimum of the random selection. In GPR-GMR-BO,
two candidates for x were selected using GPR-BO and one
using GMR-BO. All four proposed methods outperformed the
results of the random search. Furthermore, GPR-BO achieved
the highest performance and proposed 27 promising
candidates for x. With an initial dataset of only 30 samples,
GPR-BO properly evaluated the extrapolation regions of x.
The selected metals did not include Cu and Ga, which tended
to have high predicted CO2 and H2 conversion rates, but Fe
and La, which had slightly lower predicted CO2 and H2
conversion rates. These results indicate that a combination
of metal oxides with lower predicted CO2 and H2 conversion
rates and optimized process conditions was important for the

simultaneous optimization of both materials and processes,
which was achieved by integrating materials and process
informatics via the proposed method.
Future studies may include the development of features for

accurately representing metal oxides and using features such as
x for improving the predictive ability of the model, predicting
new metal oxides, and achieving a high-performing design of
synthesis and process conditions. The proposed method may
efficiently determine superior synthesis and process conditions
for both material and process design. In future, this study may
be validated via experiments and manufacturing methods
employing the proposed candidates as the synthesis and
process conditions.

■ METHODS
Process Simulation. For the H2O synthesis process, the

raw material H2 was assumed to have been produced via the
electrolysis of water and to contain no impurities; H2 was
introduced under high temperature and pressure through a
compressor and heat exchanger and reacted with the metal
oxides in a piston-flow reactor (PFR) containing catalysts to
produce H2O. After the reaction, flash distillation was
performed under atmospheric pressure to separate the product
H2O from unreacted H2, which was purged and recycled as a
raw material.
For the CO synthesis process, the flow of the raw material,

CO2, which was assumed to have been separated from the
exhaust gas from factories and not contain impurities, was set
to 10 kmol h−1. CO2 reacts with metal oxides under high
temperature and pressure to produce CO, similar to H2. The
produced CO was shipped as a product after lowering the
temperature and pressure. The similarity of CO2 and CO
components increases the cost of separation; therefore,
separation is not conducted, and the reactants of CO and
CO2 are separated in the next process.
In the PFR, simulations were performed using the reaction

rate equation, the Arrhenius equation, as follows:

=k Ae E RT/ (3)

where A represents the frequency factor, E [J mol−1] the
activation energy of the reaction, R [J mol−1 K−1], the gas
constant, is set as 8.314, and T [K] is the temperature. By
taking the logarithm of both sides of eq 3, the following
equation is obtained:

=k A E
RT

ln ln
(4)

As indicated by eq 4, the relationship between ln k
calculated from the CO2 and H2 conversion rates and the
reciprocal of the reaction temperature 1/T is linear, E is
obtained from the slope − E/R, and the frequency factor A is
obtained from the intercept ln A.
Robustness is important when results are obtained by

inputting random data into the process simulator; therefore,
we used SimCentral and AVEVA process simulation
software.25 With AVEVA process simulation, we received an
error flag and discarded the results when the solution was
divergent and could not be obtained. In an iterative process, a
sequential simulator requires a long time to converge; however,
AVEVA process simulation affords a convergent solution
rapidly. In addition, x can be set as needed in the process
designs because the specifications can be freely changed.
Furthermore, AVEVA process simulation can be performed

Table 4. Three Candidates in GMR-BO That Exceeded the
Pareto Optimal Set of Randomly Selected Samples

metal ratios in metal
oxides Fe0.33W0.33Zr0.34 Fe0.35W0.33Zr0.33 Fe0.35W0.33Zr0.33

CO flow [kmol/h] 5.83 5.57 6.44
cost [$] 1.82 × 104 1.72 × 104 2.11 × 104

CO2 conv. [-] 56.35 56.87 57.05
H2 conv. [-] 33.64 1.76 23.07
reactor length [m] 2.26 3.04 4.29
reactor diameter [m] 0.0419 0.0234 0.0325
number of tubes [-] 694 881 941
temp. (CO2/H2) [K] 885/762 890/929 941/871
pressure (CO2/H2)
[bar]

6.26/7.39 7.11/7.08 6.37/6.32
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using JavaScript and automated in association with Python
programs, meaning that the proposed method can be easily
combined with AVEVA process simulation.
Gaussian Process Regression. GPR, a linear regression

analysis method, can be extended to the construction of
nonlinear regression models using kernel functions. GPR
models can predict y values and calculate their standard
deviation variance, allowing a discussion on the reliability of
the predicted y values.

Assuming the value of y in the ith sample to be y(i) and the
vector of x in the ith sample to be x(i) ∩ Rm (where m is the
number of descriptors or features), the relationship between
y(i) and x(i) can be given as follows:

= +y ex bi i i( ) ( ) ( ) (5)

where b ϵ Rm is a vector of regression coefficients and e(i)

represents the noise in y. Assuming the mean of each
regression coefficient to be zero, the regression coefficients

Figure 6. Results of running simulations with synthesis and process conditions selected via GMR-BO-multiple. (a−c) Mean CO flow versus cost,
CO flow per simulation, and cost per simulation, respectively. The gray regions, gray points, red points, yellow star, and blue points represent target
ranges, randomly selected samples, Pareto optimal set of gray points, target point, and samples selected via GMR-BO-multiple, respectively.
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to be independent, and the mean of y(i) to be zero, the
covariance σi,j

2 between y(i) and y(j) can be given as follows:

= +x xi j
i j

i j,
2

b
2 ( ) ( )T

, e
2

(6)

where σb2, σe2, and δi,j represent the variance of the regression
coefficients, variance of the noise in y, and delta of the
Kronecker, respectively.
When x is transformed by the non-linear function g, x(i) and

x(j) become g(x(i)) and g(x(j)), respectively. Then, eq 2 can be
transformed as follows:

= +g gx x( ) ( )i j
i j

i j,
2

b
2 ( ) ( ) T

, e
2

(7)

GPR uses the kernel function, K, as follows:

= +K g gx x x x( , ) ( ) ( )i j i j
i j

( ) ( )
b
2 ( ) ( ) T

, e
2

(8)

This study uses the following kernel function:

= +
lmono

|}o~o
K x x x x( , ) exp

2
i j i j( ) ( )

0
1 ( ) ( ) 2

2 (9)

Figure 7. Results of running simulations with synthesis and process conditions selected via GPR-GMR-BO. (a−c) Mean CO flow versus cost, CO
flow per simulation, and cost per simulation, respectively. The gray regions, gray points, red points, yellow star, and blue points represent target
ranges, randomly selected samples, Pareto optimal set of gray points, target point, and samples selected via GPR-GMR-BO, respectively.
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where θ0, θ1, and θ2 are the hyperparameters optimized using
the maximum likelihood estimation method. Equation 7 can
then be expressed as follows:

= +
lmono

|}o~o
x xexp

2i j
i j

,
2

0
1 ( ) ( ) 2

2 (10)

For an n number of samples in the training data, the y value
of the (n + 1)th sample can be predicted. The posterior
probability of the (n + 1)th value of y given n training samples
can be calculated using the multiplicative theorem of
probability. When the mean of y(n +1) is μn+1 and its variance
is σn+1

2, they can be calculated as follows:

=+ k K yn 1
T 1

(11)

=+
+ +K x x k K k( , )n

n n
1

2 ( 1) ( 1) T 1
(12)

where, y ϵ Rn, k ϵ Rn, and K ϵ Rn×n represent the vector of y in
the training data, vector of a kernel function between all
samples of the training data and the (n + 1)th sample, and
gram matrix of a kernel function between all the samples of the
training data, respectively. The GPR calculation used the
GaussianProcessRegressor26 from the scikit-learn library, and
the GPR models were constructed after autoscaling for both x
and y.
Gaussian Mixture Regression. The GMR is a regression

analysis approach that relies on the use of a Gaussian mixture
model (GMM) to construct a model that expresses a dataset
by superimposing multiple Gaussian distributions.
For a sample x ϵ Rm (where m is the number of variables in

x), the probability distribution function p(x) of the GMM is
given by

= |
=

p Nx x( ) ( , )
i

n

i i i
1 (13)

where n is the number of Gaussians and μi and Σi are the mean
vector and variance−covariance matrix of the ith Gaussian,
respectively. πi is the weight of the ith Gaussian that satisfies
the following conditions:

=
=

0 1, 1i
i

n

i
1 (14)

μi, Σi, and πi can be determined using the EM algorithm,
based on the log-likelihood function, as follows:

{ | } = |
= =

l
moo
noo

|
}ooo
~oo

p Nx xlog ( , , ) log ( , )
k

N

i

n

i k i i
1 1 (15)

where N is the number of samples.
In GMR, the joint probability distribution of x and y is

determined by calculating the GMM using a dataset that
combines sample y ϵ Rp of y (p is the number of y variables)
and sample x of x. Based on the probability-multiplication and
Bayes’ theorems, the y and x values can be predicted by
calculating the posterior probability distributions p(y|x) and
p(x|y), respectively, for given x and y, respectively. Essentially,
a direct inverse analysis of the model is possible.
Explicitly separating x and y into eq 13 generates the

following expression for the joint probability distribution of the
variables:

= [ ] [ ]
=

i

k

jjjjjjjj

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ

y

{

zzzzzzzzp Nx y x y( , ) ,
i

n

i i i
i i

i i1

x, y,
xx, yx,

xy, yy, (16)

where μx,i and μy,i are the mean vectors of x and y of the ith
Gaussian, respectively; Σxx,i and Σyy,i are the variance−
covariance matrices of x and y for the ith Gaussian,
respectively; and Σxy,i and Σyx,i are the covariance matrices of
x and y for the ith normal distribution, respectively.
The estimation of x from y corresponds to the determination

of the posterior probability distribution p(x|y) of x for a given
y, which can be transformed using the probability-multi-
plication and Bayes’ theorems, as follows:

Table 5. Five Candidates in GPR-BO That Exceeded the Pareto Optimal Set of Randomly Selected Samples

metal ratios in metal oxides Zr0.01Mo0.36Zn0.63 K0.01Fe0.01Zr0.98 Co0.26Zr0.62Nb0.12 Si0.01Ca0.01Fe0.98 Mg0.01Si0.02Fe0.97
CO flow [kmol/h] 5.08 5.34 7.21 7.86 8.06
cost [$] 1.56 × 104 1.53 × 104 2.18 × 104 2.34 × 104 2.50 × 104

CO2 conv. [-] 48.12 62.71 67.76 63.17 66.09
H2 conv. [-] 21.2 5.83 9.6 35.52 19.17
reactor length [m] 1.00 1.00 1.00 2.79 5.13
reactor diameter [m] 0.100 0.0966 0.100 0.0898 0.0998
number of tubes [-] 3000 3000 3000 1035 565
temp. (CO2/H2) [K] 1.00 × 103/1.00 × 103 1.00 × 103/977 1.00 × 103/1.00 × 103 991/1.00 × 103 1.00 × 103/1.00 × 103

pressure (CO2/H2) [bar] 5.00/8.00 5.00/5.92 8.00/5.00 8.00/8.00 5.00/8.00

Figure 8. Box plots of the number of candidates that exceeded the
Pareto optimal set of randomly selected samples. The green triangles
represent averages.
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where p(x|y, μy,i, Σyy,i) and wy,i represent the multivariate
Gaussian distribution of the estimated x value for the ith
Gaussian distribution and weight of the multivariate Gaussian
distribution, respectively. For p(x|y, μy,i, Σyy,i), the mean vector
mi(y) and variance−covariance matrix Si(y) are given as

= +m y y( ) ( )i i i i ix, y, yy,
1

yx, (19)

=S y( )i i i i ixx, xy, yy,
1

yx, (20)

Here, y can be estimated from x by swapping x for y.
The GMM calculation employed the GaussianMixture27

from the scikit-learn library, whereas the GMR calculation
relied on DCEKit.28

Genetic Algorithm (GA) and Non-dominated Sorting
GA (NSGA-II). The genetic algorithm (GA)29 mimics
biological evolution and searches for the optimal solution
from a large solution space. The GA performs optimization in
the following flow:
1. Generation of an initial population containing N
individuals

2. Calculation of the fitness of each individual
3. Selecting parent individuals according to their fitness
4. Conducting genetic manipulations, such as crossover
and mutation

5. Running steps 3 and 4 until N new individuals are
obtained to generate a child population

6. Running steps 2−5 a specified number of times (number
of generations)

Because multiple objective variables can be the fitness in the
GA, the non-dominated sorting genetic algorithm (NSGA-
II),30 which is an extension of GA to multi-objective
optimization problems, was used in this study. The NSGA-II
performs optimization in the following flow:
1. Generation of an initial population containing N
individuals

2. Calculation of the fitness of each individual
3. Ranking each individual by non-dominant and con-
gestion sorting

4. Selection of parental individuals via congestion tourna-
ment selection

5. Conducting genetic manipulations, such as crossover
and mutation

6. Running steps 4 and 5 until N new individuals are
obtained to generate a child population

7. Running steps 2−6 a specified number of times (number
of generations)

Herein, the GA and NSGA-II calculations employed the
DEAP library.31

Gaussian Process Regression-Bayesian Optimization
(GPR-BO). Using the dataset of the experimental and
simulation results, a GPR model was constructed between x,
which represented the synthesis conditions and metal oxide
characteristics, CO2 and H2 conversion rates, and process
conditions, and y, which represented the target process
requirements. By inputting the x values for unknown
simulation results to the GPR model, the predicted y values
and their variances were output. Based on the prediction
results, the next candidate for the simulation, x, was selected.
In Bayesian optimization (BO), an acquisition function was

calculated after the GPR models had predicted the y values,
whose variances were also calculated. Because y has target
ranges in this study, we used probability in the target range
(PTR)16 expressed in terms of probability to unify them into
an acquisition function. PTR is the probability of the predicted
y values falling within a target range of y. Considering a normal
distribution, in which the predicted y values and their variances
from the GPR models correspond to the mean and variance,
respectively, we integrated the normal distribution from the
lower limit of y, yLOWER, to the upper limit, yUPPER, and
calculated PTR. PTR(x(n+1)), which is the value of PTR for a
new sample x(n+1), is given as follows:
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+ +
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We first optimized x using NSGA-II and generated 30
samples of x to yield a high probability of eq 19 and
subsequently performed D-optimal programming32 to deter-
mine the next three samples to be simulated from the 30. The
three simulations were performed using the selected candidates
of x, and the GPR model was then updated using the three
samples of x and y�the simulation results. This was repeated
100 times, and the results were evaluated. The proposed
method is called “Gaussian process regression-Bayesian
optimization” (GPR-BO).
Gaussian Mixture Regression-Bayesian Optimization

(GMR-BO). Using the dataset of experimental and simulation
results, a GMR model was constructed between x, representing
the experimental conditions and metal oxide characteristics,
CO2 and H2 conversion rates, and process conditions, and y,
representing the target process requirements. The probability
distributions of x were estimated by inputting the target y
values into the GMR model. Considering the restrictions of x,
such as molar ratios, GA was used to determine the
constrained x values for which the probability density was
high.18 Thirty iterations of optimization with GA were
conducted to obtain 30 candidates of x, and D-optimal
programming was then performed to determine the next three
samples to be simulated from the 30. The three simulations
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were performed using the selected candidates of x, and the
GMR model was then updated using the three samples of x
and y, which represented the simulation results. This was
repeated 100 times, and the results were evaluated. This
method is called “Gaussian mixture regression-Bayesian
optimization” (GMR-BO).
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