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Abstract: α-Conotoxin TxIB specifically blocked α6/α3β2β3 acetylcholine receptors (nAChRs), and it
could be a potential probe for studying addiction and other diseases related to α6/α3β2β3 nAChRs.
However, as a peptide, TxIB may suffer from low stability, short half-life, and poor bioavailability.
In this study, cyclization of TxIB was used to improve its stability. Four cyclic mutants of TxIB
(cTxIB) were synthesized, and the inhibition of these analogues on α6/α3β2β3 nAChRs as well as
their stability in human serum were measured. All cyclized analogues had similar activity compared
to wild-type TxIB, which indicated that backbone cyclization of TxIB had no significant effect on its
activity. Cyclization of TxIB with a seven-residue linker improved its stability significantly in human
serum. Besides this, the results showed that cyclization maintained the activity of α-conotoxin TxIB,
which is conducive to its future application.
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1. Introduction

Nicotine acetylcholine receptors (nAChRs) are ligand-gated ion channels, which are key targets
for the treatment of depression, addiction, Parkinson’s disease, neuralgia, Alzheimer’s disease,
and cancer [1–5]. α6/α3β2β3 (α6β2*) nAChRs are highly expressed in the region of midbrain dopamine
(DA) neurons in the central nervous system, which regulates the release of dopamine [6]. Several
previous studies implied that α6β2* nAChRs were closely related to several neuropsychiatric disorders,
such as Parkinson’s disease and nicotine addiction [7–9].

α-Conotoxins, which were discovered from Conus venom, are known as competitive antagonists for
nAChRs. Some may have therapeutic potential [10–14]. Typically, α-conotoxins consist of 12–20 amino
acids, with four cysteines resulting in two loops, and they are classified based on their various loop
sizes [15,16]. Theoretically, four Cys residues can form three possible disulfide linkages, forming three
isomers, including globular (CysI-CysIII, CysII-CysIV), ribbon (CysI-CysIV, CysII-CysIII), and bead
(CysI-CysII, CysIII-CysIV) isomers [17]. In our lab, a novel α-conotoxin TxIB (α-CTx TxIB) was
discovered from Conus textile [18]. Its globular isomer specifically inhibits rat α6β2* nAChRs with an
IC50 of 28 nM but has no obvious effect on other subtypes of nAChRs. However, the bead and ribbon
forms of TxIB are inactive for α6β2* nAChRs [19]. Therefore, the globular TxIB could be developed as
a probe for studying the function and structure of α6β2* nAChRs, as well as neurological disorders,
for instance, nicotine addiction and Parkinson’s disease.
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Though α-conotoxins have been considered as useful pharmacological tools and drug leads,
they also confront the generic problems of peptides being easily hydrolyzed by proteases, as well
as having a short half-life and low bioavailability in vivo, thus affecting their pharmaceutical
potential [20–22]. Therefore, several chemical modifications have been approached to ameliorate
the metabolic stability of conotoxins, including cyclization, disulfide bond engineering, residue
substitutions, N-terminal acetylation, glycosylation, PEGylation, etc. [23–29]. Among these strategies,
the head-to-tail cyclization method was widely adopted to increase the ability of the peptide to
resist enzymatic degradation, due to the inability of the enzymes to access the N and C termini of
peptides [30]. Furthermore, the cyclic conotoxins also have greater conformational restrictions than
their linear counterparts [31]. Several conotoxins, including χ-CTx MrIA, α-CTx MII, ImI, Vc1.1, RgIA,
AuIB, and GeXIVA, have been successfully cyclized, and their stability has been improved to varying
degrees [32–38]. According to these studies, cyclic conotoxins were regulated by the properties of the
linker sequences, including the length and amino acid composition [39]. An appropriate linker length
contributes to preservation of the original structure of conotoxins, while the amino acid composition
may affect their activities.

In this research work, a cyclization strategy was selected to ameliorate the stability of TxIB in human
serum while preserving its biological activity for rat α6β2* nAChRs. Therefore, four TxIB analogues
were redesigned with four to seven residues in the linker region based on the distance between the
N- and C-termini of TxIB (Figure 1). These mutants were synthesized using Fmoc-based solid-phase
peptide synthesis (SPPS) on the 2-chlorotrityl chloride resin. Next, the effects of head-to-tail cyclization
were evaluated for activity and stability. Compared to native TxIB, the four cyclic analogues still
reserved similar activity. In addition, the stability of the analogue cTxIB-7 was improved significantly.
The results have proved again that N- and C-terminal cyclization is an effective strategy to enhance the
metabolic stability of conopeptides.
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Figure 1. Amino acid sequences of cTxIB-4, 5, 6, and 7. The red letters indicate the four different
linkers that were used to cyclize TxIB. The black bracket and connected line show the connection of the
N-terminal and C-terminal of TxIB. The labeled black lines denote the disulfide connectivity.

2. Results

2.1. Synthesis, Cyclization, and Oxidative Folding of TxIB (cTxIB)

All cyclic mutants were synthesized using standard SPPS on the acid-sensitive resin 2-chlorotrityl
chloride, and the specific synthetic procedure of these peptides is shown in Figure 2. Firstly, linear
peptides were produced using the standard Fmoc-SPPS (solid-phase peptide synthesis) method.
After that, the resin was cleaved by 1% TFA. Then, these linear peptides were cyclized using HATU
and DIEA in DMF. In this step, the reaction time was optimized to 3 and 6 h. The test results displayed
that the effect of cyclization in 3 h was better than that in 6 h (Supplementary Material Figure S1).
After 6 h of cyclization, more chemical by-products were produced, and it was difficult to separate
the target peak using preparative HPLC. In contrast, the target peak was easily detected after 3 h of
cyclization and it could be separated well.
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Then two pairs of disulfide bonds of cyclic analogues were connected by a two-step oxidation
method. The first disulfide bond was formed by treatment with 20 mM K3[Fe(CN)6], and the second
disulfide bond was produced by iodine oxidation. Finally, the purity of all cyclic peptides was
determined using RP-UPLC, and the molecular weights of these peptides were detected by ESI-MS
(Figure 3). Table 1 summarizes the theoretical and observed molecular weights of the intermediate and
final products.

Table 1. Theoretical and observed molecular weights of critical intermediates and final products
analogues. MS profiles of the intermediates are given in Supplementary Material Figure S2.

Name

Theoretical Molecular
Weight of Linear Peptide

(Da)

Molecular Weight after
Cyclization and Cleavage

(Da)

Molecular Weight after
Two-step Oxidation

(Da)

Theoretical Theoretical Observed Theoretical Observed

cTxIB-4 1997.24 2125.24 2125.32 1979.24 1979.28
cTxIB-5 2054.30 2182.30 2182.23 2036.30 2036.22
cTxIB-6 2125.37 2253.37 2253.81 2107.37 2107.11
cTxIB-7 2182.42 2310.42 2310.45 2164.42 2164.32
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Figure 3. RP-UPLC and mass spectrometry analysis of the final cTxIB-4, 5, 6, and 7. (a) RP-UPLC
chromatogram of cTxIB-4 with a retention time of 2.78 min; (b) ESI-MS data of cTxIB-4 with a mass of
1979.28 Da; (c) RP-UPLC chromatogram of cTxIB-5 with a retention time of 2.70 min; (d) ESI-MS data
of cTxIB-5 with a mass of 2036.22 Da; (e) RP-UPLC chromatogram of cTxIB-6 with a retention time of
2.69 min; (f) ESI-MS data of cTxIB-6 with a mass of 2107.11 Da; (g) RP-UPLC chromatogram of cTxIB-7
with a retention time of 2.67 min; (h) ESI-MS data of cTxIB-7 with a mass of 2164.32 Da.
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2.2. Electrophysiological Activity Measurements

To determine whether the activity of TxIB would be affected after cyclization, the activities
of four cyclic TxIB analogues were tested at α6β2* nAChRs expressed in Xenopus oocytes using
electrophysiological assays. All analogues were screened at a single concentration of 100 nM,
which was close to the IC50 of native α-conotoxin TxIB. The ND-96 solution was used as the negative
control. The rα6β2* ACh-evoked current amplitude mediated by the inhibition of the peptides is
shown in Figure 4. Relative to 42% inhibition of α6β2* nAChRs by TxIB, the inhibition of cTxIB-4,
cTxIB-5, cTxIB-6, and cTxIB-7 were about 35%, 42%, 48%, and 41%, respectively. All cyclized analogues
had similar activity compared to the wild-type TxIB, and the potency of them was not significantly
different from that of TxIB. Thus, the cyclization modification of TxIB does not impact the activity of
native α-conotoxin TxIB remarkably.
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Figure 4. The relative current amplitude of TxIB and cyclized analogues at a concentration of 100 nM
on rat α6/α3β2β3 nAChRs. The ND-96 solution was used as the negative control. Data points are
mean ± SEM (n = 3–4). Statistical analysis was according to one-way ANOVA; * p < 0.05, ** p < 0.01,
and *** p < 0.001 versus TxIB.

2.3. Serum Stability of Native TxIB and Its Cyclic Analogues

The stability of TxIB and its cyclic analogues was tested in human serum to determine the effects
of the cyclization modification. All peptides were incubated in human serum over 48 h at 37 ◦C.
The amount of degradation products was quantified by the peak area with absorption at 214 nm
using RP-UPLC. Native TxIB was cleaved rapidly in the initial stage, and approximately 42% TxIB
was degraded in the first 12 h. From 12 to 24 h, there was no significant change in the amount of
the remaining sample. Within 24 to 36 h, it was reduced by 34%. After 48 h, less than 20% of the
peptide remained. After 48 h, the remaining amounts of cTxIB-4, 5, and 6 were similar to that of TxIB,
indicating that their stability was slightly lower than that of TxIB. However, approximately 50% of
cTxIB-7 remained after incubation in serum for 48 h, proving that it had significantly better stability
than TxIB (Figure 5).

3. Discussion

α6β2* nAChRs regulate the release of dopamine and are important targets associated with a few
neuropsychiatric diseases, including Parkinson’s disease and nicotine addiction [6]. The α-conotoxin
TxIB selectively blocks α6β2* nAChRs while having no remarkable effect on other subtypes [18].
Consequently, TxIB can be used as a probe for studying α6β2* nAChRs, Parkinson’s disease,
and nicotine addiction.

Biopharmaceutical drugs, including proteins and peptides, have gained much interest because
of their high specificity, potency, and activity, and less toxicity compared to small molecules [40,41].
However, most peptides are easily degraded by proteases in vivo, resulting in low bioavailability,
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absorptivity, and short circulatory half-life [42,43]. Therefore, it is valuable to improve the bioavailability,
stability, and absorption of peptide drugs by chemical modifications, such as cyclization, disulfide
bond engineering, residue substitutions, N-terminal acetylation, glycosylation, PEGylation, etc. [23–29].
Cyclization of conopeptides has been proven as an effective strategy to stabilize the structure of
peptides and protect against endopeptidases. There are many naturally occurring disulfide-rich
macrocyclic peptides from animals, plants, and bacteria with exceptional stability [44]. The strategy to
cyclize conopeptides artificially was originally inspired by these natural molecules. Besides, cyclization
improved the protease resistance of several other peptide toxins, such as the scorpion toxin chlorotoxin
and the sea anemone toxin APETx2 [45,46]. Here, the head-to-tail cyclization method was recruited to
modify TxIB to improve the stability and maintain the potency of α6β2* nAChRs.
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Previous studies have demonstrated that linkers of appropriate size are important to retain the
original structure and biological activity of wild-type peptides. Hence, we chose four, five, six, or seven
amino acid residues to access the proper length of the linker based on the distance between N- and
C-termini. Native TxIB and four linker variants were tested on rat α6β2* nAChRs at a concentration of
100 nM. All cyclic analogues retained a similar potency compared to TxIB. The results demonstrated that
four linkers had no remarkable effect on the electrophysiological activity of TxIB. In addition, they also
indicated that the modification of TxIB by head-to-tail cyclization would not affect its biological activity.

To illustrate the stability of native TxIB and its cyclic analogues, they were incubated in male AB
human serum at 37 ◦C. cTxIB-4, cTxIB-5, and cTxIB-6 had similar proportions of the original peptides
remaining after 48 h in serum. On the contrary, about 50% of cTxIB-7 remained after 48 h, signifying
that there was a tremendous improvement in the stability of the cyclized mutant using a linker with
seven amino acid residues due to an increase of the structural rigidity of TxIB. The results indicated
that the length of the linkers would affect the stability of cyclic peptides obviously, so the length of
conotoxins should be considered according to their structure when they are ready to be cyclized.

A variety of conotoxins have been cyclized in the past (Table 2). Among them, α-Ctx MII was
the first conotoxin to be cyclized. The study indicated that the activity of cyclic MII mutants was
preserved with linkers of six or seven amino acids. Meanwhile, the stability of them improved in
human plasma [33]. Cyclic α-Ctx Vc1.1 with a six-residue linker had analgesic activity in a neuropathic
pain model through oral administration [35]. For α-Ctx RgIA, its cyclic variant with a seven-residue
linker inhibited α9α10 nAChRs with similar potency. Moreover, the six-residue and seven-residue
linker mutants were the most stable in human serum [36]. Similar results were shown in this work
compared to the above three conotoxins. These conotoxins contain some common characteristics in
that they are globular disulfide isomers and hold highly constrained structures, so the cyclic analogues
with long linkers have greater flexibility to reduce changes in the structure and hold their activity.
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Table 2. Summary of cyclic analogues of conotoxins.

Conotoxins Sequences Suitable Linkers Targets References

α-TxIB GCCSDPPCRNKHPDLC* GGAAGAG α6/α3β2β3 This study
α-MII GCCSNPVCHLEHSNLC* GAGGAAG α3β2 [33]
α-Vc1.1 GCCSDPRCNYDHPEIC* GGAAGG α9α10 [35]

α-RgIA GCCSDPRCRYRCR GGAAGAG/
GGAAGG α9α10 [36]

α-ImI GCCSDPRCAWRC* A/AG α3β2 [34]
α-AuIB GCCSYPPCFATNPDC* AG/AGGG/GGAA α3β4 [37,39]
χ-MrIA NGVCCGYKLCHOCAG AG NET [32]

αO-GeXIVA TCRSSGRYCRSPYDRRRR
YCRRITDACV GG α9α10 [38]

By contrast, several conotoxins with short linkers also improved the stability in serum or had a
high resistance to enzymatic degradation, including ImI, AuIB, MrIA, and GeXIVA (Table 2). Among
them, cyclic MrIA and GeXIVA with a linker of two amino acids hold similar activity and structure
compared with the wild-type peptides. All cyclic AuIB analogues lost or reduced their activity at
α3β4 nAChRs. Cyclic ImI with short linkers could resist trypsin degradation, but the activity of cyclic
ImI was not tested. Together, the N-to-C-terminal backbone cyclization is an effective approach that
stabilizes conotoxins to enhance their pharmaceutical potential, and the length of linkers depends on
the structure of conopeptides.

In conclusion, the head-to-tail cyclization had no significant effect on the potency of α-conotoxin
TxIB with a suitable linker at rα6β2* nAChRs and improved the stability in human serum. The results
highlight the value of N- and C-termini cyclization for improving the biopharmaceutical properties of
α-conotoxin TxIB and provide more useful support for the cyclization of other disulfide-rich peptides.

4. Materials and Methods

4.1. Reagents and Materials

Human serum was purchased from Sigma (St. Louis, MO, USA). Dimethylformamide (DMF),
dichloromethane (DCM), O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluoro
phosphate (HATU), diisopropylethylamine (DIEA), triisopropylsilane (TIPS), and other chemicals for
peptide synthesis were purchased from GL Biochem (Shanghai, China) and Applied Biosystems (Foster
City, CA, USA). Acetonitrile (HPLC grade) was obtained from Fisher Scientific (Pittsburgh, PA, USA),
and trifluoroacetic acid (TFA) from Tedia Company (Fairfield, OH, USA). Other reagents used were
analytical grade. Reversed-phase HPLC preparative C18 Vydac column (10 µm, 22 mm × 250 mm)
was obtained from Grace Vydac (Hesperia, CA, USA). ACQUITY UPLC BEH C18 Column (1.7 µm,
2.1 mm × 50 mm) was obtained from Waters (Milford, MA, USA).

4.2. Peptide Synthesis

Four linkers were designed to maintain the structure and native activity of TxIB, including GAAG,
GGAAG, GAGAAG, and GGAAGAG. All peptides were synthesized using standard Fmoc solid-phase
synthesis. TxIB was assembled on a Rink amide resin, while its analogues were prepared on an
acid-sensitive resin 2-chlorotrityl chloride. To form two correct disulfide bonds, cysteine residues were
protected in pairs with trityl (Trt) and acetamidomethyl (Acm). TxIB was deprotected and cleaved from
the resin by treatment with a reagent K (trifluoroacetic acid/water/ethanedithiol/phenol/thioanisole;
90:5:2.5:7.5:5, v/v/v/v/v) for 2 h. The analogues were cleaved from the resin using a reagent (1% TFA in
DCM, v/v) for 2 h. The released peptides were precipitated and washed three times with cold ether.
Then, the analogues were cyclized in DMF with 5 mM HATU and 10 mM DIEA for 3 h and dried.
The side-chain-protecting groups of the cyclic analogues except for acetamidomethyl (Acm) were
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removed by a solution (96% TFA/2% H2O/2% TIPS, v/v) for 1.5 h at room temperature. The released
peptides were precipitated and washed three times with cold ether.

All peptides were folded with a two-step oxidation protocol as described previously [18]. The first
disulfide bond was formed in potassium ferricyanide buffer (20 mM K3[Fe(CN)6], 0.1 M Tris-HCl;
pH 7.5) for 45 min. Then, the Acm groups were removed to form the second disulfide bond by iodine
oxidation for 15 min. The two-step oxidation products were purified by RP-HPLC on a reversed-phase
C18 Vydac column and the elution conditions were 5–40% buffer B within 45 min. Buffer A was
0.1% TFA in H2O and buffer B was 0.05% TFA in 90% acetonitrile. RP-UPLC was used to determine
the purity of the peptides with absorption at 214 nm, and mass spectrometry was used to identify
these products.

4.3. Electrophysiological Activity Measurements

The α6/α3 subunit is a chimera where the extracellular ligand-binding portion of the α6 subunit is
spliced with the remaining α3 subunit [47]. This chimera was used to model the α6β2* ligand-binding
domain because the injection of nonchimeric α6 with β2 fails to produce sufficient numbers of
receptors [48]. The plasmids of rat α6/α3, β2 and β3 nAChR subunits were linearized by corresponding
enzymes for in vitro cRNA transcription using the mMessage mMachine kit (Ambion, Austin, TX, USA).
The cRNA was purified using the MEGA Clear Kit (Ambion), and then the 60 nL of purified cRNA
was injected into oocytes with a Drummond microdispenser (USA). The oocytes were incubated at
17 ◦C with antibiotics during culture to prevent infection. After injection, the voltage-clamp recordings
were performed after culture for another 4 days. The oocyte chamber consisting of a cylindrical well
(50 µL in volume) was gravity-perfused at a rate of 2 mL/min with ND-96 solution (96.0 mM NaCl,
1.0 mM MgCl2, 2.0 mM KCl, 1.8 mM CaCl2, 5mM HEPES, pH 7.1–7.5) containing 1 µM atropine and
0.1 mg/mL bovine serum albumin. The oocyte was subjected once a minute to a 1-s pulse of 100 µM
ACh for α6/α3β2β3 nAChRs. When a stable baseline was obtained, either ND-96 alone or ND-96
containing varying different concentrations of the conotoxins was pre-applied for 5 min before the
addition of the ACh and recorded at room temperature (22 ◦C).

4.4. Stability Assays

Serum stability of TxIB and cyclized TxIB analogues were carried out in male AB human serum.
The serum was centrifuged at 14,000 g for 15 min to remove the lipids, and the supernatant was
incubated for 15 min at 37 ◦C before the assay. Triplicate peptide samples were dissolved in human
serum at a concentration of 100 µM and incubated at temperature of 37 ◦C. Then, the aliquots of each
peptide were taken out at 0, 12, 24, 36, and 48 h. Each aliquot was quenched with 6 M urea and
incubated for 10 min at 4 ◦C. Then, 20% TFA was used to precipitate serum proteins for an extra 10 min
at 4 ◦C. All aliquots were centrifuged at 14,000 g for 15 min, and the supernatant was analyzed by
RP-UPLC using a linear gradient of 5–30% buffer B for 5 min. Buffer A was 0.1% TFA in water and
buffer B was 0.05% TFA in 90% acetonitrile. The remaining peptides were quantified by the peak area.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/18/4/180/s1,
Figure S1: RP-UPLC profiles of the cyclic products. The red asterisk indicated the target peak. (a) reaction time 3 h
of cTxIB-6; (b) reaction time 6 h of cTxIB-6; (c) reaction time 3 h of cTxIB-7;(d) reaction time 6 h of cTxIB-7., Figure
S2: Mass spectrometry analysis of the intermediates of cTxIB-4, 5, 6 and 7. (a) ESI-MS profile of cTxIB-4 with a
mass of 2125.32 Da; (b) ESI-MS profile of cTxIB-5 with a mass of 2182.23 Da; (c) ESI-MS profile of cTxIB-6 with a
mass of 2253.81 Da; (d) ESI-MS profile of cTxIB-7 with a mass of 2310.45 Da., Figure S3: RP-UPLC chromatograms
of blank control and cTxIB-7. (a) blank serum; (b) a serum sample collected at 12 h after incubation of cTxIB-7 in
serum; (c) a serum sample collected at 48 h after incubation of cTxIB-7 in serum.
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