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Introduction: the investigation on the interactions between ferroptosis and

lncRNAs for lung squamous cell carcinoma (LUSC) has been scare, and its

impact on tumor immune microenvironment remained unknown. We aim to

not only identify a ferroptosis-related lncRNAs signature for LUSC prognosis,

but also evaluate its correlation to tumor immune evasion.

Methods: RNA sequencing data and survival information were obtained from

The Cancer Genome Atlas database. A ferroptosis-related lncRNAs signature

(FerRLSig) was developed and validated by univariate Cox regression, Least

Absolute Shrinkage and Selection Operator regression and multivariate Cox

regression. The tumor immune microenvironment and immune evasion were

subsequently evaluated based on the FerRLSig stratification.

Results: the FerRLSig consisted of 10 ferroptosis-related lncRNAs and

significantly associated with overall survival with satisfactory area under

curve (HR = 2.240, 95% CI: 1.845–2.720, p < 0.001, 5-years AUC: 0.756).

Based on the FerRLSig stratification, the high-risk group demonstrated not

only significantly higher immune infiltration, but also more profound T cell

dysfunction and immune evasion, which might ultimately lead to the resistance

to current immune checkpoint inhibitors.

Conclusion: a robust prognostic FerRLSig for LUSC has been developed and

validated, demonstrating a close association not only with tumor immune cell

infiltration, but also with T cell dysfunction and immune evasion. Further

investigation is warranted to better improve the survival of LUSC patients

based on the FerRLSig stratification.
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Introduction

Lung cancer has been the top one cause of cancer death with

one of the highest incidence rates second only to breast cancer

worldwide (Sung et al., 2021). Lung squamous cell carcinoma

(LUSC) accounts for approximately 20% of all lung cancer cases

and constitutes the bulk of non-small cell lung cancer with lung

adenocarcinoma (Barta et al., 2019). There has been numerous

effective targeted therapies for lung adenocarcinoma, which has

significantly prolonged the survival of lung adenocarcinoma

patients with certain mutations (Sordella et al., 2004; Solomon

et al., 2014; Ramalingam et al., 2020; Shaw et al., 2020; Wu et al.,

2020). Moreover, a large number of researches have utilized the

transcriptome data of lung adenocarcinoma to build various

prognostic and predictive tools, to derive useful risk stratification,

and to provide valuable insights on the development of sensitive

drugs (Guo et al., 2021; Lu et al., 2021; Zheng et al., 2021).

However, compared to lung adenocarcinoma, LUSC lacks

effective targeted therapy and is generally less well-defined in

terms of gene expression profile.

On the other hand, tumor immune evasion has been

identified as one of the hallmarks of cancer and closely related

to the tumor immune microenvironment (Hanahan and

Weinberg, 2011; Gajewski et al., 2013). And fortunately,

immune checkpoint inhibitors tackling tumor immune

evasion have made remarkable breakthroughs in LUSC and

significantly improved the LUSC patients’ survival (Brahmer

et al., 2015; Paz-Ares et al., 2018). But still some LUSC

patients were resistant to the current treatments including

immunotherapy, leading to intractable progression or relapse,

and ultimately cancer death. Multiple studies have identified

increased CD8+ T cell infiltration as a favorable prognostic factor

(Lee and Ruppin, 2019; Morad et al., 2021). However, T cell

dysfunction has also been recognized as an important

mechanism of immunotherapy resistance (Thommen and

Schumacher, 2018). Therefore, further evaluation of the LUSC

gene expression pattern’s impact on tumor immune

microenvironment and immune evasion are still needed for

LUSC patients.

Ferroptosis is an iron-dependent, oxidatively regulated cell

death activated by extrinsic blockade of the cystine/glutamate

transporter or intrinsic blockade of intracellular antioxidants.

Recent studies have demonstrated that ferroptosis plays a

significant part in tumorigenesis and various treatment

sensitivity, thus might be a useful tool in cancer prognosis

and patient stratification (Dixon et al., 2012; Chen et al.,

2021). Moreover, long non-coding RNA (lncRNA), with more

than 200 nucleotide and without functional protein translation,

has been found to be closely related to tumorigenesis and tumor

progression via ferroptosis in recent studies (Mao et al., 2018;

Wang et al., 2019; Zhang et al., 2020; Statello et al., 2021).

Therefore, interactions between ferroptosis and lncRNAs are

likely to be critical to overcome cancer progression. However,

investigation on the ferroptosis-related lncRNAs signature on

LUSC has been scare and its impact on tumor immune

microenvironment remained unknown, thus warranting

further investigation.

In this study, we utilized The Cancer Genome Atlas database

on lung squamous cell carcinoma (TCGA-LUSC) (Cancer

Genome Atlas Research Network, 2012), and we aimed to

develop a ferroptosis-related lncRNAs signature for LUSC

prognosis. Furthermore, explorations on tumor immune

microenvironment, tumor immune evasion and T cell

dysfunction were also performed based on the FerRLSig

stratification.

Materials and methods

Data acquisition

RNA sequencing data of TCGA-LUSC patients and all

available clinical data were downloaded from the Genomic

Data Commons portal (https://portal.gdc.cancer.gov/)

(Grossman et al., 2016). Overall survival (OS) was calculated

from the time of lung cancer diagnosis to the time of death or the

last follow-up. Patients with incomplete survival information or

with OS less than 30 days were excluded.

This is a retrospective study based on publicly available

TCGA database. The Ethics Committee of our hospital has

confirmed that no additional ethical approval or informed

consent is required.

A list of 108 validated ferroptosis genes was obtained from

FerrDb database (http://www.zhounan.org/ferrdb) (Zhou and

FerrDb, 2020). LncRNAs was identified in TCGA-LUSC RNA

sequencing data through GENCODE annotation (https://www.

gencodegenes.org/) (Frankish et al., 2021). The correlations

between 108 ferroptosis genes and the lncRNAs expression in

the entire set of TCGA-LUSC were analyzed with Pearson’s

correlation, and 4,259 ferroptosis-related lncRNAs were

identified by the selection criterion of |Pearson R|) > 0.3 and

p < 0.001 with any one of the 108 ferroptosis genes.

Development and validation of the
ferroptosis-related LncRNAs signature

The TCGA-LUSC patients were randomized into a training

set and a testing set by the “caret” R package at the ratio of 7:3

(Kuhn, 2008). The FerRLSig was established with the training set

while the validation was performed with the testing set and the

entire set. Univariate Cox regression, Least Absolute Shrinkage

and Selection Operator (LASSO) regression andmultivariate Cox

regression were applied in order to establish the final FerRLSig

while avoiding overfitting with cross-validation (Friedman et al.,

2010). The correlation between FerRLSig lncRNAs and
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ferroptosis genes was further visualized in both heatmap and

Sankey diagram. The risk score of every patient was calculated as

∑n
i�1Coef(i) × Expr(i) , with Coef(i) and Expr(i) representing

the regression coefficient and expression level for each FerRLSig

lncRNA respectively. The entire set of TCGA-LUSC patients

were stratified into low-risk and high-risk groups by the median

of the calculated risk scores.

Further evaluation of the FerRLSig and
establishment of the prognostic
nomogram

The prognosis effect of the FerRLSig was further evaluated

with Kaplan–Meier survival plot, subgroup analysis by universal

clinical characteristics, correlation with universal clinical

variables, univariate and multivariate Cox regression, and the

area under the receiver operating characteristic curve (AUC). In

addition, the discriminative ability of the FerRLSig was further

evaluated through the comparison to the Principal component

analysis (PCA) and the t-distributed stochastic neighbor

embedding (t-SNE).

A nomogram incorporating the FerRLSig, age, gender and

TNM stage, was developed to visualize the prognostic model

and facilitate its clinical application for the OS of LUSC

patients. The prognostic power of the nomogram was

evaluated with AUC curves at 1, 3, and 5 years’ OS,

calibration curves were also plotted and visually assessed.

Furthermore, decision curve analysis (DCA) was also

conducted to demonstrate the actual net benefit gain of the

nomogram (Vickers and Elkin, 2006).

Tumor immune microenvironment
exploration and drug sensitivity screening
based on the FerRLSig stratification

To analyze and compare the tumor immune

microenvironment based on the FerRLSig stratification,

xCell and ESTIMATE were both applied to inferred the

immune and stromal cell infiltration (Yoshihara et al., 2013;

Aran et al., 2017). In addition, to further characterize the

potential underlying molecular pathways, gene set enrichment

analysis (GSEA) was performed to identify the significantly

enriched pathways in low-risk and high-risk groups

respectively. The hallmark gene sets and C5 gene sets from

the Gene Ontology (GO) were downloaded from the

Molecular Signatures Database as the reference files

(Subramanian et al., 2005). A nominal p value < 0.05 and a

false discovery rate (FDR) q value < 0.25 were set as the

statistically significant thresholds for GSEA GO analysis.

Moreover, the expression level of several immune

checkpoints and immune inhibitory factors, including

CCL2, CD274 (PD-L1), CTLA4, CXCR4, IL6, LAG3,

PDCD1 (PD-1), and TGFB1 were compared between low-

risk and high-risk group. To further evaluate the predictive

application for immune checkpoint inhibitors of the FerRLSig,

TIDE score were compared between low-risk and high-risk

groups (Fu et al., 2020). Furthermore, drug sensitivity

screening was also performed with the 198 compounds

available from the Genomics of Drug Sensitivity in Cancer

(GDSC) database (Yang et al., 2013). And the half-maximal

inhibitory concentration (IC50) of the available compounds

on low-risk and high-risk groups was extracted with the

Oncopredict R package (Maeser et al., 2021).

Statistical analysis

Discrete variables were described as counts and percentages,

their differences between groups were statistically evaluated with

Pearson chi-square test or Fisher’s exact test (any expected values

less than 5). On the other hand, continuous variables were

described as median, mean and/or interquartile range, and

their differences between groups were compared with

Mann–Whitney–Wilcoxon test.

All statistical analyses and visualizations were performed

with R version 4.1.0 (http://www.R-project.org) and

corresponding packages. The Kaplan-Meier method was

utilized in survival analysis and survival curves were

compared with log-rank test. Two-sided p < 0.05 was

considered statistically significant.

Results

Development and validation of the
FerRLSig

In total, 493 patients with RNA sequencing data were

downloaded from the TCGA-LUSC database, and

473 patients with necessary survival information were

included and randomly assigned into training set and

testing set by the ratio of 7:3 as demonstrated in the study

workflow (Figure 1). The mean age of the patients in the entire

set was 67 years old, 74.2% were male, 71.0% were Caucasian

and 67.7% were early stage (I-II). No statistically significant

difference was found between the training set and the testing

set (Table 1). In the entire set, 4,259 lncRNAs were

significantly correlated with any one of the 108 ferroptosis

genes (|Pearson R|>0.3 and p < 0.001, Supplementary Figure

S1A), among which 43 were significantly associated with OS

by univariate Cox regression in the training set (p < 0.01,

Figure 2A). Within the training set, 21 ferroptosis-related

lncRNAs were further identified as significant prognostic

factors via LASSO regression with the λ set at lambda. min
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FIGURE 1
Flow chart of this study; *FerRLSig: the ferroptosis-related lncRNAs signature.

TABLE 1 The baseline characteristics of LUSC patients in TCGA database.

Subgroups Total, n = 473 Training set, n = 332 Testing set, n = 141 p Value

Age, mean(SD) 67 (9) 67 (8) 67 (9) 0.807

Gender, n (%) Female 122 (25.8) 83 (25.0) 39 (27.7) 0.624

Male 351 (74.2) 249 (75.0) 102 (72.3)

Race, n (%) Caucasian 336 (71.0) 228 (68.7) 108 (76.6) 0.104

Other ethnicities 137 (29.0) 104 (31.3) 33 (23.4)

Stage, n (%) I-II 320 (67.7) 217 (65.4) 103 (73.0) 0.260

III 74 (15.6) 56 (16.9) 18 (12.8)

IV 79 (16.7) 59 (17.8) 20 (14.2)

T, n (%) T1 108 (22.8) 71 (21.4) 37 (26.2) 0.587

T2 276 (58.4) 200 (60.2) 76 (53.9)

T3 68 (14.4) 46 (13.9) 22 (15.6)

T4 21 (4.4) 15 (4.5) 6 (4.3)

N, n (%) N0 300 (63.4) 204 (61.4) 96 (68.1) 0.320*

N1 125 (26.4) 89 (26.8) 36 (25.5)

N2 39 (8.2) 31 (9.3) 8 (5.7)

N3 9 (1.9) 8 (2.4) 1 (0.7)

M, n (%) M0 393 (83.1) 272 (81.9) 121 (85.8) 0.369

M1 80 (16.9) 60 (18.1) 20 (14.2)

*p value of fisher’s exact test for at least one expected count less than 5.
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that gave the minimum mean squared error (Figures 2B,C).

The final FerRLSig was established with multivariate Cox

regression, consisting of 10 lncRNAs (Figure 2D). The

correlation between FerRLSig lncRNAs and ferroptosis

genes were visualized in both heatmap and Sankey diagram

for the entire set (Supplementary Figures S1B,C). The training

set was divided into high-risk group and low-risk group by the

median of the FerRLSig. Compared to low-risk group, high-

risk group had evidently more death event and shorter overall

survival time (Figure 3A). Within the FerRLSig, RP11-65J21.3,

ST3GAL5-AS1, ADAMTS9-AS2, RP5-940J5.8, RP11-

535M15.1, and RP1-32I10.10 were over-expressed in the

high-risk group with positive coefficients and classified as

risk promoters. On the other hand, RP11-1085N6.3, KB-

1836B5.4, LCMT1-AS1, and LINC01426 were over-

expressed in the low-risk group with negative coefficients

and classified as risk inhibitors (Figure 3A; Supplementary

Figure S1C). And the final FerRLSig Formula equal to

0.305*(RP11-65J21.3) + 0.934*(ST3GAL5-AS1) + (−1.366)

*(RP11-1085N6.3) + 1.942*(ADAMTS9-AS2) + 1.674*(RP5-

940J5.8) + (−0.331)*(KB-1836B5.4) + (−1.229)*(LCMT1-AS1)

+ 0.404*(RP11-535M15.1) + (−0.572)*(LINC01426) +

1.365*(RP1-32I10.10). The high-risk group was significantly

associated with worse OS compared to low-risk group in

the training set (HR = 3.345, p < 0.001, Figure 3C). For

validation, the same model was applied to the testing

set and the entire set, all FerRLSig lncRNAs demonstrated

similar expression profiles in the high-risk and the low-risk

groups. In addition, the high-risk group in both testing and

entire set was also significantly associated with worse OS

compared to low-risk group (testing set HR = 2.290, p <
0.001, Figures 3B,D; entire set HR = 2.606, p < 0.001,

Supplementary Figure S2).

Evaluation of the FerRLSig and the
establishment of prognostic nomogram
with the FerRLSig

To compare the whole expression profile and the FerRLSig,

both PCA and t-SNE were applied to the RNA sequencing of

the entire set and annotated with the FerRLSig risk

FIGURE 2
Development of prognostic ferroptosis-related lncRNAs signature for LUSC patients; (A) Forest plot of the 43 selected lncRNAs significantly
associated with overall survival by univariate Cox regression analysis; (B) The coefficient profile of 21 OS-related lncRNAs chosen by LASSO
regression; (C) The mean-squared error curve with different tuning parameters (logλ) and perpendicular dotted lines were drawn at the logλ
corresponding to the minimum mean squared error (lambda.min) and the most regularized model within one standard error of the minimum
mean squared error (lambda.1-se); (D) Forest plot of the 10 final selected lncRNAs by multivariate Cox regression analysis.
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stratification. The high-risk group and low-risk group

demonstrated distinctly different distribution in both PCA

and t-SNE, indicating that the FerRLSig risk stratification

recapitulated the major variability of the TCGA-LUSC RNA

sequencing (Figures 4A,B). The correlations of the FerRLSig

risk score with clinical characteristics including age, gender,

and TNM stage were explored and no statistically significant

correlation was found (Supplementary Figure S3). Univariate

and multivariate Cox OS analysis were further performed with

FerRLSig and other universal clinical characteristics. Both

TNM stage and FerRLSig (univariate: HR = 2.281, p <
0.001; multivariate: HR = 2.240, p < 0.001) demonstrated

significant prognostic effect in both univariate and

multivariate Cox regression (Figures 4C,D). In addition,

time-dependent AUC of the FerRLSig and other clinical

characteristics were plotted, and the FerRLSig demonstrated

consistently higher AUC compared to other clinical

characteristics, including TNM stage (5-years AUC:

FerRLSig 0.756, TNM stage 0.607, Figures 4E,F).

To further demonstrate the model applicability in different

population, subgroup OS analysis was performed in different

age, gender, ethnicity and stage groups. The high-risk group

was consistently associated with worse OS in all subgroups,

which not only validated the model’s wide applicability in

FIGURE 3
Overall survival analysis and validation of the ferroptosis-related lncRNAs signature; (A–B) Distribution of risk score, OS time, OS status and
heatmap of the 10 prognostic ferroptosis-related lncRNAs signature in the TCGA-LUSC training set (A) and TCGA-LUSC testing set (B). (C–D)
Kaplan-Meier survival curves of the OS of the patients in the high- and low-risk groups for the TCGA-LUSC training set (C) and TCGA-LUSC testing
set (D).
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FIGURE 4
Evaluation of the ferroptosis-related lncRNAs signature (FerRLSig) in the entire set of TCGA-LUSC; (A) Principal component analysis of TCGA-
LUSC RNA sequencing annotated with the FerRLSig stratification; (B) t-distributed stochastic neighbor embedding (t-SNE) analysis annotated with
the FerRLSig stratification; (C) Univariate Cox regression overall survival analysis of the FerRLSig score and universal clinical characteristics; (D)
Multivariate Cox regression overall survival analysis of the FerRLSig score and universal clinical characteristics; (E) Time-dependent area under
curve plot of the risk score and clinical characteristics. (F) Receiver operating characteristic (ROC) curves of the universal clinical characteristics and
risk score of the 5-years overall survival.

FIGURE 5
Subgroup overall survival analysis of the FerRLSig stratification by different age, gender, ethnicities and TNM stage subgroups in the TCGA-LUSC
entire set.
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different population, but also demonstrated its independent

prognostic role (Figure 5).

Moreover, the FerRLSig and other universal clinical

characteristics were incorporated into a prognostic

nomogram to better predict the one, three and 5 years’

OS probabilities (Figure 6A). Overall, the nomogram

demonstrated satisfactory AUC on 1, 3, and 5 years’

OS and calibration (AUC: 1-year 0.668, 3-years 0.761, 5-

years 0.779, Figures 6B,C). In addition, the nomogram

also demonstrated net benefit gain in decision curve

analysis compared to both “intervention to none” and

“intervention to all” in both 3 and 5 years’ OS prediction

(Figure 6D).

The correlation between the FerRLSig and
tumor immune microenvironment

To explore the correlation between the FerRLSig and the tumor

immune microenvironment, immune cell infiltration was inferred

and compared between the high-risk and low-risk group with xCell

analysis. The two groups exhibited apparently different tumor

immune microenvironment. The high-risk group demonstrated

significantly higher dendritic cells, B cells, class-switched memory

B cells, CD8+ T cells, andmultiplemyeloid cells infiltration while the

low-risk group had significantly higher pro B cells, Th1 cells and

Th2 cells infiltration (Figures 7A,B). Moreover, both immune score

and stromal score were significantly higher while tumor purity was

FIGURE 6
Development and evaluation of the prognostic nomogram; (A) A clinical prognostic nomogramwas developed to predict the 1-, three- and 5-
years overall survival (OS) probability. A vertical line between each variable and point scale can be drawn to determine the points for each variable,
then all the points are summed up as the total points, and the predicted overall survival rate of the 1-, three- and 5-years were calculated by drawing a
vertical line from the total points scale to the 1-, three- and 5-years survival scales; (B) Area under curve plot of the nomogram for the 1-, three-
and 5-years OS; (C)Calibration curves of the nomogram for 1-, three- and 5-years overall survival: nomogram-predicted overall survival is plotted on
the x-axis, actual overall survival is plotted on the y-axis, a plot along the 45-degree line indicates a satisfactory model in which the predicted
probabilities are identical to the actual outcomes; (D)Decision curve analysis demonstrating the clinical benefit gain of the nomogram for the three-
and 5-years OS: the y-axis measures the net benefit, which is calculated by summing the benefit (true positives) and subtracting the harms (false
positives). The solid line indicates the prognostic model, and the two other lines indicate the “intervention for all” (dotted line) and “intervention for
none” (black line). A model is considered of clinical value if it has a higher net benefit than other models at any given threshold.
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FIGURE 7
Evaluation of the tumor immune microenvironment based on the ferroptosis-related lncRNAs signature stratification; (A) The volcano plot
depicted the different cellular landscapes of the tumor based on the ferroptosis-related lncRNAs signature (FerRLSig) stratification by the xCell
analysis, the infiltration of green dot cells were significantly higher while red dot cells were significantly lower in low-risk group compared to high-risk
group. (B) The boxplots depicted the significantly different infiltration of immune cell based on the FerRLSig stratification. (C–E) The boxplots
compared the immune scores (C), stromal scores (D) and tumor purity (E) based on the FerRLSig stratification by the ESTIMATE analysis. (F–G)GSEA

(Continued )
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significantly lower in high-risk group, confirming higher immune

cell infiltration in high-risk group (Figures 7C–E). Furthermore,

hallmark gene set enrichment analysis was performed to further

characterize the different molecular pathways activated by different

risk groups. Multiple immune-related hallmarks were significantly

enriched in high-risk group, including complement, IL2-STAT5

signaling, IL6-JAK-STAT3 signaling, inflammatory response,

interferon-alpha response, interferon-gamma response, TGF-

BETA signaling and TNFA signaling via NFKB were enriched in

high-risk group. On the other hand, low-risk group demonstrated

multiple proliferation-related hallmarks and DNA damage repair

hallmarks (Figures 7F, G). In addition, Gene Ontology pathway

enrichment analysis also corroborated the above finding that high-

risk group demonstrated multiple significantly enriched immune-

related biological process and molecular function, while low-risk

group was correlated with multiple proliferation and transcription

ones(Figures 7H, I).

Apparently, the FerRLSig was strongly correlated with tumor

immune microenvironment and high-risk group demonstrated

increased immune activities compared to low-risk group. We

continued to compare the expression level of immune

checkpoints and immune inhibitory factors between the two

groups to evaluate the potential predictive application of the

FerRLSig on the current immune checkpoint blockade therapy.

We found that the high-risk group was significantly associated with

higher expression level of immune checkpoints and immune

inhibitory factors, including CCL2, CTLA4, CXCR4, IL6, LAG3,

PDCD1, and TGFB1, indicating tumor immune evasion (Figure 7J).

We utilized the TIDE to further evaluate the tumor immune

microenvironment of different FerRLSig groups. And

surprisingly, although high-risk group consistently demonstrated

higher effector T cell signatures including IFNG (interferon gamma)

and CD8+ T cell infiltration, the T cell dysfunction signature were

significantly higher while microsatellite instability score was

significantly lower in high-risk group. This ultimately led to

significantly higher overall TIDE score in high-risk group,

indicating resistance to immune checkpoint inhibitors (Figure 7K).

Drug sensitivity screening based on the
FerRLSig

Besides immune checkpoint inhibitors, we also aimed to

evaluate the predictive application of the FerRLSig on other drugs

available from GDSC database. Therefore, drug sensitivity

screening with GDSC was performed based on the FerRLSig.

We identified 119 compounds from GDSC to have statistically

significant different half-maximal inhibitory concentration

(IC50) based on the FerRLSig stratification (Supplementary

Table S1). Notably, low-risk group was significantly more

sensitive to platinum and taxane compared to high-risk group

(Figures 8A–C), which are the backbones for LUSC

chemotherapy, therefore might account for the superior OS of

the low-risk group. On the other hand, high-risk group was

seemingly more intractable with fewer clinically available

systemic therapies compared to low-risk group. Three

representative drugs with significantly lower IC50 in high-risk

group compared to low-risk group were identified, targeting

WNT signaling, MAPK signaling and PI3K signaling pathway

(Figures 8D,E).

Discussion

Previous studies have successfully developed prognostic

ferroptosis-related lncRNAs signatures in lung

adenocarcinoma (Guo et al., 2021; Lu et al., 2021; Zheng

et al., 2021). However, the investigation of the ferroptosis-

related lncRNAs signature in lung squamous cell carcinoma

(LUSC) has been scare and has not evaluated the signature’s

impact on tumor immune microenvironment yet. In this study,

we developed and validated a ferroptosis-related lncRNAs

signature (FerRLSig) for the prognosis stratification of lung

squamous cell carcinoma (LUSC). High-risk group had

significantly worse OS compared to low-risk group (HR =

2.240, 95%CI: 1.845–2.720, p < 0.001), which was further

corroborated in different age, gender, ethnicities and TNM

stages subgroups, indicating the wide applicability and

independent prognostic effect of the FerRLSig. And notably,

compared to TNM stage, the FerRLSig demonstrated

consistently improved AUCs (5-years AUC: FerRLSig 0.756,

TNM stage 0.607, Figures 4E,F) on OS. Thus through this

study, we have developed and validated a robust prognostic

ferroptosis-related lncRNAs signature for LUSC.

A previous retrospective study utilizing TCGA database

identified 29 ferroptosis-related lncRNAs with univariate Cox

regression and constructed a prognostic ferroptosis-related

lncRNAs. The 1-, 2-, and 3-years area under curve (AUC) of

their signature were 0.658, 0.693, and 0.687 respectively (Yao

et al., 2022). In our study, the TCGA-LUSC patients were

FIGURE 7
results demonstrated the differential gene set enrichment in Hallmark with high-risk (F) and low-risk (G) group. (H–I) GSEA results
demonstrated the differential gene set enrichment in C5 of biological process (BP), cellular component (CC), andmolecular function (MF) in high-risk
(H) and low-risk (I) groups based on the FerRLSig stratification. (J) Comparison of the immune checkpoints and immune inhibitory factors, including
CCL2, CD274, CTLA4, CXCR4, IL6, LAG3, and PDCD1 and TGFB1based on the FerRLSig stratification in violin plots and boxplots. (K)Comparison
of TIDE score based on the FerRLSig stratification in boxplots. *: p < 0.05, **: p < 0.01, ***: p < 0.001.
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FIGURE 8
Drug sensitivity screening based on the ferroptosis-related lncRNAs signature (FerRLSig) stratification with the Genomics of Drug Sensitivity in
Cancer (GDSC) database; (A) Boxplot of the cisplatin half-maximal inhibitory concentration (IC50) based on the FerRLSig stratification; (B) Boxplot of
the paclitaxel IC50 based on the FerRLSig stratification; (C) Boxplot of the docetaxel IC50 based on the FerRLSig stratification; (D) Boxplot of the
SB216763 (targetingWNT signaling pathway) IC50 based on the FerRLSig stratification; (E) Boxplot of the Selumetinib (targeting MAPK signaling
pathway) IC50 based on the FerRLSig stratification; (F) Boxplot of the AZD8186 (targeting PI3K signaling pathway) IC50 based on the FerRLSig
stratification.
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randomized into a training set and a testing set by the “caret” R

package at the ratio of 7:3. The FerRLSig was established with the

training set while the validation was performed with the testing

set and the entire set. Univariate Cox regression, Least Absolute

Shrinkage and Selection Operator (LASSO) regression and

multivariate Cox regression were applied in order to establish

the final FerRLSig while avoiding overfitting with cross-

validation. A more concise ferroptosis-related lncRNAs

signature comprising 10 ferroptosis-related lncRNAs with an

AUC of 0.756 for 5-years OS was established and validated.

Compared to the previous study, we applied more stringent

statistical methods to identify ferroptosis-related lncRNAs to

avoid overfitting. Moreover, we underwent additional internal

validation, which was absent in the previous study. Therefore, we

believed our FerRLSig to be more statistically stringent with

better prognostic effect compared to the previous study.

More importantly, we have also evaluated the correlation

between the FerRLSig and the tumor immune

microenvironment. Generally, high-risk group demonstrated

significantly higher immune cell infiltration in the xCell analysis,

notably by dendritic cells, CD8+ T cells, M1 macrophages and

M2macrophages. On the other hand, low-risk group demonstrated

significantly higher pro B cells, Th1 cells and Th2 cells infiltration.

In addition, the ESTIMATE and GSEA analysis also corroborated

previous results that high-risk group had significantly higher

immune and tumor scores with multiple immune-related gene

sets enrichment compared to low-risk group, including

complement, IL2-STAT5 signaling, IL6-JAK-STAT3 signaling,

interferon-alpha response, interferon-gamma response, TGF-

BETA signaling and TNFA signaling via NFKB. CD8+ cytotoxic

T cells and its secreted interferon gamma are central to the tumor

immune elimination, and increased immune cell infiltration

indicates prominent immune response, but these do not

necessarily lead to better tumor control or survival (Gajewski

et al., 2013; Mojic et al., 2017; Morad et al., 2021). In addition,

multiple immune inhibitory factors seen in high-risk group,

including M2 macrophages and IL6, might render the infiltrating

CD8+ T cell dysfunction and leading to immune evasion (Xue et al.,

2014; Kumari et al., 2016). To further evaluate themechanism of the

immune evasion based on the FerRLSig stratification, several

immune checkpoints and immune inhibitory factors including

CCL2, CD274 (PD-L1), CTLA4, CXCR4, IL6, LAG3, PDCD1

(PD-1), and TGFB1 were compared between low-risk and high-

risk group, and all were significantly higher in high-risk group

except PD-L1, strongly suggesting the immune evasion and

inhibitory microenvironment in high-risk group.

Immune checkpoint inhibitors have made remarkable

breakthroughs in LUSC and significantly improved the LUSC

patients’ survival (Brahmer et al., 2015; Paz-Ares et al., 2018).

Considering the immune evasion and inhibitory

microenvironment in high risk group based on the FerRLSig

stratification, TIDE score was utilized to estimate the immune

checkpoint inhibitor sensitivity. CD8+ T cell infiltration and

interferon gamma signature were significantly higher in high-

risk group while no statistically significant difference was found

on CD274 (PD-L1) signature, which corroborated previous

results. And high-risk group was significantly less sensitive to

immune checkpoint inhibitor with significantly higher TIDE

score and dysfunction score compared to low-risk

group. Besides the inherent limitations of the TIDE analysis,

one possible explanation would likely be that the T cell

dysfunction with multiple alternative immune checkpoints

including CTLA-4 and LAG3 within the tumor

microenvironment is beyond the salvage of the single-target

immune checkpoint inhibitor (Thommen and Schumacher,

2018). Therefore, the trials of combination immunotherapy

targeting multiple immune checkpoints and further

innovation are needed for the future improvement of LUSC

patients. Drug sensitivity screening was also performed based on

the FerRLSig with drugs available fromGDSC database. Low-risk

group was significantly more sensitive to platinum and taxane

compared to high-risk group, which might partially account for

its better OS. On the other hand, high-risk group were

significantly more sensitive to three representative drugs that

targeting WNT signaling, MAPK signaling and PI3K signaling

pathways. And intriguingly, all three pathways are known to

cancer immune evasion (Sumimoto et al., 2006; Dituri et al.,

2011; Martin-Orozco et al., 2019) and these kinds of drugs might

be combined with immunotherapy to further improve the

survival for LUSC patients. However, further investigation is

needed to verify these possibilities.

Several limitations are worth mentioning in this study. Firstly,

this is a retrospective study from a single database, thus external

validation and further prospective study are required. Secondly,

several important clinical variables including the extent of resection,

resection margin, comorbidities are currently unavailable, which

warrant further investigation in future studies. Thirdly, the distance

to actual clinical application remains long as whole transcriptome

RNA sequencing for lncRNAs identification has not been easily

accessible in clinical practice yet. The last but not the least, both

in vitro and in vivo experiments are required to further explore the

molecular mechanism underlying the ferroptosis-related lncRNAs

signature.

In conclusion, a robust prognostic FerRLSig for LUSC has

been developed and validated, demonstrating a close association

not only with tumor immune cell infiltration, but also with T cell

dysfunction and immune evasion. Further investigation and

innovation are required to validate the results from our study

and better improve the survival of LUSC patients based on the

FerRLSig stratification.
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