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Abstract

Papillorenal syndrome (PRS, also known as renal-coloboma syndrome) is an autosomal dominant disease characterized by
potentially-blinding congenital optic nerve excavation and congenital kidney abnormalities. Many patients with PRS have
mutations in the paired box transcription factor gene, PAX2. Although most mutations in PAX2 are predicted to result in
complete loss of one allele’s function, three missense mutations have been reported, raising the possibility that more subtle
alterations in PAX2 function may be disease-causing. To date, the molecular behaviors of these mutations have not been
explored. We describe a novel mouse model of PRS due to a missense mutation in a highly-conserved threonine residue in
the paired domain of Pax2 (p.T74A) that recapitulates the ocular and kidney findings of patients. This mutation is in the Pax2
paired domain at the same location as two human missense mutations. We show that all three missense mutations disrupt
potentially critical hydrogen bonds in atomic models and result in reduced Pax2 transactivation, but do not affect nuclear
localization, steady state mRNA levels, or the ability of Pax2 to bind its DNA consensus sequence. Moreover, these mutations
show reduced steady-state levels of Pax2 protein in vitro and (for p.T74A) in vivo, likely by reducing protein stability. These
results suggest that hypomorphic alleles of PAX2/Pax2 can lead to significant disease in humans and mice.
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Introduction

Papillorenal syndrome (PRS, OMIM#120330, renal-coloboma

syndrome) is an autosomal dominant condition characterized by

congenital anomalies of the optic nerve and kidney [1–3]. Kidney

abnormalities range from aplasia or hypoplasia to cystic and

dysplastic changes [4–15]. These abnormalities, coupled with the

vesico-ureteral reflux observed in some patients, may lead to renal

failure [7,8,16,17]. Ocular abnormalities range from asymptom-

atic differences in retinal blood vessel patterning and optic nerve

pits to blinding congenital excavations of the optic nerve head [5].

Although the excavation and vascular abnormalities can be quite

subtle [10], other cases are reminiscent of the morning glory

anomaly or may be mistaken as normal-tension glaucoma.

Additional ocular features include the absence or hypoplasia of

the central retinal artery, foveal hypoplasia, and anomalous retinal

and choroidal perfusion leading to retinal thinning and visual field

deficits [7]. Some patients with PRS also have high frequency

hearing loss [2,4,6,10,17,18]. Schimmenti et al. have suggested that

Chiari 1 malformations and other CNS malformations may also

be an uncommon feature of this syndrome [17,19]. Germline

mosaicism has been reported [9].

Many patients with PRS have a mutation in the PAX2 gene, a

member of the paired box family of transcription factor genes

[4,6], that is normally expressed in the developing kidney, optic

cup, otic vesicle and midbrain-hindbrain boundary [20–23]. To

date, the vast majority of pathologic PAX2 mutations are predicted

to cause complete loss of function of one allele (haploinsufficiency)

[4–6,9,10,13,14,18,19]. The existing mouse models of PAX2

haploinsufficiency appropriately reflect the ocular, urogenital,

and otic abnormalities noted in human patients [22–26].

A few patients with PRS, however, have been reported to have

missense mutations, two of which cluster in the paired domain of

the protein [15,16]. The molecular mechanism by which these

mutations lead to disease has remained unexplored. We have

identified and characterized a novel mouse model of PRS in which
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a paired domain missense mutation occurs at the same position as

in some humans with the disease. Furthermore, we have

characterized the molecular basis for this mouse mutation, as well

as for the paired domain missense mutations reported in humans.

We show that the mutant mice recapitulate the ocular and kidney

phenotypes of patients with PRS. We model the effect of these

mutations on Pax2 structure in silico and demonstrate that these

mutant proteins are expressed in vitro and in vivo at lower steady-

state levels than wild-type protein and that this leads to a

commensurate reduction in Pax2 transactivation and protein

stability in vitro. Furthermore, we observe that these mutations do

not appear to affect nuclear localization, the steady-state levels of

Pax2 mRNA or the ability of these proteins to bind a PAX2

consensus sequence in vitro. These combined results argue that

patients with these missense mutations in PAX2 likely develop PRS

because of the hypomorphic nature of these alleles and that their

residual function is not sufficient to prevent significant ocular and

renal disease.

Results

Identification of mouse mutant
During our ENU mutagenesis screen of C57BL/6 mice, we

discovered a line of mice that exhibited congenital excavation of

the optic nerve head and abnormal patterning of retinal blood

vessels (Figure 1). This excavation was confirmed on histologic

sections, which also show abnormalities in retinal lamination, such

as rosette formation. This phenotype was transmitted as an

autosomal dominant trait with complete penetrance on the native

C57BL/6 background. Mapping was performed by mating

affected C57BL/6 mice of either gender to C3H/HeJ mice to

produce G1 progeny. Affected mice were then backcrossed to

wild-type C57BL/6 mice. Assaying twelve of these affected G2

progeny for homozygosity of C57BL/6 markers revealed zero

recombinants at chromosome markers D19Mit120 and

D19Mit17.1. Of the 61 G1 animals and 122 G2 animals

ascertained, 10 animals (16%, 7 males, 3 females) and 31animals

(25%, 9 males, 22 females), respectively, met criteria for ‘‘affected’’

status; this finding suggests reduced penetrance for the optic nerve

phenotype on the C3H/HeJ genetic background.

The paired-box transcription factor gene, Pax2, was noted to be

within the critical interval on chromosome 19. Because mutation

of PAX2 in humans is known to result in congenital optic nerve

abnormalities, we considered it an excellent candidate gene.

Sequencing of the coding exons and the intron-exon boundaries of

Pax2 revealed a heterozygous c.A220G sequence change,

predicted to change threonine 74 to an alanine at the protein

level. This threonine is invariantly conserved in Pax2 across several

vertebrate species (human, mouse, chicken, frog, Medaka fish) and

in all murine members of the paired-box family (Pax1 through

Pax9) (Figure 2B and 2C).

Structural characterization of wild-type and mutant Pax2
proteins

To better understand the role this mutation may be playing in

Pax2 protein structure, we created an atomic model of the Pax2

paired domain-DNA hetero-complex (Figure 2A). Because the

modeling of Pax2 was performed using structural information

from the homeodomain of PAX6 as a guide, all interactions we

described should be considered predicted. The Pax2 paired

domain contains 2 similar globular protein sub-domains, known

as N (residues 16–74) and C (residues 88–148) subdomains, linked

by the extended 12-residue polypeptide chain (residues 75–87)

similar to that of PAX6 paired domain [27]. The Pax2 N-

subdomain includes an anti-parallel b-hairpin (residues 16–27) and

3 a-helices, a1 (residues 33–46), a2 (residues 49–57), and a3

(residues 58–74), folded like a homeodomain. The C-subdomain

also include 3 a-helices, a4 (residues 88–105), a5 (residues 109–

120) and a6 (residues 131–146), related by approximate 2-fold

symmetry to N-domain helices. Although the C-subdomain is

involved in protein-DNA interaction, the N-subdomain plays a

dominant role in DNA binding of the intact PAX6 paired domain

[27]. From a previous crystallographic study, it was suggested that

conserved residues at the end of a3-helix help to fix the position of

the extended linker by conservation of hydrogen bonds and

hydrophobic interactions [28]. In addition, the a3-helix, known as

a recognition helix, is a part of a helix-turn-helix (HTH) motif,

involving helices a2 and a3. All these data suggest that the

properties of the conserved sequence at the end of the a3-helix and

at the beginning of the polypeptide linker are important to

maintain the paired domain-DNA interactions.

In the mutant T74A, the polar threonine is replaced by

hydrophobic alanine residue breaking 2 hydrogen bonds (H-bonds

1 and 2 at corresponding distances 2.8 Å and 3.1 Å) present in

wild type protein as shown in Figure 2D. In wild type protein these

H-bonds are connecting c-oxygen of threonine 74 to a backbone

oxygen of residue R70 (H-bond 1) and a main chain nitrogen of

serine 76 (H-bond 2). Missense mutation T74A disrupts both

bonds (Figure 2D). Although Pax2 is known to be phosphorylated

by kinases such the c-Jun N-terminal kinase (JNK) [29,30], in silico

analysis of the Pax2 protein sequence using two different programs

(http://www.cbs.dtu.dk/services/NetPhos/ and http://scansite.

mit.edu/motifscan_seq.phtml) predicted that threonine 74 is not

a likely site for phosphorylation.

Characterization of mouse mutant
Congenital optic nerve excavation co-segregated with the

Pax2A220G allele 100% of the time in over 100 mice analyzed,

indicating complete penetrance for this phenotype on the C57BL/

6 background. Of 31 offspring of a Pax2A220G/+ x Pax2A220G/+

mating, 22 (71%) were affected, Pax2A220G/+ and 9 (29%) were

unaffected, Pax2+/+. No Pax2A220G/A220G mice were observed,

which statistically deviates from the expected ratios of 1:2:1

homozygotes to heterozygotes to wild-type mice (p,0.01). In

Author Summary

Congenital ocular malformations affecting the optic nerve
are an important cause of childhood blindness. The
papillorenal syndrome (PRS) is an autosomal dominant
disorder that causes congenital optic nerve and kidney
abnormalities, which may result in legal blindness and
renal failure, respectively. Many cases of PRS are caused by
mutations in the paired-box transcription factor PAX2. In
this paper, we describe a novel mouse model of this
human disease caused by a missense mutation in the Pax2
gene at the same position of one of the few disease-
causing missense mutations in humans. We characterize
the ocular and non-ocular phenotypes of this mouse and
model the effect that murine and human Pax2/PAX2
mutations have on protein structure. We also experimen-
tally test the effect these missense mutations have on
protein localization, transactivation, and DNA binding,
concluding that all three reduce steady-state levels of
protein in vitro and (in p.T74A) in vivo by reducing protein
stability. This work will help us better understand the
pathophysiology of PRS and to dissect the molecular
interactions important in normal PAX2 function.

PAX2 Missense Mutations
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contrast, analysis of 35 E10.5 to E14.5 embryos from similar

matings revealed 7 (20%) homozygotes, which is not significantly

different from the expected ratio. These observations suggest that

homozygosity for the Pax2A220G allele is lethal either later in

gestation or perinatally. We have observed some Pax2A220G/A220G

embryos, however, as late as E17.5 (n = 45).

Because Pax2 null alleles had previously been reported to affect

ocular, urogenital, and central nervous system development

[22–25,31], we examined these features pre- and postnatally in

our mouse mutants. During ocular development in wild-type

embryos, the edges of the optic fissure touch at E11.5 and fuse

by E12.5 (Figure 3A and 3E). The invading mesenchyme has

coalesced into a discernible central vascular trunk (the tunica

vasculosis lentis) by E13.5 (Figure 3C). In contrast, Pax2A220G/A220G

embryos have delayed optic fissure closure (Figure 3B), which

sometimes results in frank uveal coloboma (Figure 3F). The

differentiation of neural crest into discernible vascular structures is

also delayed (Figure 3D). In addition to congenital optic nerve

excavation, adult Pax2A220G/+ mice exhibited variable, incomplete

regression of the tunica vasculosis lentis, retinal dysplasia, bending

of the retinal vasculature towards the dorsal retina, absence of a

central retinal arterial trunk, and mild extension of the retinal

pigment epithelium beyond the borders of the optic disc

(Figure 1D, 1E, and 1G, and data not shown).

The developing kidneys of wild-type mice show induction of

surrounding mesenchyme to form early glomeruli and tubules by

E13.5 and have well differentiated cortical and medullary

structures by E17.5 (Figure 4A). The kidneys of Pax2A220G/A220G

Figure 1. Clinical ocular phenotype in C57BL/6-Pax2+/A220G mice compared to wild-type, C57BL/6 mice. (A) Fundus photograph of
C57BL/6 mouse showing normal optic nerve and radial pattern of retinal blood vessels. (B) Fundus photograph of C57BL/6-Pax2+/A220G mouse
showing congenital excavation of the optic nerve head with peripapillary pigment changes (arrow). (C) Lectin immunofluorescence of wild-type
C57BL/6 mouse showing normal, radial vessel patterning. (D,E) Lectin immunofluorescence of C57BL/6-Pax2+/A220G mice showing abnormal vascular
patterning, including curving of vessels towards the dorsal retina (D, arrows, d = dorsal, v = ventral) and separation of the central retinal vascular
trunks (E, arrows). Histologic section of a Pax2+/+ (F) and a Pax2+/A220G (G) mouse eye through the optic nerve and peripapillary retina showing
abnormal excavation of the optic nerve (G, arrow) and retinal rosette formation (G, arrowhead). Remnants of the tunica vasculosis lentis and mild
extension of the retinal pigment epithelium were variably noted in histopathology from other Pax2A220G/+ eyes (data not shown).
doi:10.1371/journal.pgen.1000870.g001
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embryos, however, show less induction of surrounding mesen-

chyme by E13.5, resulting in small, primordial kidneys at E17.5

(Figure 4B). Of the sixteen Pax2A220G/+ mice (ages 1-4 months)

analyzed with gross and microscopic pathology, 1/16 had bilateral

cystic kidneys with hydronephrosis and hydroureter; 1/16 had

unilateral renal hypoplasia with contralateral double papilla; 1/16

had unilateral renal hypoplasia with occasional focal cystic

glomeruli; and 7 mice had bilateral, rare to occasional degener-

ative tubules on histologic sectioning. Of the seven age-matched,

wild-type mice (14 kidneys) similarly examined, only one kidney

had rare degenerative tubules on histologic sectioning.

In contrast to other Pax2 mouse mutants [23,24], the midbrain-

hindbrain boundary of Pax2A220G/A220G develops relatively nor-

mally, as assessed by cerebellar development at E17.5 (n = 11

Pax2A220G/A220G, n = 12 Pax2+/A220G ) (Figure 4C and 4D). In

embryos E10.5 to E12.5, 3/38 (8%) heterozygotes and 5/36 (14%)

homozygotes had a mildly-flattened midbrain-hindbrain region,

but otherwise normal isthmic structures. Cranial shape in

homozygous mutant was grossly normal at E14.5 (Figure 4E and

4F) and at E17.5 (data not shown). We did not observe

exencephaly, as has been previously reported (n = 45 wild-type,

n = 45 heterozygote mutants, and n = 45 homozygotes) [23,24].

Gross examination of the optic chiasm in homozygous mice

showed no discernable abnormality (n = 45).

Functional characterization of Pax2 missense mutations
During our investigations, we noted that the predicted T74A

mutation in mouse Pax2 (which corresponds to T75 in the human

protein), was next to or in the same location as two of the three

missense mutations reported in humans—c.G226A (p.G76S) and

c.220insGAGACC (p.74dupET) [15]. These mutations corre-

spond to c.G223A (p.G75S) and c.222insGAGACC (p.73dupET),

respectively, in the mouse sequence. For clarity, we will refer to

these mutations using the mouse sequence, as this is the sequence

that was experimentally tested.

As in the c.A220G (p.T74A) mutant, atomic modeling of the

c.G223A (p.G75S) mutation shows that the hydrogen bond

between nitrogen atom of glycine 75 and oxygen atom of tyrosine

71 located at 2.9 Å distance in the wild type Pax2 paired domain is

broken (H-bond 3, Figure 2F). Both these mutations are affecting

the conserved intramolecular interactions at the end of helix a3

and potentially could destabilize this local structure. In the

c.222insGAGACC (p.dup73ET) mutation, the insertion of

additional glutamic acid and threonine after amino acid 74

changes the local structure at the end of helix 3 and the beginning

of the inter-domain linker (Figure 2E). This change causes a

decrease in the secondary structure of the a3-helix and might

introduce a conformational change in the inter-domain linker that

could result in the loss of protein binding specificity.

Figure 2. Homology modeling of the wild-type and mutant Pax2 paired domain-DNA complex. The paired domain of wild-type Pax2
domain DNA are represented by red and white ribbons, respectively, and their corresponding atomic structures are shown by red and white bonds
(A). Hydrogen bonds are shown in blue. Threonine 74 in the mouse protein sequence (equivalent to T75A in human) is absolutely conserved across
several species (B) and across all known murine Pax-family members (C). Fragments of the Pax2 paired domain–DNA complex modified by the
mutations T74A, dup73ET and G75S are shown on (D–F), respectively. Hydrogen bonds presented in the wild type protein that are broken by the
mutation T74A are labeled as 1 and 2 for (D) and by the mutation G75S is labeled as 3 (F). Yellow arrows indicate the location of mutations in Pax2
paired domain. A schematic of the Pax2b protein modified from Lechner et al. [32] showing the paired domain (gray), the octapeptide (Oct) domain
(yellow), and the C-terminus, which is rich in proline, serine, threonine and tyrosine (PSTY) residues (G). Numbers indicate amino acid position. The
arrow denotes the approximate position of the three mutations studied.
doi:10.1371/journal.pgen.1000870.g002
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In order to directly assay the effect these three missense

mutations have on Pax2 function, we expressed them in a mouse

fibroblast cell line (NIH/3T3) and compared their ability to drive

expression of a Pax2-responsive reporter gene [32,33]. All three

mutant proteins showed an approximately 50% reduction in their

ability to transactivate this reporter gene (Figure 5A). Reduced

transactivation could be due to one or more of the following

reasons: 1) reduced steady-state levels of Pax2 mRNA, resulting in

less Pax2 protein; 2) reduced stability of the abnormal Pax2

protein; 3) failure of the mutant Pax2 proteins to localize to the

nucleus; and/or 4) failure of the protein to bind to DNA and

transactivate target genes. In our cell culture model, all three

mutant Pax2 proteins showed a considerable decrease in steady-

state levels of protein expression when compared to wild-type

protein (Figure 5B). Semi-quantitative image analysis of Pax2 band

intensity demonstrated steady-state levels of 35% (Pax2A220G), 32%

(Pax2G223A), and 38% (Pax2222insGAGACC) that of wild-type Pax2,

when corrected for steady-state levels of Gapdh expression.

Similar results were observed when the experiments were

performed in COS-7 cells (data not shown). Steady-state levels

of Pax2 mRNA are similar in both wild-type and mutant construct-

transfected cells (Figure 6A, Table 1), suggesting that our

observations are mediated at the level of the Pax2 protein. In

fact, the mutant Pax2 protein products are considerably less stable

in vitro–as measured by a time-dependent decrease in Pax2

expression in cycloheximide-treated cells—than the wild-type

protein (Figure 6B and 6C).

In support of this in vitro observation, the magnitude of Pax2

immunofluorescence was qualitatively reduced in the optic stalk of

Pax2A220G/A220G E11.5 mouse embryos when compared to

Figure 3. Histologic sections of Pax2+/+ and Pax2A220G/A220G mouse eyes at three embryonic time points. At E11.5, parasagittal sections
reveal a delay in apposition of the edges of the optic fissure in mutant mice (arrow) (A,B). At E13.5, coronal sections through the wild-type and
homozygous mutant embryos reveal a delay in the formation of the tunica vasculosis lentis (arrow) (C,D). At E17.5, parasagittal sections demonstrate
non-fusion of the optic fissure (uveal coloboma) in mutant embryos (arrow) (E,F). V = ventral retina.
doi:10.1371/journal.pgen.1000870.g003
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heterozygous or wild-type embryos (Figure 7A). (The overall

expression pattern of Pax2 was, however, quite similar, making a

gross patterning defect in the developing mouse eye less likely.)

When relative levels of Pax2 expression were compared in head

tissue from E11.5 mouse embryos by Western blot, a similar

pattern was observed (Figure 7B). Semi-quantitative image analysis

of Western blot band intensity demonstrated steady state levels of

54% and 13% in heterozygous and homozygous Pax2 mutants,

respectively, when compared to wild-type embryos, after corrected

for Gapdh expression. Pax2 immunofluorescence on transfected

COS cells demonstrated that wild-type and each of the three

mutant proteins were uniformly, correctly targeted to the nucleus

(Figure 8). As previously noted, this region of the Pax2 protein is

not predicted to contact DNA and we therefore predicted that its

ability to bind a Pax2 consensus sequence would not be drastically

altered. In support of this in silico observation, electrophoretic

mobility shift assays of the wild-type and mutant proteins showed

no significant difference in their ability to bind a paired box

consensus DNA sequence (Figure 9) at a concentration shown to

be optimal for the wild-type protein. Taken together, these data

suggest that the major pathophysiologic mechanism of these three

missense mutations is to reduce the stability of Pax2/PAX2

protein and not to affect the steady state levels of Pax2 mRNA,

Pax2 protein localization or the ability of the protein to bind its

DNA recognition sequence.

Discussion

Although most mutations that cause PRS are predicted to cause

complete loss-of-function of one PAX2 allele, a few missense

mutations clustering in the paired-box domain of the protein have

been reported. This observation raises the possibility that a

partially-functional or abnormally-functional protein product is

made in vivo. We have identified a novel missense mutation in the

mouse Pax2 gene that is in the same position as one of the few

human missense mutations.

Several lines of evidence suggest that this sequence change is

pathological. This mutation absolutely co-segregates with an

ocular and kidney phenotype reminiscent of human disease and

of previously-reported mouse models of PRS [22–25]. The

threonine residue affected by this mutation is absolutely conserved

in all members of the paired-box family of transcription factors in

Figure 4. Histologic sections of Pax2+/+ and Pax2A220G/A220G mouse kidneys (axial) and cerebellum (sagittal) at E17.5. Whereas wild-type
mice have begun to develop renal glomeruli (arrow, A) and tubules (arrowhead, A), the mutant mice have only primordial kidneys with poor
differentiation of these structures (arrow, B) In contrast, the differentiation of the cerebellum of both wild-type (C) and mutant (D) mice is comparable
at this time, despite the midbrain-hindbrain boundary being a site of Pax2 expression during embryogenesis. By E14.5, cranial structure was grossly
normal in both wild-type (E) and homozygous mutant (F) embryos.
doi:10.1371/journal.pgen.1000870.g004
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mouse and is absolutely conserved in the Pax2/PAX2 sequence

across several species. Mutation at this residue has been described

in individuals with PRS [15]. Furthermore, mutation of the

corresponding threonine (T63P) in the human PAX6 gene results

in a relatively mild form of aniridia characterized by subtle iris

hypoplasia, cataract and keratopathy along with nystagmus [34].

Lastly, our atomic modeling and in vitro functional studies suggest

that this murine mutation, as well as the other human PAX2

mutations reported in this region, mildly disrupt normal protein

structure and result in hypomorphic alleles.

The mechanism by which Pax2/PAX2 function is reduced in the

three mutations tested is a reduced level of steady-state Pax2/

PAX2 protein, likely due to a decrease in protein stability. Based

on crystallographic evidence, this residue is not anticipated to

contact DNA and electrophoretic mobility shift assays show no

difference between the three mutant and wild-type proteins. These

mutations do not affect the normal nuclear localization of the Pax2

protein in vitro. The protein is made in vivo, albeit at reduced levels.

The reduction in transactivation observed in vitro approximates the

reduction in steady-state protein levels in vitro or in vivo (for the

c.A220G mutant mice). Reduced steady-state levels of protein

have been proposed as a disease mechanism in other develop-

mental eye diseases caused by mutations in transcription factor

genes such as FOXC1 and PITX2 in Axenfeld-Rieger syndrome

[35–37]. Interestingly, increased steady-state levels of another

transcription factor protein, PAX6, are also thought to result in

developmental eye disease (e.g., ‘‘partial aniridia’’) [38], implying

that perturbation of steady-state protein levels in either direction

may cause disease. The relatively mild ocular presentation of the

patients with missense mutations in this region of the PAX2

protein is also consistent with our finding that the three alleles

tested are hypomorphic, rather than a complete loss-of-function

Figure 5. Comparison of wild-type and mutant Pax2 protein
transactivation and expression in cell culture. NIH/3T3 cells were
transfected with expression constructs for wild-type or mutant Pax2
along with a Pax2-responsive luciferase reporter gene. All three mutants
tested show reduced ability to transactivate (A). When steady-state
levels of Pax2 protein were compared on Western blots from these
experiments, mutants showed consistently lower levels of expression
(B). Similar findings were observed when these experiments were
replicated in COS-7 cells (data not shown).
doi:10.1371/journal.pgen.1000870.g005

Figure 6. Comparison of Pax2 mRNA steady-state levels and
Pax2 protein stability in wild-type and mutant expression
vector-transfected NIH/3T3 cells. Although steady-state levels of
Pax2 mRNA were comparable in wild-type and mutant transfected cells
(A), the short-term protein stability of mutant Pax2 protein products
were considerably reduced compared to wild-type, as determined in
cycloheximide translation-inhibition experiments (B,C). See also Table 1
for quantification of mRNA levels.
doi:10.1371/journal.pgen.1000870.g006
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[15]. However, we can not exclude the possibility that these

missense mutations—which are translated into protein in vitro and

in vivo—may also be affected Pax2/PAX2 interactions with other

proteins in the transcriptional complex and that these abnormal

protein-protein interactions are contributing to the pathogenesis of

disease.

Our mouse model of PRS shares many phenotypic similarities

to the two reported Pax2 mutant models [22–24] and to the Krd

mouse, which carries a large deletion on chromosome 19 that

includes Pax2 [25]. Similar to heterozygous, targeted Pax2 knock-

out mouse and the Pax21Neu mouse [23,24], Pax2A220G/+ mice

exhibit congenital excavation of the optic nerve head with

extension of the retinal pigment epithelium beyond the optic disc.

Although minor defects in retinal lamination similar to those

described in the Krd mouse were noted in our model [25], we did

not observe the gross thinning of the retina observed in the Krd

mouse and the Pax21Neu mouse. This difference may be

attributable to the hypomorphic nature of our mutation,

differences in background strain (e.g., the presence of a partial

C3H background, which carries a mutation in phosphodiesterase

that results in retinal degeneration [39]) and/or–in the case of the

Krd mouse–the deletion of other genes in this region [40]. Unlike

the directed knockout and the Pax21Neu mouse [23,24], we did not

observe exencephaly or under-development of the midbrain-

hindbrain region, as measured by cerebellar size and morphology.

This difference may be due to the hypomorphic nature of our Pax2

allele and/or differences in the background strain of mouse used.

In fact, while Torres, et al. observed 11/59 exencephalic embryos

on a mixed 129sv x NMRI background, they did not observe

exencephaly in 14 homozygous knockout mice an inbred 129sv

background [23]. The mild kidney phenotype seen in Pax2A220G/+

mice and the severe phenotype observed in Pax2A220G/A220G mice

are similar to those described in all three mouse models

[22,24–26]. Porteous and colleagues have previously shown that

the renal hypoplasia seen in heterozygous Pax2 mutant mice is likely

due to increased apoptosis during fetal renal development [26].

The vascular patterning abnormalities that we observe in the

Pax2A220G/+ mice are notable, as they recapitulate the phenotype

observed in patients with PRS, particularly the absence of a

central retinal artery [7]. PAX2 is expressed in human astrocyte

precursor cells and retinal astrocytes [41], which guide developing

angioblasts during retinal vascular development [42]. Chu et al.

have noted particularly strong Pax2 expression in astrocytes

surrounding the optic nerve head, and suggest that the congenital

optic nerve abnormalities noted in patients with PRS may be due

to a deficiency of astrocytes [43]. Therefore both the congenital

optic nerve excavation and the patterning abnormalities noted in

the Pax2A220G/+ mice may be due to a primary defect in astrocyte

development and/or differentiation.

Threonine—the amino acid altered in the Pax2A220G/+ mice—is

a potential target for protein kinases. Phosphorylation of Pax2 by

kinases such as the c-Jun N-terminal kinases (JNK) JNK-1 and

JNK-2 enhances its ability to activate transcription [29,30]. While

most of this phosphorylation occurs in the serine/threonine-rich

carboxyl terminus of the Pax2 protein, it is still possible that

phosphorylation of the paired domain may regulate Pax2

transcriptional activity. However, our in silico analysis and our

Western blot data do not suggest that threonine 74 (75 in humans)

is a likely site of phosphorylation in vitro or in vivo.

Pax2, like all transcription factors, likely acts as part of a multi-

protein complex to regulate transcription. For example, Gong et al.

found that Pax2 forms a complex with Hox11 paralogous proteins

and Eya1 and directly activates expression of Six2 and Gdnf in the

developing kidney [44]. While direct knock-out or nonsense

mutation of Pax2 presumably abrogates all such interactions, the

missense mutation of a well-conserved amino acid that results in

an expressed protein provides the opportunity to ask more specific

questions about how this area of Pax2 interacts with other

proteins. We feel that our mouse model will enable us to begin to

dissect physiologic Pax2 protein interactions and to help us better

understand how disruption of such interactions leads to human

disease.

Materials and Methods

Animal husbandry and clinical examination
C3H/HeJ (Stock # 000659) and C57BL/6J mice (Stock

#000664) were obtained from The Jackson Laboratory (Bar

Figure 7. Comparison of wild-type and mutant Pax2 expression
in embryonic mouse tissue. Pax2 immunofluorescence on parasag-
ittal sections of E11.5 wild-type and homozygous mutant embryos
demonstrate a normal pattern of expression in the ventral optic stalk
(A). The level of Pax2 expression, however, is qualitatively reduced in
the mutant mice. This reduced steady-state level of expression was
confirmed by Western blot in heterozygous and homozygous mutant
embryos (B).
doi:10.1371/journal.pgen.1000870.g007

Table 1. Threshold cycle (Ct) quantification of real-time,
reverse-transcriptase PCR of wild-type and mutant Pax2
transfected NIH/3T3 cells shows no significant difference in
steady-state levels of Pax2 mRNA relative to Gapdh.

Expression Vector Pax2 (Ct) Gapdh (Ct)

Mock - 17.7

WT 26.1 15.7

A220G 23.9 15.0

G223A 23.9 15.2

222insGAGACC 23.3 15.5

doi:10.1371/journal.pgen.1000870.t001
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Harbor, ME). Mice were housed according to our institutional

Animal Review Board standards with a 14 hour light/10 hour

dark cycle. These studies conformed to the principles for

laboratory animal research outlined by the Animal Welfare Act

(NIH/DHHS) and the ARVO Statement for the Use of Animals

in Ophthalmic and Vision Research and were approved by the

Institutional Animal Care and Use Committee of the University of

California, Berkeley and the National Eye Institute. Ehtylnitro-

sourea (ENU) mutagenesis and breeding of mice were performed

as previously described[45]. Briefly, male C57BL/6 mice were

intraperitoneally injected with ENU (90 mg/kg body weight)

weekly three times. Three months after the injection, each mouse

was bred to wild-type C57BL/6J female mice to produce G1 mice,

which were screened for dominant eye phenotypes. Clinical

examination of the posterior segment was performed on gently

restrained, awake mice after dilation with one drop of 1%

tropicamide (Alcon Laboratories, Inc., Fort Worth, TX) using an

indirect ophthalmoscope (Keeler, Windsor, Berkshire, UK) with a

90D condensing lens (Volk, Mentor, OH). The optic nerve

phenotype was graded in each eye as follows: 0 = normal,

+1 = mildly affected (anomalous nerve with peripapillary pigment

changes), +2 = strongly affected (findings of ‘‘+1’’ and staphylo-

matous changes), or indeterminate. A mouse was deemed

‘‘affected’’ if it had a score of two or more for both eyes combined

(i.e., at least a +1 score in each of both eyes or a +2 in one eye.)

Mice were euthanized with carbon dioxide according to

institutional guidelines. Enucleated adult mouse eyes were fixed

in a phosphate-buffered paraformaldehyde-glutaraldehyde mix-

ture according to published protocols [46]. Mouse embryos for

histopathology were dissected on ice-cold phosphate buffered

saline (PBS) and fixed overnight in phosphate-buffered 4%

paraformaldehyde at 4uC. Hematoxylin and eosin-stained meth-

acrylate sections via the pupillary-optic nerve axis (eyes) or in

appropriate cross section (embryos) were used for histopathology.

Genetic mapping
Microsatellite markers known to be informative for the two

strains were chosen from the Mouse Mapping Primers v1.0

(Applied Biosystems, Foster City, CA). PCR conditions were as

follows: 12 min denaturation at 95uC; 10 cycles of 94uC for 45 sec,

55uC for 1 min, and 72uC for 1 min; 20 cycles of 89uC for 1 min,

55uC for 1 min, and 72uC for 1 min; 10 min final extension at

72uC. The PCR products were pooled based on fluorescent labels

and expected allele size. Fragment separation was achieved by

capillary electrophoresis on a Genetic Analyzer 3100 using 36 cm

capillary array and POP-4 polymer. The ROX400 size standard

(Applied Biosystems, Foster City, CA) was run as an internal size-

standard. Allele sizing was calculated using the local southern

Figure 8. Pax2 immunofluoresence on COS-7 cells transfected with wild-type or mutant Pax2 expression vectors. Both wild-type and
mutant proteins display nuclear localization, as evidenced by co-localization of green fluorescence (Pax2) with DAPI nuclear staining (blue).
doi:10.1371/journal.pgen.1000870.g008
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algorithm available in the GENESCAN software program

(Applied Biosystems). Allele calling and binning was done using

the GENOTYPER software (Applied Biosystems). All genotyping

included control DNA from C57BL/6J strain, C3H/HeN strain

and C57BL/6J x C3H/HeN.

Modeling of PAX2 protein structure
The structure of wild-type Pax2 paired domain-DNA hetero-

complex was modeled using the PAX6 paired domain-DNA

complex structure (PDB: 6pax) from the RCSB database http://

www.rcsb.org/pdb as the structural template [47]. Primary

sequences of Pax2/PAX2 and Pax6/PAX6 from mice and human

were aligned by the method of Needleman & Wunsch [48], and

incorporated in the program Look, version 3.5.2 for 3-dimensional

structure prediction [49,50]. The wild-type Pax2 paired domain-

DNA hetero-complex and mutation dup74ET were built by the

automatic segment matching method in the program Look

followed by 500 cycles of energy minimization [51]. The same

program generated the conformation of the proteins with the

T74A and G76S mutations; and refined them by self-consistent

ensemble optimization (500 cycles) [50]. The geometry of the

predicted structures was tested with the program Procheck [52].

Immunofluorescence in cultured cells and mouse
embryos

Mouse embryos were dissected in PBS and fixed overnight in

4% paraformaldehyde in PBS followed by cryopreservation in

30% sucrose overnight at 4uC. Whole embryos were embedded

and frozen on dry ice in Neg –50 (Richard-Allan Scientific,

Kalamazoo, MI). 10 mM frozen sections were cut through mouse

eyes and slides were stored at 280uC. Tissue sections were then

thawed and washed three times in PBS, and then treated with 1X

target retrieval solution (pH 6) (Dako, Carpenteria, CA). After

washing three times in PBS, the section was incubated in blocking

reagent (10% normal donkey serum, 0.02% Triton X-100 in PBS)

for 1 hr. at room temperature. Slides were incubated overnight in

anti-murine Pax2 (1:1000, Covance, Berkeley, CA) at 4uC.

Following removal of primary antibody slides were washed four

times in PBS for ten minutes each and the Pax2 antibody was

detected using Donkey anti-rabbit Alexa Fluor 594 secondary

antibody (1:400, Molecular Probes Inc., Eugene, OR) for one hour

at room temperature. Slides were then washed again in PBS and

cover-slipped with Vectashield with DAPI (Vector Laboratories,

Burlingame, CA). At least 100 cells were counted for each

transfection.

For cell culture, COS-7 cells (ATCC, Manassas, VA) were

cultured on slides and fixed in 4% paraformaldehyde at room

temperature for 10 minutes, rinsed twice with wash buffer (0.1%

Tween 20, 0.5% normal goat serum in PBS) then cryoprotected by

incubation in 15% and 30% sucrose for 45 minutes each and

stored at 280uC. When ready for use, slides were thawed, washed

three times in PBS and incubated in blocking reagent (10%

normal goat serum, 0.1% Tween 20 in PBS) for 30 min. at room

temperature. Slides were incubated overnight in anti-murine Pax2

(1:200, Zymed, Carlsbad, CA) at 4uC. Following removal of

primary antibody slides were washed four times in PBS for five

minutes each and the Pax2 antibody was detected using goat anti-

rabbit Alexa Fluor 488 secondary antibody (1:1000, Molecular

Probes Inc., Eugene, OR) for one hour at room temperature.

Slides were then washed again in PBS and cover-slipped with

ProLong Gold with DAPI (Molecular Probes).

Fluorescence and brightfield images were taken with a Zeiss

AxioVert 200 microscope with a digital camera connected to a PC

running AxioVision 4.6.3 (Carl Zeiss MicroImaging, Thornwood,

NY). When making qualitative comparisons of the intensity of

immunofluorescence, care was taken to standardize exposure

times.

Lectin staining of retinal vasculature
Enucleated mice eyes were fixed in 4% paraformaldehyde in

PBS at room temperature for 30 minutes. After washing in PBS,

retinas were dissected and isolated. Four radial incisions were then

made in preparation for flat mount. Subsequently, retinas were

permeabilized and blocked in a solution of 0.5% Triton X100 and

Figure 9. Electrophoretic mobility shift assay comparing DNA binding of wild-type and three mutant Pax2 proteins. A labeled Pax2
DNA-binding consensus sequence was incubated in the presence or absence of nuclear extract of COS-7 cells expressing equal amounts of the wild-
type or mutant Pax2 protein; the same, unlabeled, competing DNA oligonucleotide; and/or a mutated version of the unlabeled oligonucleotide (Mut-
Pax2). Nuclear extracts from mock transfected cells did not appreciably result in a shift of the labeled Pax2 DNA-binding site oligonucleotide, whereas
wild-type and all three mutant Pax2 proteins bound the oligonucleotide with approximately equal affinity. Specificity for this binding was shown by
competing the binding with the same, unlabeled oligonucleotide sequence and by failure of an unlabeled mutant oligonucleotide to compete for
binding.
doi:10.1371/journal.pgen.1000870.g009
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1% bovine serum albumin in PBS at room temperature for

1 hour. After PBS wash, retinas were incubated in TRITC-

conjugated lectin (1:100 dilution in PBS) overnight at 4uC. After

rinsing, retinas were flat mounted with slow-fade medium (Pro-

Long Gold, Invitrogen, Carlsbad, CA) and visualized under

microscopy with a TRITC filter.

Transactivation studies
PCR-based site directed mutagenesis of the CMV-Pax2b

expression construct [32,33] was performed according to

standard protocol to introduce one of the following mutations:

c.A220G, c.G223A, or c.222insGAGACC. These mutations in

the mouse sequence correspond to c.A223G (p.T75A), c.G226A

(p.G76S), and c.220insGAGACC (p.dup74ET) in the human

sequence, respectively. Mutations were confirmed by direct

sequencing. NIH/3T3 (mouse embryonic fibroblast) or COS-7

(African green monkey kidney) cells (ATCC, Manassas, VA) were

plated at 0.256106 cells per well in a 6-well plate in DMEM

media with 10% fetal bovine serum. The following day, cells were

transiently transfected with 0.5 micrograms of PRS4-luciferase

reporter construct [32,33], 50 nanograms of Renilla luciferase

construct (pRL-CMV, Promega, Inc., Madison, WI) and 2

micrograms of CMV-Pax2b expression construct (wild-type or

mutant) [30] using 10 ml/well lipofectamine 2000 (Invitrogen,

Carlsbad, CA) according to the manufacturer’s protocol. Control

samples were transfected with an equimolar amount of the

expression vector backbone. After 48 hours, cells were harvested

and luciferase activity was measured using microplate reader

(Optima, BMG labtech, Durham, NC). All experiments were

repeated at least three times with at least three replicates per

sample.

Western blotting
Transfected cells were harvested for protein in 1x Passive Lysis

Buffer. Total protein was determined using Micro-Lowry method

(Sigma-Aldrich, St. Louis, MO). Equal amounts of protein were

separated (4–12% NuPAGE Bis-Tris) polyacrylamide gels and

transferred to 0.2 mm, PVDF membranes (Invitrogen, Carlsbad,

CA). Blots were hybridized with 1:1000 dilution Rabbit anti-Pax2

antibody (Zymed, San Francisco, CA) and 1:4000 dilution of goat

anti-rabbit-HRP secondary antibody (Thermo Fischer Scientific,

Pierce Protein Research Products, Rockford, IL) and then

developed with SuperSignal West Pico chemiluminescent sub-

strate for detection of HRP (Thermo Fischer Scientific,

PierceProtein Research Products, Rockford, IL). Quantitation

was performed on a ChemiDoc EQ (Bio-Rad Laboratories,

Hercules, CA) using the manufacturer’s software (Quantity One,

v.4.5.2, Build 070).

Quantification of wild-type and mutant Pax2 mRNA
levels

NIH/3T3 cells were transiently transfected with wild type or

mutant Pax2 plasmids using FuGene 6 HD reagent (Roche-

Applied Science, Indianapolis, IN). 48 hrs. post transfection, RNA

was isolated using an RNeasy mini kit from Qiagen. 1 mg of RNA

was treated with DNase I to remove any DNA contamination

from the samples. cDNA was prepared using High Capacity

cDNA Reverse Transcription kit (Applied Biosystems, Foster City,

CA). Real time PCR was performed with SYBR green master mix

(Applied Biosystems) on Bio-Rad iCycler. The following primers

were used for Pax2 (Forward- TATGCACTGCAAAGCAGACC

and Reverse- GGGGCAGTCACTCCTGTC) and Gapdh (For-

ward- GCATTGTGGAAGGGCTCATGACC and Reverse-CG-

GCATCGAAGGTGGAAGAGTGG). The parameters for PCR

amplification were 95uC for 10 min followed by 40 cycles of 95uC
for 30 s, 55uC for 30 s and 72uC for30 s. Relative expression of

different mRNA samples for Pax2 and Gapdh was calculated using

the comparative threshold cycle method.

Protein degradation analysis
Pax2 wild type and mutant proteins stability were characterized

by transiently transfecting NIH/3T3 cells with expression vectors

expressing wild type and mutant Pax2 proteins using a modified

method described by Jiang et al [53]. In brief, 24 hrs post-

transfection with equal amounts of wild-type or mutant Pax2

expression vector, cells were treated with cycloheximide (CHX)

(100 mg/ml) (Sigma-Aldrich, St. Louis, MO). Cells were washed

with PBS and lysed with RIPA buffer at 0, 3 and 6 hrs after CHX

treatment. The protein concentrations in the lysates were

determined by BCA method (ThermoFisher Scientific-Pierce,

Rockford, IL). Equal amounts of proteins were resolved in

NuPAGE Novex Bis-Tris gel (4–12%), transferred to PVDF

membrane and probed with Rabbit polyclonal anti-Pax2 (1:250

dilution) and anti-Gapdh (1:500 dilution) primary antibodies.

HRP conjugated anti-rabbit IgG was used as secondary antibody

(1:5000 dilution). SuperSignal West Pico Chemiluminescent

Substrate was used to detect HRP on the blots. The blot was

imaged using Autochemie System (UVP, Upland, CA) and

quantitative analysis of the bands was performed using Labworks

software.

Gel mobility shift assays
COS-7 cells were transiently transfected with CMV-Pax2a

expression construct (wild type or mutant) using FuGENE 6 HD

reagent (Roche-Applied Science, Indianapolis, IN). The cells were

harvested after 48 h and the nuclear extracts were prepared by

using NE-PER nuclear and cytoplasmic extraction kit reagents

(Thermo Scientific-Pierce, Rockford, IL). Gel purified sense and

antisense oligonucleotides representing wild-type or mutant Pax2

DNA binding sites were labeled at the 39 end of DNA strand with

Biotin -11-dUTP (Biotin 39 end DNA labeling kit, Thermo

Scientific-Pierce). The forward wild-type primer was 59TGG-

AATTCAGGAAAAATTGTCACGCATGAGTGGTTAGCTC-

GAGTA-39 and the forward mutant primer was 59TGGAATT-

CAGGAAAAATTTGATACCATGAGTGGTTAGCTCGAGTA -

39, where the underlined sequence represents the portion of

oligonucleotide that was mutated. Gel mobility shift assays were

performed with Biotin -11-dUTP labeled target DNA in 10 mM

Tris-HCl pH 7.5, 100 mM KCl, 0.5 mM DTT, 05% NP-40,

2.5% glycerol and 50 ng/ml poly (dI:dC) and incubated with the

Wt or Mut nuclear extracts in a total volume of 20 ml. After

incubation for 20 minutes, protein-DNA complexes were separat-

ed on a 6% polyacrylamide gel in 0.5 x TBE buffer at 100 V/cm,

transferred onto Nytran membrane and UV cross-linked. Biotin

label was detected by chemiluminescent detection module

(Thermo Scientific-Pierce) that uses luminol substrate for HRP-

conjugated streptavidin. For competition experiments, the nuclear

extracts were pre-incubated with 100 molar excess of unlabeled or

mutant DNA for 10 min. before adding the biotin labeled probe.
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