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ABSTRACT
Chimeric antigen receptor (CAR)-T cell therapies have achieved remarkable success. However, applica-
tion-related toxicities, such as cytokine release syndrome or neurotoxicity, moved natural killer (NK) 
cells into focus as novel players in immunotherapy. CAR-NK cells provide an advantageous dual killing- 
capacity by CAR-dependent and -independent mechanisms and induce few side effects. While the 
majority of trials still use CAR-T cells, CAR-NK cell trials are on the rise with 19 ongoing studies 
worldwide. This review illuminates the current state of research and clinical application of CAR-NK 
cells, as well as future developmental potential.
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Cytotoxic T cells and natural killer cells as 
immunotherapeutic tools

In addition to cytotoxic T lymphocytes (CTLs), natural killer 
(NK) cells have recently become a novel tool for immunother-
apy. Although these cell types utilize similar killing mechanisms 
for eliminating malignant or virally infected cells, their target 
recognition mechanism differs significantly.1,2 CTLs, as part of 
the adaptive immune response, recognize their targets via a wide 
variety of clonally rearranged T cell receptors (TCRs) (Figure 
1a), while NK cells, as innate lymphoid cells, integrate activating 
and inhibitory signals received by their germline-encoded recep-
tor repertoire (Figure 1b). These distinct target recognition 
mechanisms allow complementary function and render NK 
cells as an attractive tool for immunotherapy.

Insights into NK and T cells – abundance and phenotype

NK cells are defined as CD56+CD3− lymphocytes and are tradi-
tionally classified into two main subsets based on the expression 
of CD56 and the low-affinity Fc gamma receptor 3A (FcγRIIIa, 
CD16). One population is primarily immunomodulatory with 
cells defined as CD56brightCD16dim while the other consists of 
CD56dimCD16bright NK cells displaying stronger cytotoxicity. 
Further functional subpopulations can be defined by the expres-
sion of several surface markers, e.g. chemokine receptors such as 
CXCR4, CX3CR1 or CCR7, which determine tissue distribution 
and homing capability as well as maturation markers such as 
CD27 or CD57, which define different developmental stages.7–9

The complete lack of TCR expression phenotypically and 
functionally distinguishes NK cells from CD3+ T lymphocytes. 
In contrast to T cells, which develop in the thymus, NK cells 

primarily develop and differentiate in the bone marrow and 
subsequently enter the circulation, where they account for up 
to 10–15% of peripheral blood mononuclear cells (PBMCs). 
T cells are much more abundant, with frequencies above 
60%10,11 and mainly classified as CD4+ helper or CD8+ cytotoxic 
T cells. Additionally, T cells can be further divided into specific 
subsets, e.g., regulatory T cells (Treg, CD4+CD25+Foxp3+),12 

memory T cells (CD3+CD45RO+),13 γδ T cells (TCR-γδ+),14 or 
NKT cells (CD3+CD16+CD56+). Of these, the NKT cell subset 
seems particularly interesting, as they show typical NK cell 
features while expressing the αβ-TCR to detect antigens dis-
played by CD1d, a monomorphic human leukocyte antigen 
(HLA)-like molecule, thereby potentially enabling allogeneic 
CAR-NKT cell therapies.15 However, in this review, we focus 
on the comparison of (CAR-)NK and (CAR-)T cells as being the 
major players in CAR-cell therapies at the moment.

Regulation of cytotoxicity – what causes the difference 
between T and NK cells?

T cells detect malignant or virus-infected cells through inter-
actions between a wide variety of membrane-expressed TCRs 
and antigen loaded major histocompatibility complex (MHC) 
molecules present on the surface of all nucleated cells. A robust 
T cell response can take days to establish due to the necessity of 
encountering a T cell clone with the appropriate TCR-antigen 
specificity.

In contrast, NK cells do not require antigen-specific recog-
nition to kill target cells. CD16 expression on NK cells (Figure 
1b) enables these cells to mediate antibody-dependent cellular 
cytotoxicity (ADCC), which constitutes an activation- 
independent killing mechanism not available to T cells 

CONTACT Evelyn Ullrich evelyn.ullrich@kgu.de Experimental Immunology, Children’s Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 
Frankfurt am Main, Germany
*These authors contributed equally to this work.

ONCOIMMUNOLOGY                                        
2020, VOL. 9, NO. 1, 1–12 
https://doi.org/10.1080/2162402X.2020.1777651

© 2020 The Author(s). Published with license by Taylor & Francis Group, LLC. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits 
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/2162402X.2020.1777651&domain=pdf&date_stamp=2020-08-12


(Figure 1a).16 In addition, NK cells express a wide repertoire of 
highly polymorphic germline-encoded activating or inhibitory 
receptors that recognize distinct target cell ligands (Figure 
1b).17,18 A number of inhibitory NK cell receptors, such as 
killer-immunoglobulin like receptors (KIRs) or the (C-type 
lectin-like) natural killer group 2 molecules NKG2A/B,18–20 

bind to canonical and non-canonical HLA proteins, thereby 
inducing the cytolysis of cells lacking expression of these mole-
cules. This process is called “missing-self” recognition.17 

Downregulation of MHC-I/HLA-I protein expression repre-
sents one immune escape mechanism that tumor or viral- 
infected cells use to evade T cell recognition.21–23 However, 
MHC-independent inhibitory ligands, such as 2B4, KLRG1 or 
CEACAM1, can also be detected by NK cells.24 The major 
receptors responsible for NK cell activation are other C-type 
lectin-like molecules, such as NKG2D,19,25 DNAM-1 and the 
natural cytotoxicity receptors (NCRs) NKp30, NKp44 and 
NKp46. NCRs are lysis-triggering receptor proteins that are 
specific for non-MHC ligands and are localized in the cell 
membrane of NK cells in all higher mammals.5,26,27 The initial 
stochastically driven expression of these receptors is altered via 
an educational process that defines the final repertoire and 
activation status of each NK cell. Different models have been 
described for the process of maturation, such as the “licensing 
and arming”-model, the “disarming”-model and the “tuning”- 
model.28–30 Following activation, NK cells, similar to cytotoxic 
T cells, can mediate killing after forming a lytic synapse. Cell 
death is induced via either the death receptor pathway (e.g., 
through Fas/CD95 or TNF-related apoptosis-inducing ligand 
(TRAIL)) or the perforin granzyme pathway, which constitutes 
the major mode of killing by NK cells. The latter pathway 
utilizes the coordinated secretion of cytotoxic granules, which 

include pore-forming proteins, granulysin and/or perforin and 
combinations of effector proteases from the granzyme (Gzm) 
family (in humans: Gzm A, B, K, M and H). These molecules 
can enter the target cell and induce apoptosis, yet seem to be 
utilized differently in various T and NK cell lineages. Overall, 
NK cells exhibit the strongest expression of cytotoxic mole-
cules, followed by CD8+ T cells and CD4+ T cells, for which 
only the TH1 subset expresses granulysin, granzyme and 
perforin.31

Different NK cell sources represent alternative therapeutic 
approaches

A common hurdle for NK cell-based therapies is the limited 
availability of primary NK cells, which could be overcome by 
improving NK cell expansion protocols using different cyto-
kines, serum or feeder cells. Alternatively, different NK cell 
sources have been tested to overcome this limitation. Several 
NK cell lines exist, such as NK-92, NKL, YT, NK3.3 and NK-YS, 
but only the NK-92 cell line is approved for treatment of patients 
in clinical studies. NK-92 cells can be easily expanded under 
good manufacturing practice (GMP) conditions and show anti-
tumor efficacy.32,33 These cells possess characteristics similar to 
those of activated primary NK cells but lack CD16 expression, 
which prevents them from inducing ADCC (Figure 1c). Notably, 
NK-92 cells have the advantage of lacking almost all inhibitory 
receptors (except for KIR2DL4 and CD94/NKG2A) and are 
therefore constitutively activated.6 Despite their relatively high 
cytotoxic activity and advantages regarding disposability and 
genetic manipulation, NK-92 cells face limitations in their clin-
ical applicability. A constrain is that they originate from 

Figure 1. Receptor expression and interactions of (a) CD8+ T cells, (b) NK cells and (c) NK-92 cells with tumor target cells. T cells primarily recognize target cells via the 
TCR–HLA/MHC-I interaction, while NK and NK-92 cell activation depends on highly polymorphic activating and inhibitory germline-encoded receptors, such as KIRs or 
receptors of the NKG2-family. Activating receptors are shown in green, inhibitory receptors are shown in blue and killer receptors are shown in orange. Interleukin 
receptors are indicated in yellow, with the IL-2 receptor highlighted in orange on the NK-92 cell to illustrate its strong IL-2-dependency. Please note that only a selection 
of the most important receptors/ligands are shown, without claim of completeness.3–6Abbreviations: CD, cluster of differentiation; DNAM-1, DNAX accessory molecule- 
1; HS, heparan sulfate; HLA, human leukocyte antigen; IL, interleukin; INF, interferon; KIR, killer-cell immunoglobulin-like receptor; MHC, major histocompatibility 
complex; MIC, MHC class I chain-related protein; NKG2, natural killer group 2; TCR, T cell receptor; TRAIL, TNF-related apoptosis-inducing ligand.
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a lymphoma, which necessitates their irradiation prior to infu-
sion to reduce their proliferation and persistence in vivo.34 

Additionally, NK-92 cells are highly dependent on IL-2, which 
raises concern about toxicity if repeated IL-2 injections are 
required in NK-92-based cell therapies.35–37

Other alternatives are NK cells obtained from umbilical 
cord blood (UCB) or derived from either human embryonic 
or pluripotent stem cells (hESCs or hPSCs, respectively). The 
advantage of NK cells derived from UCB, hESCs or hPSCs is 
the wide availability of these cell sources and the ease of 
clinical-grade expansion under GMP conditions with 3- to 
4-log expansion rates. In addition, UCB- or hPSC-derived 
NK cells demonstrated tolerance of long-term cryopreserva-
tion without loss of function, making them potential “off-the- 
shelf” products for NK cell-based immunotherapies.38,39

NK cells in the clinic: an overview of phase I/II trials

Patients with selective NK cell deficiencies suffer from uncon-
trolled viral infections, indicating the need for improved NK cell 
function.40 Clinical data from Ruggeri et al. in 2002 first high-
lighted the beneficial outcomes observed in acute myeloid leuke-
mia (AML) patients in mismatched hematopoietic stem cell 
transplantation (allo-HSCT) who received alloreactive NK cells 
without an increased incidence of graft-versus-host disease 
(GvHD).41 In recent years, NK cell-based approaches have been 
developed for the treatment of not only AML but also other forms 
of cancer.42 Overall, there are currently more than 200 NK cell 
therapy trials under clinical evaluation worldwide (Figure 2a; for 
actual updates, see: www.ClinicalTrials.gov). However, divergent 
results have been reported by different studies.

Early approaches investigated the administration of autologous 
NK cells derived from peripheral blood (PB) in combination with 
high-dose IL-2. These so-called lymphokine-activated killer 
(LAK) cells showed severe side effects and limited antitumor 
activity.43 Although low-dose IL-2 has been indicated to be safe, 
IL-2 promotes not only the proliferation of NK cells but also the 
expansion of Tregs, which might inhibit immune function.44 

Protocols to improve the persistence, activation and number of 
NK cells involve administration of different immune stimulants, 
including cytokines to augment NK cell activity, cytotoxicity and 
ex vivo expansion to produce sufficient NK cell numbers for 
adoptive transfer (for review, see Granzin et al.).45 For instance, 
several clinical trials have investigated the use of recombinant 
human IL-15 combined with different antibodies 
(NCT03759184, NCT02689453, NCT03388632, NCT03905135) 

or a superagonist of IL-15, ALT-803, to promote the proliferation 
of circulating NK cells (NCT01898793 and NCT02782546).46

The addition of monoclonal antibodies to NK cell-based 
immunotherapy can increase the cytolytic potential of NK 
cells by either promoting ADCC or blocking the interactions 
of inhibitory NK cell receptors with their respective tumor 
ligands. Some clinically approved antibodies that enhance 
ADCC are the anti-EGFR monoclonal antibody (mAb) 
cetuximab,47 the anti-Her2 mAb trastuzumab48 and the anti- 
CD20 mAb rituximab.49 Furthermore, bi- and tri-specific 
mAbs can be used as cross-linkers to form immunological 
synapses by binding both tumor antigens and NK cells.50 

Checkpoint inhibitors, which have been very successfully 
used in T cell-based immunotherapy, can also be combined 
with adoptively transferred NK cells to overcome immunosup-
pression. The expression of the inhibitory receptor pro-
grammed cell death 1 (PD-1), for example, was found to be 
upregulated on NK cells from patients with multiple myeloma, 
and blockade of PD-1 led to enhanced NK cell cytotoxicity in 
these patients.51 Besides PD-1, other checkpoint inhibitors, 
including mAbs against KIR, NKG2A, CTLA-4, B7-H3, 
Siglec-7, TIGIT, TIM-3 and LAG-3 are under clinical evalua-
tion in the context of NK cell-based immunotherapy (for 
review, see Khan et al.).52

The transfer of ex vivo expanded autologous NK cells has been 
found to be safe in a range of clinical trials for treating lymphoma, 
colon cancer, breast cancer and lung cancer patients. However, 
the effect on tumor suppression appeared to be low.53,54

To overcome the “missing-self” recognition of tumor cells, 
KIR-ligand mismatched allogeneic or haploidentical NK cell 
infusions are used. The persistence, in vivo expansion and 
increased antitumor activity of allogeneic NK cells have been 
demonstrated.55. The safety and feasibility of the adoptive 
transfer of allogeneic NK cells has been demonstrated in 
several phase I and II clinical trials, which showed no evi-
dence of GvHD, cytokine release syndrome (CRS) or 
neurotoxicity.55–57 Only in very few cases NK cell infusion 
was suggested to be associated with GvHD.58 The contribu-
tion of blood-derived NK cells to GvHD is controversially 
discussed due to the fact that contaminating T cells can 
potentially indirectly contribute to GvHD (for review, see 
Lupo and Matosevic).59 To date, allogeneic NK cell infusions 
have been used in several tumor immunotherapy clinical 
trials of hematological malignancies and solid tumors such 
as melanoma, breast cancer, ovarian cancer, neuroblastoma, 
renal cell carcinoma, colorectal cancer and hepatocellular 

Figure 2. Geographical distribution of ongoing NK cell (a) and CAR-NK cell (b) therapy trials worldwide, as registered by mid February 2020 at https://www.clinicaltrials. 
gov/ with “Cancer (NK AND cell) OR NK-92 OR (natural AND killer AND cell)” as search terms and CAR-NK cell clinical trials as listed in Table 1.

ONCOIMMUNOLOGY 3

http://www.ClinicalTrials.gov
https://www.clinicaltrials.gov/
https://www.clinicaltrials.gov/


cancer. The results showed tremendous variations in clini-
cal response among the different types of cancers.56 For 
example, in a phase I/II clinical trial (NCT00625729) of 
patients with relapsed non-Hodgkin lymphoma (NHL) or 
chronic lymphocytic leukemia (CLL), allogeneic NK cell infu-
sions were given in combination with chemotherapy and 
rituximab. Four out of six patients showed complete or partial 
remission after 3 months, whereas two patients progressed 
after 6 months. In another phase II clinical trial evaluating the 
efficacy of allogeneic NK cell infusions for ovarian, fallopian 
tube, peritoneal and metastatic breast cancers, four out of 13 
enrolled patients were alive 1 year after therapy 
(NCT01105650). Limitations in the treatment of solid tumors 
include the poor capability of NK cells to reach the tumor 
tissue, their inadequate in vivo expansion and persistence, and 

suppression mediated by the tumor microenvironment, 
which remains a major hurdle for the effectiveness of adop-
tive NK cell therapy. Cytokine-induced memory-like (CIML) 
NK cells, which can be generated by a pre-stimulatory cyto-
kine protocol using IL-12, IL-15 and IL-18 may be a strategy 
to overcome some of these limitations based on their pro-
longed persistence in vivo.60 Several phase I or II clinical trials 
are elucidating CIML NK cells in the context of leukemia 
(e.g., NCT04354025, NCT03068819, NCT02782546) and head 
and neck cancer (NCT04290546).

NK-92 cells have been investigated in several clinical 
trials with variable clinical outcomes. For example, in 
a phase I clinical trial, patients with lymphoma or multiple 
myeloma who relapsed after autologous hematopoietic stem 
cell transplantation (AHSCT) were treated with NK-92 cell 

Table 1. Overview of CAR-NK cell trials worldwide listed on https://www.clinicaltrials.gov/. Trials are classified based 
on the source of NK cells used, and then within these sub-clusters based on their geographical distribution. Trials 
targeting hematological malignancies are highlighted in light blue and CAR-NK cell trials against solid tumors are 
highlighted in light gray.

Abbreviations: C – Completed, E – Enrolling by invitation, EP – electroporation, LV – Lentiviral, N – Not yet recruiting, 
PB – Peripheral Blood, S – Suspended, R – Recruiting, RV – retroviral, U – Unknown, W – Withdrawn.
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infusions. Two out of twelve patients showed a complete 
response, two patients showed minor responses, and one 
patient showed clinical improvement (NCT00990717).61 Of 
note, the success of NK-92 cell-based therapy is limited due 
to the need for prior irradiation resulting in a short lifespan 
in vivo. In addition, UCB-derived NK cells have been eval-
uated in several studies. In a phase II clinical trial, donor 
UCB NK cell infusions after chemotherapy in patients with 
refractory hematological cancer led to disease-free survival 
up to 6 months in two out of fifteen patients, with one 
patient remaining disease-free up to 12 months 
(NCT00354172).

From these studies, it can be concluded that the success 
of adoptive NK cell therapy depends on pretreatment with 
cytoreducing chemotherapy and activation of the NK cells 
with several cytokines alone or in combinations such as 
IL-2, IL-12, IL-15, IL-18, and IL-21, or ex vivo expansion 
using membrane bound (mb) IL-21-expressing feeder 
cells.55,60,62

A new tool for immunotherapy: CAR-NK cells

The development of genetically modified NK cells enabled 
a new approach for cancer immunotherapy. Based on the 
success of CAR-engineered autologous T cells, which achieved 
durable complete responses in patients with B-cell leukemia 
and lymphoma,63 and led to the approval of two CD19- 
targeted CAR-T cell products in the US and Europe 
(Kymriah® and Yescarta®), most studies performed to date 
have aimed to enhance the cytotoxicity of NK cells toward 
specific targets by the induced expression of CARs.

CARs are synthetically engineered molecules consisting of 
an extracellular binding domain, a hinge region, 
a transmembrane domain and one or more intracellular signal-
ing domains. The extracellular antigen-binding domain is 
usually a single chain variable fragment (scFv) derived from 
a mouse antibody that recognizes a cognate tumor antigen. 
Recent studies have revealed the feasibility and efficacy of 
utilizing a Fab fragment, a nanobody or designed ankyrin 
repeat proteins (DARPins) instead of the scFv. 64–66

The extracellular binding domain allows MHC-independent 
target recognition and enables targeting of a very large repertoire 
of surface molecules, including proteins and carbohydrates.67 

The hinge and transmembrane regions are commonly derived 
from CD8α or CD28. The design of the CAR intracellular 
domain varies according to the CAR generation. First- 
generation CARs include only the CD3ζ signaling domain, 
while second-generation CARs harbor an additional costimula-
tory domain. In third-generation CARs, two costimulatory 
domains are present in conjunction with the signaling domain 
of CD3ζ. Upon antigen contact, the intracellular signaling 
domains become activated, which in turn stimulates the down-
stream signaling cascade of the CAR-modified cell, leading to 
cancer cell killing. Different costimulatory domains such as 
CD28, 4–1BB (CD137), 2B4, OX40, DAP10 and DAP12 have 
been investigated, but CD28 and 4–1BB represent the most 
commonly used domains. Other approaches have been based 
on bispecific CARs that contain two distinct antigen-recognition 
domains either bound to one transmembrane domain and an 

intracellular signaling domain (tandem CAR) or to two single 
CAR constructs (dual CAR). These CARs exhibit several advan-
tages in tumor killing, such as the avoidance of tumor immune 
escape due to the downregulation of antigen expression.68 

Combinatorial CARs can function either in an AND-mode, 
requiring binding of both antigens, or in an OR-mode, where 
recognition of one antigen is sufficient. The combinatorial anti-
gen-recognition strategy allows targeting of non-tumor specific 
antigens, since only the expression of both antigens leads to 
CAR-activation and thereby provides tumor specificity.69 New 
approaches utilize additional structural frameworks for CAR- 
cell therapy, such as recently developed fourth-generation CARs 
or so-called T cells redirected for universal cytokine killing 
(TRUCKs) that contain an additional inducible cytokine 
released upon T cell activation, thereby further modulating the 
tumor microenvironment.67 Furthermore, novel customized 
synthetic Notch (synNotch) receptors have been developed 
that release intracellular transcription factors upon antigen 
recognition and receptor activation.69 Turning an immunosup-
pressive signal into an activating signal can be achieved using 
inhibitory CARs that carry an inhibitory extracellular domain 
fused to an activating intracellular CAR domain.70

Additionally, split CAR technologies have evolved in recent 
years. Amongst these, the highly flexible adapter CAR technol-
ogy, termed AdCAR, uses biotinylated mAbs and fragments as 
adapter molecules to quantitatively regulate immune effector 
cell function with on- and off-switch kinetics depending on the 
pharmacodynamics and pharmacokinetics of the utilized adap-
ter molecule format. Separating antigen recognition and CAR 
activation facilitates universal, as well as combinatorial, 
immunotargeting.71,72

Generation of CAR-NK cells

Different systems, which can be classified as viral and nonviral 
technologies, can be used for the genetic modification of NK 
cells and NK cell lines. Many viral vector systems, including 
alpharetroviral (α-RV), gammaretroviral (γ-RV) and lentiviral 
(LV) systems have been developed, with retroviral vectors being 
the most commonly used (for review see Matosevic et al.).73 

Transduction efficiencies differ between published studies and 
depend on the NK cell source, the viral vector system and the 
transduction enhancer used.73 For instance, γ-RV vector systems 
have achieved high transduction efficiencies in expanded PB- 
and UCB-derived NK cells.74–76 Interestingly, most protocols 
used gene-modified K562 feeder cells expressing membrane- 
bound cytokines (mbIL-21 or IL-15) and 4–1BB to enhance 
NK cell expansion and potentially improve the transduction 
efficiency. It is still unknown whether high transduction rates 
solely depend on the γ-RV vectors or whether other conditions 
play a significant role as well. Nevertheless, the use of γ-RV 
vectors is associated with the risk of insertional mutagenesis 
and oncogenesis. In a study of X-linked severe combined immu-
nodeficiency (SCID), nine out of ten patients were cured using  
γ-RV-mediated gene therapy, but four of them developed T cell 
leukemia, indicating the need for viral vector systems with a safer 
integration pattern and a decreased risk of insertion mutation 
(i.e., LV and α-RV vectors or a nonviral approach).77,78
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Further development of LV systems resulted in self- 
inactivating (SIN) LV vectors, which demonstrate a lower risk 
of insertional oncogenesis than γ-RV vectors.79,80 Additionally, 
LVs can infect nondividing cells, while γ- and α-RVs preferen-
tially infect dividing cells. Subsequently, LV vectors have been 
successfully used to generate CAR-NK cells from a variety of 
sources.81 However, in the initial studies the transduction rate of 
PB-NK cells was limited to only 8−16%, while transduction rates 
of up to 70% were achieved for UCB-derived NK cells, high-
lighting the dependency of transduction efficiency on the NK cell 
origin and donor-dependent variation.82

The α-RV SIN vectors represent the newest generation 
of viral vectors used for NK cell transduction. It has been 
reported that α-RV vectors outperform both γ-RV and LV 
vectors in the transduction of PB-derived NK cells, exhibit-
ing up to 60% transduction efficiency.83 Based on these 
findings, α-RV vectors have been used to successfully gen-
erate PB-derived CAR-NK cells redirected against CD19 
and CD123.83–85 Additionally, α-RV vectors utilize a more 
neutral integration site than both γ-RV and LV vectors and 
can be considered safer, because insertional oncogenesis is 
less likely to occur.86,87 Recently, we and others demon-
strated the dependency of the resulting transduction effi-
ciency on the pseudotyping as RD114-TR- or Baboon- 
pseudotyped lentiviruses transduced NK cells via the sur-
face entry receptor ASCT2 that is upregulated following 
cytokine stimulation.88,89

In addition, different transduction enhancers have been 
tested to increase the viral transduction efficiency of NK cells 
(e.g., polybrene, Retronectin, protamine sulfate, poly-L-lysine, 
DEAE-dextran, Vectofusin-1). The cationic polymers prota-
mine sulfate and polybrene reduce the viral repulsion of NK 
cells, thereby enhancing the membrane fusion.90 Interestingly, 
the routinely used transduction enhancer polybrene showed 
some toxicity in NK-92 cells.73 The use of poly-L-lysine and 
DEAE-dextran has only been reported in a few NK cells trans-
duction studies.91 We and others showed enhanced viral trans-
duction efficiency for CAR-NK cells with not only 
Retronectin,88,92 but also Vectofusion-1, which has been 
reported as a promising alternative transduction enhancer.93 

Our data showed that Vectofusin-1 was as effective as 
Retronectin using VSV-G-pseudotyped LV, but demonstrated 
higher transduction efficiency for the RD114-TR-pseudotyped 
α-RV.88 The use of the relatively new transduction enhancer 
Vectofucion-1 in combination with specific envelope glycopro-
teins needs further attention as high transduction efficiencies 
were also reported with Baboon-pseudotyped LV.89

Promising new tools for nonviral modification

Despite the current success of viral vectors, GMP-grade vector 
production for clinical therapy is cost intensive and requires high 
safety standards. Hence, nonviral alternatives for CAR-NK cell 
production have gained increasing attention. Compared to clas-
sic viral-transduction, nonviral approaches are numerous and 
mostly based on transient transfection. CAR-NK cells can be 
successfully obtained by electroporation,94,95 nucleofection,96,97 

lipofection,98,99 trogocytosis100 or nanoparticle treatment.101,102 

Additionally, genome editing using clustered regularly 

interspaced short palindromic repeats (CRISPR)/Cas9, zinc fin-
ger nucleases (ZFNs) or transcriptional activator-like effector 
nucleases (TALENs) represent suitable methods for NK cell 
engineering.103,104

Electroporation utilizes an electric field to temporarily per-
meabilize the cell membrane via short electrical pulses and 
allows charged molecules to move into the cell (e.g., DNA and 
RNA) to induce transient gene expression. Virus-free cell mem-
brane penetration avoids the integration of foreign genetic mate-
rial and therefore unwanted replication in the cellular genome 
which is a possible risk with viral infection. One of the first NK 
cell electroporation approaches reported by Liu et al. in the 
1990s showed successful nonviral modification of the NK cell 
line YT.105 From then on, electroporation has increasingly been 
used for NK cell genetic modification, and impacts of different 
peptide nucleic acid sources were shown.106 Significantly higher 
expression of CD19-CARs in NK cell lines was achieved by using 
mRNA instead of cDNA with minimal effects on cell viability.106 

Further studies achieved high transfection efficiencies in primary 
human NK cells,95,107,108 which might be explained by the fact 
that both resting and stimulated primary NK cells can be 
transfected.107

Alternatively, nucleofection can be applied, which is 
a modified electroporation-technique able to transfer a gene 
directly into the nucleus without the need for cell 
division.109,110 Similar to electroporation, nucleofection achieves 
higher transfection efficiencies with RNA than DNA.106 To date, 
few preclinical studies have successfully reported CAR-NK-92 or 
NK cell generation by nucleofection.111–113

A few approaches for nonviral genomic modification of 
NK cells have been reported in recent years, for example, 
using electroporation-based piggyBac transposon systems. 
A modified transposon can integrate a genetically engi-
neered gene-of-interest (GOI) into the cellular genome by 
recognizing transposon-specific inverted terminal repeat 
sequences. For NK-92-cells, a clinically safe, nonviral, 
NKG2D-specific CAR-NK cell system could be engineered 
based on the piggyBac transposon, which showed effective 
purinergic reprogramming and enhanced cytotoxicity 
against CD73+ solid tumors.114 Different CARs were also 
nucleofected with the piggyBac or SleepingBeauty transpo-
sons into induced pluripotent stem cell (iPSC)-derived NK 
cells, demonstrating NK cell production efficiency that was 
similar to non-CAR-expressing iPSCs.115 In this context, 
the expression of NKG2D was not compromised in CAR- 
NK-iPSCs and the iPSC-NK cells showed a similar pheno-
type compared to PB-NK cells.

Regarding CD19-CAR modification, the reported electro-
poration- and RV-based transduction efficiencies of NK cells 
and the resulting cytotoxicities seemed comparable.108 

Whereas high viral transduction rates of 60% could be achieved 
with α-RV, even higher efficiencies of 80–100% were reported 
for mRNA transfection with electroporation.83,107,116 Of note, 
nonviral modification is less costly and time-consuming com-
pared to viral transduction. Therefore, nonviral methods seem to 
be a promising tool for GMP clinical application. For example, 
the first GMP-compliant process for mRNA electroporation has 
been presented for the expression of the chemokine receptor 
CCR7 and antibody-binding receptor CD16 in NK cells.116–118
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CAR-NK cells for clinical application

Regarding the clinical application of engineered immune cells, 
CAR-T cell therapies have recently achieved striking success, 
mainly for hematological malignancies, although severe side 
effects such as cytokine release syndrome (CRS), neurotoxicity, 
GvHD and on-target/off-tumor effects have been reported in 
some cases (for review, see Hartmann et al.).119 In contrast, 
compared to T cells, NK cells possess a relatively short life span 
and do not undergo clonal expansion, which lowers the risk of 
in vivo side effects. A major advantage of CAR-NK cell therapy 
is its dual killing capacity, as the engineered NK cells can kill in 
a CAR-dependent manner via antigen-recognition, as well as 
in the inherent CAR-independent manner, including the afore-
mentioned antigen-independent killing mechanisms, e.g., by 
release of cytotoxic granules or via the TRAIL-pathway. 
Therefore, one major tumor escape mechanism, involving the 
downregulation of tumor antigens on the cell surface, might be 
overcome by CAR-NK cell therapies.

However, while a multitude of clinical trials with CAR-T cells 
have been performed, studies of CAR-NK cells are quite rare. 
Currently, 19 trials of CAR-NK cells are listed on https://www. 
clinicaltrials.gov/, including phase I, phase I/II and early phase 
I studies (Table 1). Eleven studies are evaluating CAR-NK cells 
for the treatment of hematological malignancies, whereas nine 
trials for the treatment of solid tumors. Most of the trials are 
being conducted in Asia (15 total) while only three trials are 
ongoing in the US and only one trial is being performed in 
Europe (Figure 2b).

Seven of these 19 trials are investigating engineered NK-92 
cells. Four phase I/II clinical trials with CAR-NK-92 cells 
targeting CD7- or CD19-positive leukemia or lymphoma 
(NCT02742727 and NCT02892695), MUC1-positive advanced 
refractory or relapsed solid tumors (NCT02839954) or 
relapsed/refractory CD33-expressing AML (NCT02944162) 
are being conducted by PersonGen BioTherapeutics (Suzhou, 
China). These studies are using 3rd-generation CARs consist-
ing of CD28 and 4–1BB costimulatory domains in addition to 
the intracellular CD3ζ signaling domain. Furthermore, the 
Xinxiang Medical University (Henan, China) is investigating 
chimeric costimulatory converting receptor (CCCR)-modified 
NK-92 cells in pretreated non-small cell lung carcinoma 
patients (NCT03656705) and the Asklepios Technology 
Company Group (Suzhou, China) is supporting a clinical 
phase I/II trial testing BCMA-CAR-NK-92 cells for treatment 
of multiple myeloma at the Wuxi Hospital in Jiangsu, China 
(NCT03940833). The only CAR-NK cell trial in Europe at the 
Goethe University in Frankfurt, Germany, is evaluating the 
safety of ErbB2-specific NK-92 cells expressing a second- 
generation CAR (scFv (FRP5)/CD28/CD3ζ) in patients with 
recurrent HER2-positive glioblastoma in a phase I study 
(NCT03383978), based on promising preclinical data.120

With regard to primary NK cells as the source for adoptive 
CAR-NK therapy, two trials at the M.D. Anderson Cancer Center 
(Texas, US) are employing UCB-derived NK cells as the source of 
CAR-NK cells for targeting CD19-expressing B-cell malignancies. 
In a first trial, a CD19-CD28-zeta-2A-iCasp9-IL15 CAR construct 
was used, which contained the inducible Caspase 9 as a suicide 
gene and a gene to produce IL-15 ectopically in addition to the 

CD28 costimulatory and CD3ζ signaling domains 
(NCT03056339). In a murine lymphoma model, it was shown 
that the inclusion of IL-15 dramatically increased the in vivo 
persistence and cytotoxic potential of anti-CD19 CAR-NK 
cells.76 Recently, the clinical results of the first 11 patients have 
been published, which reported eight patients (73%) showing 
a clinical response. Of these patients, seven (four with lymphoma 
and three with CLL) had complete remission, and one had remis-
sion of Richter’s transformation. Responses were rapid and 
occurred within 30 days after infusion for all dose levels. The 
infused CAR-NK cells expanded and persisted at low levels for at 
least 12 months.121 A second trial in humans aimed to test a 
second-generation CD28-zeta-CAR targeting CD19-expressing 
B cell malignancies (NCT03579927), but it was withdrawn due 
to lack of funding.

Another clinical trial in the US, at the St. Jude Children’s 
Research Hospital (Memphis), completed a study investigating 
CD19-redirected donor NK cells after expansion in the pre-
sence of irradiated K562 cells expressing membrane bound IL- 
15 and 4–1BB ligand (K562-mb15-41BBL) for the treatment of 
B-lineage acute lymphoblastic leukemia (B-ALL) 
(NCT00995137). In Asia, a multitude of highly interesting 
clinical CAR-NK cell trials have been initiated. One study at 
the National University Health System Singapore, expanded 
donor-derived NK cells via coculture with K562-mb15-41BBL 
in the presence of IL-2. The expanded, activated CD19- 
targeting NK cells were infused into B-ALL-patients with per-
sistent disease (NCT01974479). In addition to their safety and 
feasibility, the lifespan and phenotype of these redirected NK 
cells were analyzed. CAR-NK cells were produced using 
mRNA electroporation and CAR-NK cells were detectable in 
the peripheral blood for 2–3 days post-infusion (personal com-
munication by D. Campana; results not yet published). 
Furthermore, two trials are employing ROBO1-specific CAR- 
NK cells for the treatment of pancreatic cancer and other solid 
tumors (NCT03940820 in Suzhou, Jiangsu, and NCT03941457 
in Shanghai, China).

In a pilot study performed at Guangzhou Medical 
University in China, mRNA electroporation is being used to 
transiently enhance the specificity of autologous or allogeneic 
NK cells against NKG2D-ligand-bearing tumors 
(NCT03415100). To date, three patients with metastatic color-
ectal cancer have been treated. The first two patients were 
treated with an intraperitoneal infusion of low doses of 
NKG2DL-CAR-NK cells, and they showed a reduced tumor 
cell number in ascites samples as well as reduced ascites gen-
eration. A third patient receiving an intraperitoneal infusion of 
CAR-NK cells following ultrasound-guided percutaneous 
injection showed a fast regression of the tumor sites in the 
liver and a complete metabolic response.122

In 2019, the Allife Medical Science and Technology Co. Ltd. 
(China) launched five early phase I studies to evaluate the safety 
and efficacy of CAR-NK cells targeting several tumor antigens; 
however, they are not yet recruiting. They are investigating anti- 
prostate-specific membrane antigen (PSMA) CAR-NK cells for the 
treatment of castration-resistant prostate cancer (NCT03692663) and 
anti-mesothelin CAR-NK cells for the treatment of epithelial ovarian 
cancer (NCT03692637). Furthermore, three different constructs will 
be investigated for the treatment of refractory B cell lymphoma 
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targeting CD19 or CD22 alone, or both CD19 and CD22 together 
(NCT03690310, NCT03692767 and NCT03824964, respectively).

Perspective – what will the future bring for CAR-NK 
cell-based therapy?

The impressive success of CAR-T cell-therapeutic approaches for the 
treatment of B cell malignancies has generated great enthusiasm for 
the genetic engineering of other immune cells. As described in detail, 
NK cells are a highly promising effector cell population for fighting 
cancer, as they possess broad intrinsic killing potential and can be 
applied as an off-the-shelf medicinal product with a low risk of side 
effects. In addition, rapid technological innovations, such as increas-
ing NK cell specific signaling, the use of split or adapter CAR systems 
and involvement of CRISPR/Cas9-based genome editing to counter-
act tumor immune suppression, will make it possible to either 
enhance NK cell persistence and/or inhibit immune suppressive 
mechanisms.

Beginning in 2020, we look forward for new insights from 
the first clinical CAR-NK cell trials launched worldwide.
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