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Glucose metabolic reprogramming and immune imbalance play important roles in the
progression of cancers. The purpose of this study is to develop a glycolysis-related
prognostic signature for endometrial cancer (EC) and analyze its relationship with immune
function. The mRNA expression profiling of the glycolysis-related genes and clinical data of
EC patients were downloaded from The Cancer Genome Atlas (TCGA). We identified a
glycolysis-related gene prognostic signature for predicting the prognosis of EC by using
The Least Absolute Shrinkage and Selection Operator (LASSO) regression and found the
patients in the high-risk group had worse survival prognosis. Multivariate Cox regression
analysis showed that the gene signature was an independent prognostic factor for EC. The
ROC curve confirmed the accuracy of the prognostic signature (AUC = 0.730). Then, we
constructed a nomogram to predict the 1–5 years survival rate of EC patients. The
association between the gene signature and immune function was analyzed based on
the “ESTIMATE” and “CIBERSORT” algorithm, which showed the immune and ESTIMATE
scores of patients in the high-risk group were lower, while the low immune and ESTIMATE
scores were associated with a worse prognosis of patients. The imbalance of immune cells
was also found in the high-risk group. Further, the protein of CDK1, a gene in the signature,
was found to be closely related to prognosis of EC and inhibition of CDK1 could inhibit
migration and promote apoptosis of EC cells. This study reveals a link between glycolysis-
related gene signature and immunity, and provides personalized therapeutic targets
for EC.
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INTRODUCTION

Endometrial cancer (EC) is one of the most common gynecological malignancies. The latest cancer
statistics of the American Cancer Society showed that the number of new cases in the United States
increased by 63,230, with 11,350 deaths being reported, and the incidence rate ranked fourth in
female malignant tumors and sixth in deaths in 2018 (Sheikh et al., 2014; Siegel et al., 2018). In
addition, the 5-years disease-free survival rate and 5-years overall survival rate of patients with EC
were 82.3 and 81%, respectively, and the tumor recurrence rate and tumor-relatedmortality rate were
14.5 and 15.9%, respectively (Tejerizo-García et al., 2013). Although early diagnosis, surgery,
radiotherapy, and chemotherapy can significantly improve the survival times of patients, the
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treatment for early patients with the need for fertility
preservation, advanced tumor, and relapse is still limited.
Therefore, it is urgent to explore new prognostic biomarkers
and therapeutic targets.

Metabolic reprogramming is one of the most important
characteristics of tumor cells. Approximately 80% of glucose was
used to produce ATP in tumor cells through aerobic glycolysis
accompanied by lactic acid production even under aerobic
environment, known as the “Warburg effect” (Hanahan and
Weinberg, 2011). Studies have shown that the glucose metabolism
reprogramming of tumor cells is closely related to the occurrence,
progression, and chemotherapy resistance of tumors (Icard et al.,
2018). It was reported that multiple genes could promote the
progression of EC by promoting glycolysis (Han et al., 2019).
Since glucose metabolism reprogramming is an important feature
that distinguishes tumor cells from normal cells, it may be of great
significance to explore prognostic genes and potential therapeutic
targets of EC from the perspective of abnormal glucose metabolism.

Immune cells and stromal cells are two primary types of
nontumor components in the tumor microenvironment and
have been proposed to be of considerable importance for
tumor diagnosis and prognosis evaluation (Ren et al., 2018).
Estimation of stromal and immune cells in malignant tumors
using expression data (ESTIMATE) could predict tumor purity
by analyzing gene expression (Yoshihara et al., 2013). Recently, a
study has reported the relationship between the immune
microenvironment and prognosis of patients with colorectal
cancer metastasis, and found that the metastasis with the
smallest number of immune cells entering represented the
worst immune microenvironment; therefore, tumor immune
escape was most likely to occur (Van den Eynde et al., 2018).
Therefore, the infiltration of immune cells in tumors is closely
related to the clinical outcome of patients.

Many studies have reported the relationship between
glycolysis and tumor immunity (Justus et al., 2015; Cascone
et al., 2018; Deng et al., 2018). It has been reported that
enhanced glycolysis of tumor cells could become the main
obstacle of targeted treatment of tumor immune cells by
affecting the infiltration of immune cells in the tumor
microenvironment, while interference with glycolysis of tumor
cells could enhance the effective infiltration of antitumor immune
cells (Ganapathy-Kanniappan, 2017). It is suggested that further
study of the relationship between glycolysis and tumor immunity
is of strong significance for the effective targeted treatment of
tumors. However, studies investigating glycolysis genes and their
prognostic value and relationship with immune function in
patients with EC are limited. In this study, we analyzed the
mRNA expression profiling of EC from The Cancer Genome
Atlas (TCGA) and established a 10 glycolysis related gene
signature by using LASSO regression analysis. Further, we
constructed a nomogram based on the gene signature and
clinicopathological factors to predict the prognosis of EC
patients. In addition, we analyzed the immune scores and
immune cell infiltration related to the glycolysis-related gene
signature. Finally, CDK1, a glycolysis related gene in the signature
was proposed to be related to the prognosis of EC and its function
was validated in vitro.

MATERIALS AND METHODS

Data Collection and Preparation
We downloaded mRNA expression profiling (FPKM format) of
EC from the TCGA database, including 552 EC and 35 normal
samples (https://portal.gdc.cancer.gov/). The corresponding
clinicopathological information, including age, tumor stage,
grade, metastasis, lymph node metastases, survival time, and
survival status, were downloaded from the TCGA data portal.

Screening Glycolysis Related Genes and
Functional Enrichment Analysis
We downloaded the gene sets related to glycolysis from the
Molecular Signatures database (MSigDB) of the Gene Set
Enrichment Analysis (GSEA) website, including
HALLMARK_GLYCOLYSIS, KEGG_GLYCOLYSIS_GLUCON
EOGENESIS and REACTOME_GLYCOLYSIS (http://software.
broadinstitute.org/gsea/index.jsp). Perl script was used to extract
the expression matrix of glycolysis-related genes. The R “limma”
package was used to screen the differentially expressed genes
(DEGs), and the screening conditions were |logFC|>0.5 and false
discovery rate (FDR) < 0.05. Volcano plots and heatmap
clustering were conducted using R software. Gene ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analyses were performed using the R “ClusterProfiler”
package (Yu et al., 2012).

Construction of the Prognostic
Glycolysis-Related Gene Signature
A univariate Cox regression was used to screen the prognostic
glycolysis-related DEGs, and p < 0.01 was considered to be
statistically significant. LASSO regression was applied to
establish the prognostic gene signature (Zhou et al., 2018).
The risk score of the gene signature = (coef 1×expression of
gene 1)+(coef 2×expression of gene 2)+.+(coef n×expression
of gene n). Based on the risk score, the patients were divided
into high- and low-risk subgroups for subsequent study. The
overall survival of patients in the high- and low-risk
subgroups were analyzed by using the R “survival” and
“survminer” packages, and Kaplan-Meier (K-M) survival
curves were drawn. The risk curve and survival state
diagram were drawn by the R software package. Univariate
and multivariate Cox regression analyses were used to analyze
the prognostic factors of EC, and receiver operating
characteristic (ROC) curves were drawn by the R
“survivalROC” package. The nomogram was constructed
using R software to integrate multiple prediction indicators
based on multivariate Cox regression analyses (Tang et al.,
2016).

Estimation of Immune and Stromal Scores
Related to Gene Signature
We used the “ESTIMATE” algorithm to calculate the immune
scores (which capture the presence of stroma in tumor tissue),
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stroma scores (which capture the infiltration of immune cells
in tumor tissue), and estimate scores (which infer tumor
purity). According to the immune scores, stroma scores,
and ESTIMATE scores, the patients were divided into
high- and low-score subgroups by using the median value
as the threshold. The overall survival of patients in the low-
and high-score subgroups was analyzed by the R “survival”
package. The immune scores and stromal scores of patients in
the high-risk and low-risk subgroups were also calculated by
ESTIMATE, and the immune scores and stromal scores of the
high-risk subgroup and low-risk subgroup were compared by
the Wilcoxon test; p-values < 0.05 were considered to be
significant.

Association Between the Gene Signature
and Tumor-Infiltrating Immune Cells
The mRNA expression profiling of EC was transformed into a
matrix of immune cells based on CIBERSORT software. The
difference in tumor-infiltrating immune cells between the high-
risk subgroup and low-risk subgroup was screened by the R
“limma” package, and the screening condition was p < 0.05. The
cor. test in R was used to analyze the correlation coefficient
between the 10 glycolysis-related genes and immune cell
infiltration, and the correlation graph was drawn by the R
“ggcorrplot” package.

A Gene Co-expression Network Was Built
by the WGCNA
We conducted the weighted correlation network analysis
(WGCNA) to identify the potential mechanisms associated
with the gene prognosis model. We first filtered out the best
soft threshold by “WGCNA” R package to maintain sufficient
connectivity and keep the gene network close to the scale-free
topology. Second, we performed the analysis module
associated with the risk model and other clinical factors.
Furthermore, the key genes were identified from the
WGCNA analysis. Then, the metascape online website
(https://metascape.org/gp/index.html) was used to perform
the GO and KEGG analysis about the key genes related with
the gene prognosis model (p value cutoff: 0.01). Also, GSEA
software was used to analyze the significantly enriched signal
pathways between high-risk and low-risk groups (using
FDR<0.05 as the cut-off criterion).

Genetic Alteration, Co-expression, and
Neighbor Gene Network Analyses
The cBioPortal website (https://www.cbioportal.org/)
developed by Memorial Sloan Kettering Cancer Center
(MSKCC) is a comprehensive open network platform based
on the TCGA database that integrates data mining, data
integration, and visualization (Gao et al., 2013). The
genetic alterations of 10 glycolysis-related genes were
obtained from cBioPortal based on TCGA. There were 548
EC samples (TCGA, Firehose Legacy) analyzed. Mutations

and mRNA expression z-scores (RNA Seq V2 RSEM) with a
z-score threshold ±2 were selected. The protein-protein
interactions (PPI) network was constructed by using the
STRING database (http://string-db.org/) to screen the
proteins that have the closest relationship with the 10
genes with high confidence 0.700. IntAct database was also
used to construct a network including the physical association
and direct interaction between the 10 genes and related
proteins (https://www.ebi.ac.uk/intact/). A protein
regulatory network of CDK1 was constructed based on the
BioGRID database (https://thebiogrid.org/). The expression
of glycolysis-related genes in the gene signature was further
validated at the protein level (The Human Protein Atlas
database: http://www.proteinatlas.org). The clinical
prognosis analysis of proteins corresponding to the genes
in the signature was performed on the cancer proteome
atlas (https://www.tcpaportal.org/tcpa/survival_analysis.
html).

External Validation Based on the Clinical
Samples
The glycolysis-related gene signature was further validated by
our own clinical data including 24 EC samples from surgical
patients in the Department of Obstetrics and Gynecology,
Peking University People’s Hospital. Total RNA isolation and
RNA sequencing were performed as previously reported (Yin
et al., 2019). The patients were followed-up by February 2018.
This study was approved by the Institutional Ethics
Committee (Human Research) of Peking University
People’s Hospital and informed consent was obtained from
the patients.

In vitro Validation
EC cell line Ishikawa was obtained from a gynecologic laboratory
in Peking University People’s Hospital. The Ishikawa cells were
cultured with DMEM/F-12 medium (Macgene, Beijing)
containing 10% FBS in 5% CO2 incubator at 37°C.

Ro 3306 (MCE, HY-12529), a selective inhibitor of CDK1
was used to verify the function of CDK1 in EC cells. Ishikawa
cells were inoculated into 96 well plates (3000 cells/well), and
cell counting Kit-8 (CCK-8) was used to detect the effect of Ro
3306 on the proliferation of Ishikawa according to the
instructions. The half maximal inhibitory concentration
(IC50) was calculated.

To study the effect of Ro 3306 on the migration ability of
endometrial cancer cells, scratch test and transwell were
performed. Ishikawa cells were inoculated into six well
plates. When the fusion degree of cells reaches 90%, a
scratch was made by 100 μL tips. Ishikawa cells were
treated with Ro 3306 5 μM, 10 μM, respectively and
established the control group. The scratches were imaged at
0 and 48 h. For the transwell experiment, 8*104 cells were
inoculated into the upper chamber with serum free medium,
and 500 μL medium containing 10% FBS was added in the
lower chamber. After 36 h, the cells near the lower chamber
were fixed by paraformaldehyde and stained with crystal
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violet. The invasion cells were photographed. Further, we
performed flow cytometry to detect the effect of Ro 3306
on the apoptosis of Ishikawa. The cells were treated as above.

After 24 h, the cells (5*105) were harvested and incubated with
5 μL PI and 5ul Annexin-FITC (BD, 556547) for 20 min, then
analyzed on flow cytometry.

FIGURE 1 | The flow chart of the study design and analysis.

FIGURE 2 | Enrichment plots of three glycolysis-related gene sets which were significantly differentiated between normal and EC tissues using GSEA. (FDR is the
corrected p value of the multiple hypothesis test, NES stands for normalized enrichment score) (A). Glycolysis-related HALLMARK gene sets (B). Glycolysis-related
KEGG gene sets (C). Glycolysis-related REACTOME gene sets.
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RESULTS

Glycolysis-Related Gene Sets Differ
Significantly Between EC and Normal
Samples
The mRNA expression profiling of EC was downloaded from
TCGA, including 35 normal and 552 EC samples, and these
data were analyzed as in the flowchart (Figure 1). GSEA

software was used to analyze the enrichment of three
glycolysis gene sets in the EC and normal groups. We
found that there was a significant difference (FDR<0.01) in
the three glycolysis-related gene sets between the EC group
and the normal control group (Figure 2A–C).

Identification of Glycolysis-Related DEGs
Perl was used to extract the expression matrix of the selected
glycolysis genes from mRNA expression profiling of EC. We

FIGURE 3 | Identification of differentially expressed genes (DEGs) related to glycolysis of TCGA datasets between normal and EC tissues and GO and KEGG
pathway enrichment analysis of DEGs (A). Differential expression genes between two groups. The red dot is the up-regulated gene, the green dot is the down-regulated
gene, and the black dot is the other genes without significant difference screened by the criteria of |Fold Change|>0.5 and FDR<0.05 (B). Hierarchical clustering of
differentially expressed genes in two groups (C). The GO functional enrichment analysis of differential genes includes three domains: molecular function, biological
process, and cell composition (D). KEGG pathway analysis of differentially expressed genes.
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FIGURE 4 | Construction and validation of prognostic model prognosis-associated genes of EC (A). Results of univariate Cox analysis for the prognostic genes in
EC. (B,C). LASSO regression model (D). Kaplan-Meier analysis for the 10 glycolysis-related gene signatures related to risk score predicts overall survival in patients with
EC (E). Gene signature-related risk score distribution in each patient (F). Survival days of patients in order of the value of risk scores (G). A heatmap of 10 glycolysis-
related gene signatures.
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further screened the differentially expressed glycolysis
genes between the EC and normal group using the R
“limma” package (FDR<0.05, |logFC|>0.5). The results
showed that there were 156 DEGs, 128 of which were
upregulated, and 28 of which were downregulated
(Figure 3A). The R “heatmap” package was used to draw
the heatmaps (Figure 3B).

To further verify whether these DEGs are related to glycolysis,
we used the R “ClusterProfiler” package to analyze GO and
KEGG enrichment. The results showed that in the biological
process (BP), the DEGs were mainly involved in pyruvate
metabolic process, the glycolytic process, and the
oxidoreduction coenzyme metabolic process. In molecular
function (MF), the DEGs are primarily involved in glucose

FIGURE 5 | Forrest plot of the univariate andmultivariate Cox regression analysis in EC (A). The regression analysis of overall survival in EC (B). Themultivariate Cox
regression analysis in EC (C). ROC curve analysis was performed to evaluate the diagnostic efficacy of the gene signature and other clinical characteristics (D,E). ROC
curve analysis was performed to evaluate the diagnostic efficacy of the three factors (age, grade, and stage) and three factors + riskScore (F). Nomogram is used to show
the relationship between the variables in the prediction model and predict the 1–5 years overall survival rate of patients.
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binding, carbohydrate kinase activity, and sugar phosphatase
activity. In the cell components (CC), the DEGs are mainly
involved in the nuclear envelope and secreted granule lumen
(Figure 3C). The results of KEGG enrichment analysis showed
that the DEGs were mainly involved in glycolysis/
gluconeogenesis, carbon metabolism, and the HIF-1 signaling
pathway (Figure 3D). These results suggested that these DEGs
were related to glycolysis in EC.

Construction of the Glycolysis-Related
Gene Signature to Predict Patient
Outcomes
We performed univariate Cox regression analysis and a total of 11
glycolysis related genes were screened to be closely related to the
survival of EC patients. HR > 1 represents a risk gene (p < 0.05)
(Figure 4A). Furthermore, the prognostic gene signature was
constructed by LASSO regression analysis, and finally 10 genes
were screened to establish the prognostic gene signature, namely,
PFKM, PSMC4, NUP85, PDHA1, CDK1, CLDN9, CENPA, GPI,
NUP155, and GPC1 (Figures 4B,C and Supplementary Table
S1). The risk score of the gene signature= (0.0420×expression of
PFKM) + (0.0032×expression of PSMC4)+(0.0097×expression of
NUP85) + (0.0138×expression of PDHA1) + (0.0028×expression
of CDK1) + (0.0024×expression of CLDN9) +
(0.0252×expression of CENPA) + (0.0004×expression of GPI)
+ (0.0253×expression of NUP155) + (0.0067×expression of
GPC1).

Based on this gene signature, all patients were divided into
high- and low-risk subgroups using the risk score median as the
threshold. K-M analysis showed that the overall survival rate of
patients in the high-risk subgroup was significantly lower than
that of the low-risk subgroup (p < 0.05) (Figure 4D). Then,
patients were ranked according to the risk score, and the 10 gene
signature were ranked according to the order of increasing risk
score. The results indicated that the number of deaths increased
with increasing risk score, and the expression levels of PFKM,
PSMC4, NUP85, PDHA1, CDK1, CLDN9, CENPA, GPI,
NUP155, and GPC1 were positively correlated with the risk
score, which further confirmed that PFKM, PSMC4, NUP85,
PDHA1, CDK1, CLDN9, CENPA, GPI, NUP155, and GPC1 were
risk genes (Figure 4E–G).

To further evaluate whether the constructed 10 gene signature
is an independent prognostic factor for EC, we conducted
univariate and multivariate Cox regression analysis
(Figure5A,B). The results showed that risk score was an
independent prognostic factor of EC, and age, grade, and stage
were also independent prognostic factors (p < 0.05). To evaluate
the clinical diagnostic ability of the 10 gene signature, we
conducted ROC analysis. The results showed the risk score
(area under the curve, AUC = 0.730), stage (AUC = 0.708),
grade (AUC = 0.667), age (AUC = 0.630), LNM (AUC = 0.597),
and metastasis (AUC = 0.567) (Figure 5C). In addition, the AUC
of the survival assessment was 0.807 of three factors (age, grade,
and stage) and 0.822 of three factors + riskScore (Figure 5D,E).
The nomogram was also built based on the glycolytic gene
signature and clinicopathological prognostic factors in EC

(Figure 5F). These results suggested that the 10 gene signature
has great potential significance in predicting EC prognosis.

Estimation of Immune and Stromal Scores
Related to Gene Signature
Since immune cells and stromal cells are two main types of
nontumor components in the tumor microenvironment, they
have been proposed to be valuable for tumor diagnosis and
prognosis evaluation. Therefore, to further reveal the
relationship between the tumor microenvironment and the 10
gene signature, we first estimated immune scores, stromal scores,
and ESTIMATE scores of 552 EC samples in TCGA by the
“ESTIMATE” algorithm. Immune scores and stromal scores are
used to reflect the presence of immune cells and stromal cells, and
ESTIMATE scores to represent the purity of the tumor. Further, we
found that the immune scores, stromal scores, and ESTIMATE
scores of the high-risk subgroup were lower than those of the low-
risk subgroup (Figures 6A–C). More importantly, the overall
survival rate of patients with low immune scores was
significantly lower than that of patients with high immune
scores, and there was no significant difference in the overall
survival rate of patients with low and high stroma scores, while
the overall survival rate of patients with low ESTIMATE scores was
also lower than that of patients with high ESTIMATE scores
(Figures 6D–F). These results indicated that the poor prognosis
of patients in the high-risk group may be closely related to the
lower immune cells and lower purity of the tumor.

Correlation Between Immune Cell
Infiltration and the 10 Gene Signature
To further verify the relationship between immune cell
infiltration and the gene signature, we analyzed the proportion
of 22 kinds of immune cells by using the “deconvolution method”
of CIBERSORT software, and the samples were screened by p <
0.05. The results showed that compared with the low-risk
subgroup, immune cells, such as activated dendritic cells, M1
macrophages, M2 macrophages, activated T memory cells, and T
follicular helper cells, increased significantly in the high-risk
group, while dendritic cell resetting, T cell memory resetting,
and T regulatory (Treg) cells decreased significantly in the high-
risk group (Supplementary Figure S1A). Furthermore, K-M
analysis was used to screen the immune cells closely related to
the prognosis of patients. The results indicated that the overall
survival rate of patients in the high-proportion group of resting
dendritic cells, activated NK cells, and regulatory T cells (Tregs)
was significantly higher than that of the low-proportion group
(Supplementary Figure S1B). Taken together, the poor
prognosis of high-risk patients may be related to the
imbalance of immune cells.

WGCNA Analysis and Related Signaling
Pathways of the Gene Signature
To better understand the network interaction between the risk
model and other genes, we extracted mRNA expression profiling
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and clinical information for WGCNA analysis. The DEGs
between cancer and normal samples were chosen. For
constructing a weighted gene network, the threshold of the
adjacency matrix should meet the criterion that the network is
close to scale-free, and three was selected as the threshold for
network construction (Figure 7A). These co-expression modules
were then constructed, and the similar modules were clustered,
and finally eight gene modules were obtained (Figure 7B). The
results of correlation analysis of the gene modules with gene-
signature and clinical traits showed that the turquoise module
had the highest correlation with the gene-signature (Cor = 0.65, p
= 9e-64 for risk; Cor = 0.7, p = 4e-77 for risk score) and the grade
(Cor = 0.49, p = 4e-33) (Figure 7C). The turquoise module
contained 604 genes, and we then analyzed these genes with
Metascape. The GO and KEGG analyses were performed, and the
top 20 clusters were chosen to construct a gene function
clustering network (Figure 7D). These results indicated that
the 10 gene signature was significantly associated with a gene
module, which was also related with the clinical grade of patients.
The gene module mainly enriched in cell division, regulation of
cell cycle process and DNA replication, that were important
biological processes in the tumor progression.

GSEA was used to analyze the enrichment signal pathways in
the high-risk subgroup and low-risk subgroup. A total of 70
significantly enriched KEGG signaling pathways were screened

(FDR<0.05). Many of these pathways are closely related to
metabolism, including pyruvate metabolism, glycolysis
gluconeogenesis, and inositol phosphate metabolism.
Additionally, some signaling pathways are closely related to
the occurrence and development of tumors, such as the cell
cycle, EC, the ERBB signaling pathway, the MAPK signaling
pathway, the mTOR signaling pathway, and the Wnt signaling
pathway (Supplementary Figure S2). These results reveal the
potential mechanism of the glycolytic prognosis model involved
in EC.

Comprehensive Analysis of Glycolysis
Related Genes in the Gene Signature
We analyzed the gene alteration of the 10 gene signature through
the cBioPortal online website. The results showed that the
expression alterations of PFKM, NUP85, PDHA1, CDK1,
CLDN9, CENPA, GPI, NUP155, and GPC1 in endometrial
carcinoma samples were 5, 7, 4, 3, 5, 5, 7, 6, and 3%,
respectively. Amplification and increased mRNA were the
most common changes (Figure 8A). Co-expression analysis
showed that NUP85, NUP155, CDK1, and CENPA had a
strong correlation (Figure 8B). Furthermore, we used the
STRING database to analyze the proteins co-expressed and
interacting with the 10 genes and constructed a PPI

FIGURE 6 | Immune scores, stromal scores, and ESTIMATE scores of 10 glycolysis-related gene signatures were related to risk score (A). Immune scores for
patients in the low- vs. high-risk group (B). The stromal scores for patients in the low- vs. high-risk group (C). The ESTIMATE scores for patients in the low- vs. high-risk
group (D). Kaplan-Meier analysis of overall survival for patients with low vs. high immune scores (E). Kaplan-Meier analysis of overall survival for patients with low vs. high
stromal scores (F). Kaplan-Meier analysis of overall survival for patients with low vs. high ESTIMATE scores.
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interaction network. Forty-eight proteins were screened in the
PPI network (Figure 8C). The IntAct database was further used
to construct an interaction network between the 10 genes and
interactive genes (Supplementary Figure S3). In addition, we
used immunohistochemistry results from the human protein

atlas database to further verify the protein expression of the 10
genes in the prognostic signature. The results showed that the
expression of PDHK1, NUP85, CDK1, CENPA, GPI, GPC1,
PSMC4, and PFKM in EC was higher than that in normal
endometrium, and NUP155 was not detected in EC and

FIGURE 7 | WGCNA was performed to identify the potential mechanisms associated with the prognostic signature (A). Screening of the soft threshold (B).
Clustering dendrogram of genes in EC tissues (C). Correlation analysis of gene modules with risk model and clinical traits (D). Enrichment clustering network analysis in
the Metascape database.
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FIGURE 8 | Comprehensive analysis of glycolysis related genes in the gene signature (A). Gene alteration of selected genes in patients with EC from the cBioPortal
website (B). Co-expression analyses of 10 glycolysis-related gene signatures in EC by the R “corrplot” package (C). Protein-protein interaction network of 10 gene
signatures and other closely related proteins (D). Correlation between the 10 glycolysis-related gene signatures and various immune cells. Red represents a positive
correlation, and blue represents a negative correlation.
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FIGURE 9 | Inhibition of CDK1 inhibits the migration and promotes the apoptosis of EC cells (A). High expression of CDK1 protein was closely related to the poor
prognosis of EC patients (p < 0.05). The cancer proteome atlas (https://www.tcpaportal.org/tcpa/survival_analysis.html) (B). The CCK-8 showed that the IC50 of Ro
3306 on Ishikawa cells was 6.97 μmol/L (C,D). The scratch test revealed that compared with control group, cells treated with 5 μM or 10 μM Ro 3306 showed
significantly increased gap size of oh (E,F). The transwell experiment revealed that compared with control group, cells treated with 5 μMor 10 μMRo 3306 showed
significantly decreased invasion cell numbers (G,H). Detection of apoptosis of Ishikawa cells treated with 5 μM or 10 μM Ro 3306 by flow cytometry. **p < 0.01,
compared with control.
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normal endometrium, although no data were found for CLDN9
(Supplementary Figure S4). In addition, we analyzed the
relationship between the 10 genes and the clinical stage and
found that the expression of PFKM, NUP85, PDHA1, CDK1,
CLDN9, CENPA, GPI, NUP155, and GPC1 increased with
increasing clinical stage (p < 0.05) (Supplementary Figure
S5). Further, we analyzed the association between the 10 genes
and immune cell infiltration. The results indicated that 10 genes
were negatively correlated with T cell regulation (Tregs),
including CDK1 (r = -0.41), CENPA (r = -0.34), and NUP155
(r = - 0.22) (Figure 8C). Taken together, the results might provide
us with insights into function of the 10 glycolysis related genes in
the progression of EC.

Validation of the Glycolysis-Related Gene
Signature Based on the Clinical Samples
The glycolysis-related gene signature was further validated by our
own clinical data. A total of 24 EC samples from surgical patients
in the Department of Obstetrics and Gynecology, Peking
University People’s Hospital were used for the validation
cohort. The EC patients in the validation cohort were divided
into the low- and the high-risk subgroups according to the
median risk score based on the above formula. K-M survival
analysis showed that the overall survival rate of patients in the
high-risk subgroup had obviously decreasing tendency compared
with the low-risk subgroup, although the p-value is greater than
0.05 (p = 0.1044) (Supplementary Figure S6A). Further, the
heatmap was used to show the expression difference of the 10
genes in the high- and low-risk subgroups. The results indicated
that the expression of PFKM, CENPA, CDK1, GPI, NUP155,
NUP85, and PDHA1 were significantly increased in the high-risk
group compared with low-risk group, which were consistent with
the results in the TCGA cohort (Supplementary Figure S6B). In
addition, the expression of CDK1, CENPA, NUP155, and PSMC4
were found to be positively correlated with myometrial invasive
(MI) (p < 0.05). The expression of CDK1, CENPA, NUP155, and
PSMC4 in patients with deep-MI (Positive) were higher than that
with superficial-MI (Negative) (Supplementary Figure S6C–F).
It has been reported that the risk of lymph node metastasis was
significantly increased in patients with EC and deep-MI (Singh
et al., 2019). Thus, the high expression of these genes is closely
related to the poor prognosis of EC patients.

Inhibition of CDK1 Inhibits theMigration and
Promotes the Apoptosis of EC cells
To further study the association between the 10 glycolysis related
genes and survival of EC patients, the clinical prognosis analysis
of proteins corresponding to the genes in the signature was
performed on the cancer proteome atlas. We found that
among the 10 proteins, high expression of CDK1 protein was
closely related to the poor prognosis of EC patients (p < 0.05)
(Figure 9A). Ro 3306 is an effective and selective CDK1 inhibitor.
To verify the function of CDK1 in EC cells, we detected the effect
of Ro 3306 on the proliferation, migration, and apoptosis of
Ishikawa cells. The CCK-8 showed that the IC50 of Ro 3306 on

Ishikawa cells was 6.97 μmol/L (Figure 9B). Then, we used 5 and
10 μM Ro 3306 for subsequent study. The scratch test and
transwell experiment revealed that compared with the control
group, cells treated with 5 μM or 10 μM Ro 3306 showed
significantly decreased migration ability (Figures 9C–F). Also,
Ishikawa cells treated with 5 μM or 10 μM Ro 3306 caused more
apoptosis than the control group in a concentration-dependent
manner (Figures 9G,H). To further explore the mechanism of
CDK1, a protein regulatory network of CDK1 was constructed
based on the BioGRID database, some proteins in the PPI
network were consistent with the STRING database
(Supplementary Figure S7). These results suggest that the
CDK1 protein may be a key factor affecting the prognosis of
EC and a potential therapeutic target for EC.

DISCUSSION

In recent years, the role of metabolic reprogramming in tumors
has been widely studied. Glycometabolism reprogramming is one
of the characteristics that tumor cells are different from normal
cells. Even under the condition of sufficient oxygen, tumor cells
are more likely to use glycolysis for rapid energy supply.
Therefore, studying the relationship between metabolic
reprogramming and tumor development is becoming a new
method for tumor diagnosis, prevention, and treatment. At
present, many studies have reported the relationship between
glycolysis and EC (Shim et al., 2014; Han et al., 2019). However,
research on biomarkers related to glycolysis in EC remains
limited. It has been reported that clinical characteristics, such
as age, stage, grade, and lymph node metastasis, cannot accurately
predict the prognosis of patients (Zhao et al., 2019). As a result, an
increasing number of studies are exploring gene biomarkers, and
many studies have found that developing multiple gene-related
risk models can improve the prediction efficiency (Zeng et al.,
2019; Tao et al., 2020). Therefore, the purpose of this study was to
explore the glycolysis-related prognostic biomarkers of EC and
further to analyze their relationship with immune cell infiltration.

We first downloaded glycolysis-related gene sets from GSEA
and screened DEGs between EC and normal samples, including
128 upregulated genes and 28 downregulated genes.
Furthermore, we used GO and KEGG enrichment analysis to
verify the biological function and signaling pathways of DEGs.
Next, we used univariate Cox regression to initially screen genes
related to the prognosis of EC and further used LASSO regression
analysis to screen and construct the prognostic gene signature. A
total of 10 mRNAs (PFKM, PSMC4, NUP85, PDHA1, CDK1,
CLDN9, CENPA, GPI, NUP155, and GPC1) significantly related
to the overall survival of EC were identified to construct the
prognostic gene signature, which was identified as an
independent prognostic factor for EC. Furthermore, ROC
curve analysis was conducted to verify the prognostic value of
the gene signature, showed that the area under the ROC curve of
the risk score was greater than that of stage, grade, age, and LNM.
It indicates that the predictive value of this gene signature is better
than traditional prognostic indicators. The glycolysis-related gene
signature was further validated by our own clinical data including
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24 EC samples. K-M survival analysis showed that the overall
survival rate of patients in the high-risk subgroup had obviously
decreasing tendency compared with the low-risk subgroup in the
validation cohort, although the p-value is greater than 0.05 (p =
0.1044), maybe it is because of smaller sample size, different
populations, and sequencing batches compared to the TCGA
database. Nonetheless, the expression of PFKM, CENPA, CDK1,
GPI, NUP155, NUP85, and PDHA1was significantly increased in
the high-risk group compared with the low-risk group, which was
consistent with the results in the TCGA cohort. In addition, we
integrated multiple prognostic factors (including risk score, stage,
grade, and age) to construct a nomogram to effectively predict the
1–5 years survival rate of patients, which may help to plan short-
term follow-up of individualized treatment.

In the past, many studies have focused on the role of glycolysis in
tumors. It has been reported that aerobic glycolysis in tumors
constantly produces lactic acid, which provides energy for the
tumor, and the increased lactic acid in the microenvironment
could also affect the immunotherapy effect (Bohn et al., 2018). It
has also been found that antitumor metabolism therapy combined
with immunotherapy can effectively inhibit tumor growth (Gao et al.,
2019). To further explore the relationship between the glycolysis-
related gene signature and immune cell infiltration and immune
function, we first analyzed the immune scores, stromal scores, and
ESTIMATE scores of patients in the high-risk subgroup and low-risk
subgroup based on the 10 gene signature.We found that the immune
scores, stromal scores, and ESTIMATE scores of patients in the high-
risk subgroup were significantly lower than those of the low-risk
subgroup. At the same time, the overall survival rate of patients with
low immune scores and estimated scores was significantly worse than
that of patients with high scores. Some studies have shown that the
more immune cells enter the tumor metastasis, the higher the
immune score is, the higher the survival rate is, and the lower the
recurrence rate is. Metastasis with the smallest number of immune
cells entering represented the worst immune microenvironment, and
immune escape was most likely to occur under this condition (Van
den Eynde et al., 2018). These results suggested that the poor
prognosis of patients in the high-risk subgroup might be closely
related to the low immune scores. However, whether the activation of
glycolysis-related pathways affects the infiltration of immune cells
warrants further investigation.

We further found that many immune cells, such as activated
dendritic cells, M1 macrophages, M2 macrophages, memory
activated T cells, and follicular helper T cells, were significantly
higher in the high-risk subgroup than in the low-risk subgroup,
while dendritic cell resting, memory resting T cells, and regulatory
T cells (Tregs) were significantly lower in the high-risk subgroup.
There was a positive correlation between the three immune cells and
the overall survival rate of patients, including dendritic cell resetting,
NK cells activated, andT cell regulation (Treg). According to previous
research, resting dendritic cells exist in most tissues and are activated
to mature antigen-presenting cells under external stimulation.
Antigen presentation by resting dendritic cells could induce
protective immunity (Probst et al., 2005). Tregs play a key role in
maintaining immune system homeostasis. Some studies have shown
that the high density of Treg cells in tumors is related to the clinical
prognosis of tumors, such as liver cancer and gastric cancer (Najafi

et al., 2019). High proportions of Tregs among tumor-infiltrating
CD4+ T cells were favorable (Choi et al., 2016). It is suggested that the
poor prognosis of patients in the high-risk group may be related to
the imbalance of immune cells in the tumor, especially the decrease of
dendritic cell resting, NK cells activated, and Treg cells.

To further study the potential molecular mechanism of
prognostic gene signature in EC, WGCNA and GSEA were
performed. The WGCNA results indicated that the 10 gene
signature was significantly associated with a functional gene
module that was mainly enriched in cell division, regulation of
cell cycle process, and DNA replication. It is noteworthy that
there was significant correlation between the gene module and
clinical grade of patients. GSEA enrichment analysis revealed that
many signaling pathways were significantly enriched in the high-
risk subgroup, including pathways related to metabolism and
metabolic diseases, such as pyruvate metabolism, glycolysis
gluconeogenesis, and insulin signaling pathways. It has been
reported that both malignant transformation and tumor
development, including invasion and metastasis, required
metabolic reprogramming (DeBerardinis et al., 2008).
Metabolic heterogeneity is an important reason for the failure
of treatment to produce the same effect on cancer cells (Yoshida,
2015). High insulin level is an independent risk factor of EC.
Increased insulin and IGF-1 could activate downstream signaling
pathways by binding with IR and IGF-1 receptor to promote the
proliferation of EC cells (Mu et al., 2012). These results suggested
that the poor prognosis of patients in the high-risk subgroup
might be closely related to tumor metabolic reprogramming and
the activation of metabolic disease-related pathways. In addition,
other pathways closely related to tumorigenesis and development
were also significantly enriched in the high-risk subgroup, such as
the cell cycle, EC, the ERBB signaling pathway, the MAPK
signaling pathway, the mTOR signaling pathway, and the Wnt
signaling pathway. Taken together, these results show that the 10
gene signature is closely related to metabolic imbalance and
provide a potential molecular mechanism for elucidating the
relationship between the gene signature and EC progression.

In the 10 gene signature, most genes have been reported to be
closely related to the occurrence and development of cancer.
PFKM, the second rate-limiting enzyme in the glycolysis
pathway, has been shown to be closely related to the increased
risk of breast cancer (Ahsan et al., 2014). PSMC4 is a member of
the proteasome complex, which is responsible for recognizing
ubiquitin-labeled substrates and ingesting them into the
proteasome (19S regulatory complex). The overexpression of
PSMC4 promoted the degradation of some key cell regulatory
proteins, such as tumor suppressors, and further promoted the
progression of tumors (Hellwinkel et al., 2011). Therefore,
inhibition of the proteasome is a promising cancer treatment
strategy. The nucleoporins NUP155 and NUP85 were reported
to be upregulated in hepatocellular carcinoma, accompanied by
TP53 silencing and overexpression of cell cycle-related genes (Beck
et al., 2017). PDHA1 is the main regulatory site of PDH activity.
PDHA1 regulates the deactivation or activation of PDH through
phosphorylation and dephosphorylation and then affects the
mitochondrial tricarboxylic acid cycle and glycolysis metabolic
flow. It has been reported that the expression of PDHA1 is
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abnormal in a variety of tumors, and it is closely related to tumor
invasion, drug resistance, and prognosis by affecting tumor cell
glucose metabolism. The upregulation of PDHA1 could promote
the metastasis of cholangiocarcinoma (Dan Li et al., 2018). In
contrast, another study reported that low expression of PDHA1
predicted poor prognosis in gastric cancer (Song et al., 2019).
Overexpression of CLDN9 could promote tumor cell invasion
through Tyk2/STAT3 signaling (Liu et al., 2019a). Upregulation of
GPI-anchored proteins could promote tumor cell migration and
progression by enhancing the ERBB signaling pathway (Zhang
et al., 2019). GPC1 has received growing interest in recent years due
to its high capability of visualizing soft tissue, and GPC1 has been
reported to have potential value in the diagnosis of breast cancer (Li
et al., 2019). CENPA and CDK1 were also identified as prognostic
markers of lung cancer (Liu et al., 2018). In our study we found that
the expression of PFKM, NUP85, PDHA1, CDK1, CLDN9,
CENPA, GPI, NUP155, and GPC1 increased with increasing
clinical stage, exhibiting their role in tumor progression. A PPI
network containing 48 proteins was constructed to show the
correlation between the 10 genes and potential interacting
proteins. IntAct database was also used to show the physical
association and direct interaction between the 10 genes and
related proteins. There was a direct interaction between
PDHA1 and PDHB; PSMC4 and PSMC5; CDK1 and CCNB1
both in the PPI network from the STRING database and the
IntAct database. We also found CDK1 protein was closely related
to the poor prognosis of EC patients, and the expression of CDK1
was negatively correlated with Treg cells infiltration. Thus, CDK1
may be involved in regulating the infiltration of Treg cells. Also,
inhibition of CDK1 has been proved to inhibit the migration and
promote the apoptosis of EC cells. Since the BioGRID database has
certain advantages in predicting interacting proteins for single
gene or protein (Oughtred et al., 2019), a protein regulatory
network of CDK1 was constructed based on the BioGRID
database. It showed that some proteins such as BUB1 and
CCNB1 in the network were consistent with the PPI network
from the STRING database. BUB1 and CCNB1 have been
reported to have important prognostic value in EC (Li et al.,
2013; Liu et al., 2019b). Taken together, these results indicate that
CDK1 may be used as a therapeutic target for EC patients.

CONCLUSION

In this study, we identified a glycolysis-related 10 gene signature
for predicting the prognosis of EC patients based on TCGA,

where higher risk scores represent a worse prognosis. The gene
signature was identified as an independent prognostic factor for
EC and has been tested to have good survival predictive ability. A
nomogram based on the gene signature and other clinical
prognostic factors was constructed to effectively predict the
1–5 years survival rate of EC patients. In addition, the poor
prognosis of patients in the high-risk subgroup might be
closely related to the low immune scores and the imbalance of
immune cells in tumor. Finally, CDK1 was identified to be a
potential prognostic biomarker and therapeutic target for EC
patients.
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