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Machine learning screening of bile 
acid‑binding peptides in a peptide 
database derived from food 
proteins
Kento Imai1,2, Kazunori Shimizu1 & Hiroyuki Honda1*

Bioactive peptides (BPs) are protein fragments that exhibit a wide variety of physicochemical 
properties, such as basic, acidic, hydrophobic, and hydrophilic properties; thus, they have the 
potential to interact with a variety of biomolecules, whereas neither carbohydrates nor fatty acids 
have such diverse properties. Therefore, BP is considered to be a new generation of biologically 
active regulators. Recently, some BPs that have shown positive benefits in humans have been 
screened from edible proteins. In the present study, a new BP screening method was developed using 
BIOPEP-UWM and machine learning. Training data were initially obtained using high-throughput 
techniques, and positive and negative datasets were generated. The predictive model was generated 
by calculating the explanatory variables of the peptides. To understand both site-specific and global 
characteristics, amino acid features (for site-specific characteristics) and peptide global features (for 
global characteristics) were generated. The constructed models were applied to the peptide database 
generated using BIOPEP-UWM, and bioactivity was predicted to explore candidate bile acid-binding 
peptides. Using this strategy, seven novel bile acid-binding peptides (VFWM, QRIFW, RVWVQ, 
LIRYTK, NGDEPL, PTFTRKL, and KISQRYQ) were identified. Our novel screening method can be 
easily applied to industrial applications using whole edible proteins. The proposed approach would 
be useful for identifying bile acid-binding peptides, as well as other BPs, as long as a large amount of 
training data can be obtained.

Bioactive peptides (BPs) are protein fragments that have positive benefits in humans1. BPs exhibit a wide variety 
of physicochemical properties, such as basic, acidic, hydrophobic, and hydrophilic properties. Therefore, they 
have the potential to interact with a variety of biomolecules, whereas neither carbohydrates nor fatty acids have 
such diverse properties. Therefore, BPs are considered a new generation of biologically active regulators2 and 
are promising candidates for the cosmetic and health food industry. Recently, some BPs have been screened 
from edible proteins3,4. For example, the alpha-casein-derived peptides RYLGY, AYFYPEL, and YQKFPQY 
have angiotensin-converting enzyme (ACE)-inhibitory activity5, and the beta-lactoglobulin-derived peptides 
VAGTWY, AASDISLLDAQSAPLR, IPAVFK, and VLVLDTDYK have bactericidal activity6.

Current advanced approaches to peptide screening have been reported by some research groups. In particu-
lar, directed evolution is a promising methodology. Gray et al. reported the evolution of macrocyclic peptides 
by scanning unusual protease resistant mRNA displays and discovered MX8K cyclic peptides targeting the 
autophagy protein LC37. Navaratna et al. reported the stabilization of peptide evolution by E. coli displays8. 
Peptide stabilization was performed by click chemistry using bis-alkyne molecules, and stabilized peptides 
showed 4–9 times higher affinity and high protease stability. However, novel BP fragments from edible proteins 
have not yet been discovered.

Peptide screening from edible proteins remains a difficult task. The vast majority of BPs are encrypted in 
the structure of the parent proteins and are released mainly by enzymatic processes. BPs are present in complex 
matrices containing a large number of hydrolyzed protein fractions; therefore, it is necessary to separate and 
purify them4. Until now, BP identification has been conducted with a trial-and-error approach, including selec-
tion of food materials and enzymes, separation of the BP fraction by liquid chromatography (LC), extraction from 
other materials, and concentration of BP. In addition, in many cases, the initial proteolytic mixture is prepared 
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based on the specific interests of researchers and industries, with no a priori knowledge, and no guarantee that 
the desired BPs are present. The common approach therefore has a significant ‘trial and error’ element, potentially 
leading to wasted time and money.

In silico approaches for identifying novel BPs have been proposed9,10. In silico approaches make use of peptide 
databases containing sequences derived from proteins of interest and implement bioinformatic tools to predict 
bioactivity. Many peptide databases have been developed, including the database BIOPEP-UWM11, which stores 
BPs along with edible proteins, allergenic proteins with their epitopes and sensory peptides, and amino acids. In 
addition, it implements predictive tools, including the theoretical degree of hydrolysis and bioactivity predic-
tion. Using the BIOPEP-UWM database, the appropriate fraction of DPP-4 (dipeptidyl peptidase-4) inhibiting 
peptides derived from mealworms (Tenebrio molitor) was selected12. This approach has also been adopted in 
pigeon pea (Cajanus cajan)13. Recent studies have shown that the combination of databases with advanced 
machine-learning-based bioinformatics tools is a promising approach for screening and developing novel BPs. 
For example, Meher et al.14 created an antimicrobial peptide by using predictive models with support vector 
machine (SVM) algorithms and antimicrobial databases CAMP15, APD316 and AntiBP217. Gautam et al. pre-
dicted cell-penetrating activity by using SVM and novel databases18 and achieved a maximum accuracy of 97.4%.

In the present study, a novel strategy to screen BPs derived from edible proteins was developed using BIOPEP-
UWM and machine learning. Machine learning using training data is convenient for acquiring the sequence 
characteristics of BPs. If the acquired model has high prediction accuracy, the derived BP fragments can be 
predicted without any wet experiment. This strategy allows for the exploration of all BPs from edible proteins 
by in silico screening using databases such as BIOPEP-UWM. The experimental workflow is shown in Fig. 1. 
We used the training data obtained with a high-throughput peptide array to generate positive and negative 
datasets. The predictive model was generated using the explanatory variables of the peptides in these datasets. 
Finally, this model was applied to a peptide database derived from edible proteins using BIOPEP-UWM. In the 
method proposed here, the desired BP was identified first by the machine-learning method, and then the food 
materials were selected. It should be noted that optimization of the separation process was established without a 
trial-and-error approach after BP has been chemically synthesized. This is the opposite or reverse approach for 
BP identification. The aim of this study was to demonstrate the proof-of-concept that BP can be identified from 
a large number of candidate proteins, by using the opposite approach.

We tested our peptide screening tool by searching for bile acid-binding peptides. In humans, cholesterol 
absorption occurs in the proximal jejunum of the small intestine, where both dietary cholesterol and biliary 
cholesterol are available for uptake from the intestinal lumen via bile acid micelles19,20. Bile acid-binding peptides 
interact with bile acids that form micelles and subsequently disrupt the micelles, contributing to the suppres-
sion of intestinal cholesterol absorption. We previously designed bile acid-binding peptides using an informat-
ics approach21–24. However, the designed peptides were not found in storage proteins or protein sources, and 
proteases were selected based on our interests. Bile acid-binding peptides work on the intestinal tract, and we 

Figure 1.   Schematic showing experimental workflow. Positive and negative datasets were generated from 
the training data. Subsequently, explanatory variables were generated with amino acid features (site-specific 
features) and peptide features (global features). Predictive models were constructed using a combination of 
the training data and explanatory variables. A new database containing peptides found in edible proteins was 
created using the edible protein database BIOPEP-UWM. Lastly, constructed models were applied to the edible 
protein database and the bioactivity of each peptide was predicted.
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therefore do not need to consider their absorption from the small intestine when developing novel health foods. 
Using our novel approach, we have established a framework for rapid and cost-effective screening of BPs, which 
may be applied to the development of new health-promoting products.

Results and discussion
Measurement of bile acid binding in a synthetic peptide array.  Training data are essential for the 
construction of classification models. To generate training data, 460 4-, 5-, 6-, and 7-mer peptides were chemi-
cally synthesized in the peptide array. A part of the synthesized peptide was identified by MS analysis to verify 
that the synthesized peptides coincided with the designed amino acid sequences. Assessment of binding ability 
between bile acid and peptides was performed using two kinds of antibodies: a first antibody against bile acid 
and a fluorescent-labeled secondary antibody. As a binding activity of the peptide, the average fluorescence 
intensities were determined based on the triplicate fluorescence intensities of the same peptide sequence. The 
sequences and fluorescent intensities are shown in Supplementary Table S2 and Supplementary Figs. S1–S6. The 
fluorescence intensity of 4-mers was lower than that of longer peptides (Supplementary Fig. S2A). The observed 
low intensity of 4-mers in the training data may be due to the relatively low hydrophobicity of the 4-mer pep-
tides. Using the peptide array data, 150 peptides with the highest fluorescent intensities were defined as the 
‘positive’ dataset, and 150 peptides with the lowest fluorescent intensities were defined as a ‘negative’ dataset for 
bile acid binding activity. The average fluorescence intensities of the positive and negative datasets are presented 
in Table 1. Here, 150 positive dataset numbers were selected because the average fluorescence intensities of posi-

Table 1.   Average of the fluorescence intensities of top 150 positive and bottom 150 negative training datasets, 
based on the rank of fluorescent intensities.

Residue 4-mer 5-mer 6-mer 7-mer

Average 17,823 64,761 43,677 44,235

SD 7824 35,329 34,027 25,330

Positive 26525 ± 5820 106731 ± 24476 79019 ± 39473 73980 ± 18873

Negative 9959 ± 3380 29325 ± 7769 19202 ± 4362 19108 ± 6793

Figure 2.   Frequency distributions of fluorescent intensities of all peptides such as 150 positive (slashed bar), 
150 negative (dotted bar) and others (blank bar). (A) 4-mer, (B) 5-mer, (C) 6-mer, (D) 7-mer.



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:16123  | https://doi.org/10.1038/s41598-021-95461-1

www.nature.com/scientificreports/

tive datasets were more than the average plus SD of 460 peptides. The same number of negative datasets were 
selected. The frequency distributions of the fluorescent intensities of all peptides are shown in Fig. 2 for clarity. 
The distribution of the 5-mer was slightly broader than that of the others. When the peptides became longer, the 
hydrophobicity of the peptide gradually increased. This may be the reason the high performance of 5-mer was 
obtained, as shown in Table 2. Since there was a significant difference between the two datasets (P < 0.001), the 
randomly designed peptide library contained peptides with different bile acid-binding bioactivities.

Construction of predictive model and evaluation of model performance.  To construct the pre-
dictive model, 7 amino acid features (AAF), including isoelectric point (IP), polarity (PL), hydropathy index 
(HI), molecular weight (MW), index of helix (Ph), and index of turn (Pt) listed in Supplementary Table S1 were 
selected. The collinearity of these features is contradictory. Since these were used as site-specific characteristics, 
the number of these AAFs was 28 for 4-mer, 35 for 5-mer, 42 for 6-mer, and 49 for 7-mer peptides. Next, the 
characteristics of peptides, not amino acids, were generated using these seven AAFs. The average of each AAF 
was generated as important global feature (GF). However, even though similar averages of an AAF such as IP 
are nominated in two arbitrary peptides, the peptide features are quite different if the maximum or minimum 
of the AAF of peptides differ. For instance, even though the average of IP is neutral, it is considered that the 
features of peptides consisting of non-charged amino acids are quite different from those of peptides consisting 
of positively and negatively charged amino acids. To explain the peptide feature, therefore, the deviation of AAF, 
the maximum, and the minimum were generated as GFs. Since there are seven AAFs, 28 GFs were generated 
independent of peptide length.

To perform machine learning, peptide features such as AAFs and GFs of 300 peptides (positive = 150, nega-
tive = 150) were calculated. For each 4-mer, 56 features were generated (28 AAFs and 28 GFs), for each 5-mer 
63 (35 AAFs and 28 GFs), 6-mer 70 (42 AAFs and 28 GFs), and 7-mer 77 (49 AAFs and 28 GFs), and used as 
explanatory variables. Three algorithms were used to construct the predictive model (SVM, RF, and LR), and the 
model performance was evaluated by comparing the accuracy, precision, and recall. Peptides with a probability 
of > 0.5, designated as positive, and those with a probability of < 0.5, were designated as negative for bile acid 
binding ability. Except for the precision scores of 5- and 7-mers, all RF scores were the highest among the three 
tested algorithms (Table 2). Therefore, RF was selected as the predictive algorithm.

The scores 4-mer peptides were lower than the scores of longer peptides (Table 2). The ratio of the average 
fluorescence intensity of positive the dataset and that of the negative dataset was defined as the P/N intensity 
ratio. In Table 1, the P/N intensity ratio of 4-mers (2.67) was lower than that of longer peptides (3.63 for 5-mers, 
4.11 for 6-mers, 3.87 for 7-mers). This is caused by the relatively lower overall fluorescence intensity of the 4-mer 
training data. The model performance was roughly corelated with the P/N intensity ratio. The reason for the 
poor performance is the relatively large number of FPs and FNs predicted by the acquired model when the P/N 
intensity ratio is low.

In order to predict the bioactivity of peptides, quantitative analysis of the relationship between the structure 
and bioactivity of peptides has received much interest from many physical biochemists. In a recent study25, the 
hydrophobicity of the amino acid located at the N-terminal end was reported to be more hydrophilic than that 
of the same amino acid located at both the middle and C-terminal ends. Therefore, it is likely that 4-mer peptides 
are more hydrophilic than longer peptides, such as 5-, 6-, and 7-mer peptides. The reason why 4-mer peptides 
show lower binding to bile acid is also considerable because of the lower hydrophobic interaction between the 
4-mer peptide and bile acid. However, hydrophobicity is necessary for the strong binding of peptides to bile 

Table 2.   The predictive scores of each prediction algorithm for identifying peptides with acid bile binding 
activity. SVF: support vector machine, RF: random forest, LR: logistic regression.

Accuracy Precision Recall

4-mer

SVM 0.667 0.664 0.673

RF 0.757 0.720 0.840

LR 0.693 0.691 0.700

5-mer

SVM 0.943 0.940 0.947

RF 0.953 0.936 0.973

LR 0.887 0.877 0.900

6-mer

SVM 0.880 0.896 0.860

RF 0.900 0.905 0.893

LR 0.863 0.866 0.860

7-mer

SVM 0.883 0.876 0.893

RF 0.897 0.870 0.933

LR 0.897 0.884 0.913
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acid. In our previous paper, we identified bile acid-binding 4-mer peptides such as NGLK, YEAR, etc.21. These 
peptides showed similar or higher binding activity compared to the 6-mer binding peptides. It is likely that the 
4-mer binding peptides show different physiochemical features compared with those of longer peptides.

To investigate the importance of the input features, the variable importance was estimated according to the 
increase in the predictive error due to the permutation of out-of-bag data for the given variable. The importance 
of each input variable is listed in Supplementary Table S3. Most of the top 10 selected features referred to the GFs 
of peptides, namely av, sd, min, max, with the exception of two specific features: residue2_Molecular_weight for 
4-mers and residue1_Isoelectric_point for 7-mers. In addition, two features for 4-mers, four features for 5-mers, 
four features for 6-mers, and five features for 7-mers were related to the peptide isoelectric point. Similarly, five 
features for 4-mers, three features for 5-mers, two features for 6-mers, and two features for 7-mers were related 
to molecular weight. This suggests that the GFs are more important than the site-specific features for bile acid-
binding activity in peptides of 4–7 amino acids. Bile acid molecules are amphiphilic, with a hydrophobic steroid 
core and hydrophilic hydroxyl groups, and therefore, have strong surfactant action. Since peptide binding can 
occur in either direction with bile acids, site-specific peptide features may be less important.

Features referring to the isoelectric point and molecular weight are among the most important in Sup-
plementary Table S3. This suggests that peptides with high isoelectric points or high molecular weights bind 
strongly to bile acids. The five amino acids with the highest isoelectric points were R, K, H, P, and I26, and the 
top five for molecular weight were W, Y, R, F, and H27. Therefore, basic or aromatic peptides have higher bind-
ing activity against bile acids. Some studies have investigated the binding mechanisms between bile acids and 
other compounds, such as sterols and nisin28–31, and revealed that hydrophobic amino acids, especially aromatic 
amino acids, interact with bile acid micelles. These findings are in agreement with the top 10 features listed in 
Supplementary Table S3.

We analyzed the appearance frequency of amino acid residues for peptides listed in Supplementary Table S2 
and obtained Fig. 3 to verify the reproducibility of the learning data. In the appearance frequency of amino acids 
for positive peptides, 5 amino acids, F, K, R, W, and Y, showed high frequency. Among the negative peptides, 3 
amino acids, C, D, and E, were relatively high. These results coincided with the results of the feature analysis from 

Figure 3.   Appearance frequency of amino acid residues for 150 positive (solid lines) and 150 negative (dotted 
lines) peptides [(A) 4-mer, (B) 5-mer, (C) 6-mer, (D) 7-mer].
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Supplementary Table S3. However, in the case of 4-mer peptides, a slightly different frequency was obtained; A 
and G were relatively low in positive peptides while D and E were relatively low in negative peptides.

Construction of edible peptide database and prediction of bile acid binding activities.  A set 
of 710 edible proteins were obtained from BIOPEP-UWM and digested using all available predicted protease 
binding sites (Table 3), resulting in 199568 4-mers, 198808 5-mers, 198055 6-mers, and 197310 7-mers. After 
removing duplicate sequences, the dataset contained 56171 4-mers, 89663 5-mers, 98387 6-mers, and 102805 
7-mers. Thus, a total dataset of approximately 350000 peptide sequences was generated.

All peptide sequences generated from edible proteins were applied to the acquired RF model. All applied 
peptides were labeled by output “probability”, since the RF model is a discrimination model. The results are 
shown in Supplementary Table S4. Applied peptides were ranked in order of probability, and the top 50 positive 
and bottom 50 negative predicted peptides were extracted. Those peptides were synthesized and their bile acid 
binding activities were determined using a peptide array. The synthesized sequences are listed in Supplementary 
Table S5, and their fluorescence intensities are shown in Fig. 4. The average fluorescence intensity of positive 
peptides was higher than that of negative peptides (P < 0.001), indicating that the RF model could successfully 
predict bile acid binding activity. Those probability values were also listed in Supplementary Table S5. Since 
those values were nearly 1.0, the correlation between theoretical and experimental parts could not be discussed 
precisely. The details of the peptides are shown in Supplementary Table S6.

We analyzed the appearance frequency of amino acid residues from Supplementary Table S5 and prepared 
Fig. 5 to verify the accuracy of the results of the predictive model. Since only 50 top or bottom peptides were used 
for appearance frequency, an explicit discussion was not clarified. However, 3 amino acids, F, L, and Y, showed a 
high frequency in positively predicted peptides, while W was high in 4-mer predicted peptides and R was high 
in 5-, 6-, and 7-mer predicted peptides. The different frequencies of positively predicted peptides may be due to 
the relatively low discrimination between positive and negative peptides (Fig. 4).

Novel bile acid binding peptides from edible proteins.  The top five peptides, ranked by fluores-
cence intensity in a peptide array for bile acid binding, are shown in Table 4. Seven of the peptides with the 
highest scores for bile acid-binding activity mapped to storage proteins in the database: VFWM from legumin 
A (Pisum sativum)32, QRIFW from high-molecular-weight glutenin (Triticum aestivum)33, RVWVQ from pro-
filin-1 (Hordeum vulgare)34, LIRYTK from serum albumin (Gallus gallus)34, NGDEPL from legumin chain B 
fragment (Vicia faba)35, PTFTRKL from chicken connectin (titin) fragment (Gallus gallus)34, and KISQRYQ 
from alpha-S2-casein (Bos taurus)34. NGDEPL was predicted to have a low affinity for bile acid; however, it 
had a high bile acid-binding activity according to the peptide array. The mechanisms underlying this apparent 
contradiction are unclear, but this peptide might bind stereospecifically to bile acids. Since storage proteins are 
favorable for the manufacture of health foods and cosmetics, these protein sources are expected to contain novel 
bioactive components.

Most of the predicted BPs in the present dataset were obtained by proteolysis by enzymes from plants or 
microorganisms and proteolysis by gastrointestinal enzymes36. Therefore, to evaluate the utility of these peptides 
at the industrial scale, we examined whether the seven peptides derived from storage proteins could be generated 
using peptidases or proteases. As a result, KISQRYQ was predicted to be generated from alpha-S2-casein (Bos 
taurus) with peptidyl-Lys metalloendopeptidase (Armillaria mellea neutral proteinase). Gutiez et al. previously 
investigated the relationship between autolysis caused by lactic acid bacteria and the production of angiotensin-
converting enzyme (ACE)-inhibitory peptides, and reported that KISQRYQ was generated from skimmed milk 
(alpha-S2-casein) by Lactococcus lactis subsp. lactis IL140337. Taken together, these results suggest that KISQRYQ 
could be a candidate BP for health food.

In the present study, a new BP screening method was developed based on a synthetic peptide library for bile 
acid binding and machine learning. A database containing peptide sequences derived from edible proteins was 
developed to identify peptides with features associated with bile acid binding. Novel bile acid-binding candidate 
peptides were discovered by combining these two tools. Among the peptides with the highest predicted scores 
for bile acid binding activity, seven (VFWM, QRIFW, RVWVQ, LIRYTK, NGDEPL, PTFTRKL, and KISQRYQ) 
were derived from storage proteins. Among them, KISQRYQ was predicted to be generated from alpha-S2-casein 
(Bos taurus) with peptidyl-Lys metalloendopeptidase (Armillaria mellea neutral proteinase) or from skim milk 
with Lactococcus lactis subsp. lactis IL1403. Our novel method could successfully screen BPs and can be easily 

Table 3.   The numbers of peptides derived from edible proteins by performing in silico protease digestion 
using all available proteases in the database. After removing duplicate sequences, the final number of peptides 
is shown in the right column.

Residue Number of fragments Number of unique fragments

4-mer 199,568 56,171

5-mer 198,808 89,663

6-mer 198,055 98,387

7-mer 197,310 102,805
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applied to industrial applications based on whole edible proteins. The proposed approach would be useful for 
bile acid-binding peptides, as well as for other BPs, provided that a large amount of training data can be obtained.

Materials and methods
Materials.  The Fmoc amino acid OH was purchased from Watanabe Chemical Industries, Ltd. (Japan). BSA 
was purchased from Fujifilm Wako Pure Chemical Corporation (Japan). Taurocholic acid (T-4009) was pur-
chased from Sigma-Aldrich (USA). The anti-cholic acid antibody (FKA502) was purchased from Cosmo Bio 
(Japan). Anti-rabbit IgG-conjugated Alexa 488 (ab150077) antibody was purchased from Abcam (Cambridge, 
UK).

Synthetic peptide array generation.  To generate positive and negative peptide training datasets for our 
machine learning algorithm, we synthesized 460 4-, 5-, 6-, and 7-mer peptides that were randomly generated 
using R software (version 3.5.3) (R development Core Team, https://​www.r-​proje​ct.​org/). All peptides were syn-
thesized on a cellulose membrane with a spot synthesizer (Intervis, ASP222, Cologne, Germany), as previously 
reported38. Fmoc-aund-OH was introduced at the C-terminal end of the peptide as a spacer. After synthesis, the 
side-chain-protecting groups of the Fmoc amino acids were removed using trifluoroacetic acid. The membrane 
was washed thoroughly with diethyl ether and methanol and dried. The membrane was soaked in PBS for 24 h 
and then transferred into 1% BSA in PBS solution at 37 °C for 12 h before the assay commenced.

Bile acid binding assay.  A bile acid-binding assay was conducted according to a previous study23. After 
washing the peptide array with PBS, 10 μg/mL taurocholic acid dissolved in PBS was added to the arrays and 
incubated for 1 h. After washing with PBS, anti-cholic acid antibody dissolved in 0.25% BSA was added to the 
array and incubated for 1 h at 37 °C. After washing with TBS containing 0.05% Tween 20, 2 μg/mL of anti-rabbit 

Figure 4.   Bile acid binding activity of the top and bottom 50 peptides. In order to evaluate the 4-mer (A), 
5-mer (B), 6-mer (C), and 7-mer (D) models, the 50 peptides predicted to have the most and least bile acid 
binding activity were synthesized, and their bile acid-binding activity was evaluated using a peptide array. In 
each group, 50 peptides were selected. The 50 peptides with the most predicted activity designated as ‘positive’, 
and the 50 peptides with the least predicted activity designated as ‘negative’.

https://www.r-project.org/
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IgG conjugated to Alexa 488 dissolved in PBS was added and incubated for 1 h at 37 °C. After washing with 
TBS, peptide spots were fluorescently detected using a fluorescent imager (Typhoon FLA-7000, GE Healthcare 
Japan Life Sciences, Tokyo, Japan). The scanned images were quantified using Image Quant TL (GE Healthcare 
Japan Life Sciences, Tokyo, Japan). Average fluorescence intensities were calculated by subtracting the peptide 
array treated only with the secondary antibody from the triplicate fluorescence intensities of the same peptide 
sequence.

Feature generation.  Seven features were considered for the prediction of bile acid binding activity 
(Supplementary Table  S1). General physicochemical features of peptides were described by pI26, polarity26, 
hydrophobicity39, and molecular weight27, while structural features were described by Ph (the index about helix) 
and Pt (the index about turn). Xia et al. investigated the existence of amino acids in secondary structures and 
defined new indices, Ph, Ps (the index of the sheet), and Pt40. The correlation coefficient between Ph and Ps was > 
|0.98|; therefore, Ps was excluded from the feature index in this study. In addition, previous research has revealed 
that hydrophobic amino acids, especially aromatic ones, interact with bile acid micelles19,30,31,41. Therefore, the 
number of aromatic amino acids was included as a peptide feature. Based on these features, the GFs of the library 
peptides were generated. For example, in the case of 4-mer peptides, each amino acid has seven features (Sup-
plementary Table S1), and 28 AAFs were also generated for each 4-mer peptide. In addition, four global values, 
the maximum, minimum, average, and standard deviation (sd) were generated for each peptide. This means that 
a total of 56 features (28 AAFs and 28 GFs) were generated and used as explanatory variables for each 4-mer 
peptide. All features were calculated in R.

Construction of prediction models.  To construct the prediction model, three algorithms were used: 
support vector machine (SVM), random forest (RF)42, and logistic regression (LR). Scikit-learn libraries43 were 
adopted, and leave-one-out cross-validation (LOOCV) was imported into Python. The parameters for the algo-
rithms were set as follows: In the SVM (linear) model, the default value of the parameter cost (C = 1) was used. 
In the RF model, the number of trees to grow (ntree) were set at 100 or 500, and the number of variables randomly 
sampled as candidates at each split (mtry) was set to “auto.” In the LR model, the penalty was set to “lasso,” C was 

Figure 5.   Appearance frequency of amino acid residues for top 50 (solid lines) and bottom 50 (dotted lines) 
peptides from predictive model [(A) 4-mer, (B) 5-mer, (C) 6-mer, (D) 7-mer].
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set to 10 or 50, and the maximum number of iterations required for the solvers to converge (max_iter) was set to 
100. The probability of binding to bile acid was calculated for all peptides and classified based on a score of 0.5.

The performance of all three machine learning models was evaluated using 3 metrics:

TP is the true positive; TN is the true negative; FP is the false positive; FN is the false negative.

Generation of peptide database for edible proteins.  A total of 710 protein sequences were obtained 
from BIOPEP-UWM, available at http://​www.​uwm.​edu.​pl/​bioch​emia/​index.​php/​pL/​biopep (accessed in Octo-
ber 2018)11. Peptides were generated based on the entire sequence of proteins. All sequences were sectioned 
into 4-, 5-, 6-, and 7-mer peptide fragments with one residue shift from the N-terminal amino acid. The peptide 
database was generated in csv format. For cleavage site prediction, PeptideCutter available at https://​web.​expasy.​
org/​pepti​de_​cutter/ was used44 and all enzymes stored in the software were used as simulation enzymes.

Accuracy = (TP + TN)/(TP+ TN+ FP+ FN),

Precision = (TP)/(TP+ FP),

Recall = (TP)/(TP+ FN).

Table 4.   The details of the top 5 peptides with the highest probability of having bile acid binding activity. 
a Storage proteins. Protein refers to the parent proteins and position refers to the site of the peptides from the 
N-terminus in the BIOPEP-UWM database.

Sequence Class Protein Position Fluorescence intensity

4-mer

MKWW Positive Beta-2 adrenergic receptor, rainbow trout (Oncorhynchus mykiss) 174_177 50,964

WWKW Positive Avenoindoline-a, precursor, oat (Avena sativa) 68_71 45,085

HWMW Positive Braching enzyme [Precursor], rice (Oryza sativa) 435_438 40,387

Starch braching enzyme rbe4, rice (Oryza sativa) 450_453

VFWM Positive Legumin A , precursor, garden pea (Pisum sativum)a 148_151 38,886

YMFK Positive Glyceraldehyde 3-phosphate dehydrogenase of rainbow trout (Oncorhyn-
chus mykiss) 44_47 37,177

5-mer

LWYRP Positive Secretory carrier membran protein, rice (Oryza sativa) 172_176 55,448

QRIFW Positive Glutenin, high molecular weight (HMW), precursor, wheat (Triticum 
aestivum), subunit DX5a 99_103 52,884

Glutenin, high molecular weight (HMW), wheat (Triticum aestivum) 
subunit 1Dx2.1a 99_103

Glutenin, high molecular weight (HMW), wheat (Triticum aestivum) 
subunit (fragment)a 99_103

Glutenin, high molecular weight (HMW), wheat (Triticum aestivum)a 79_83

AVRWP Positive Alpha-gliadin storage protein, wheat (Triticum aestivum) 20_24 51,521

RVWVQ Positive Profilin-1, barley (Hordeum vulgare)a 31_35 50,055

GWRSY Positive Glucocorticoid receptor, rainbow trout (Oncorhynchus mykiss) 584_588 49,414

6-mer

LIRYTK Positive Serum albumin, precursor, chicken (Gallus gallus)a 436_441 126,399

NGDEPL Negative Legumin chain B fragment, broad bean (Vicia faba)a 9_14 100,178

VIYRLK Positive Probable cell division protein ftsW 63_68 79,195

KLFTKT Positive Germin-like protein 4, rice (Oryza sativa) 135_140 73,601

IYRLKL Positive Probable cell division protein ftsW 64_69 68,634

7-mer

KFMYRSG Positive Paramyosin (Sarcoptes scabiei) (Q9BMM8) 7_13 74,124

LKIRYSS Positive Starch debranching enzyme,rice (Oryza sativa) 865_871 67,116

Starch debranching enzyme [Precursor],rice (Oryza sativa) 863_869

PTFTRKL Positive Chicken connectin (titin), fragment (Gallus gallus)a 469_475 63,712

KISQRYQ Positive Alpha-S2-casein gen. var. A, precursor, bovine (Bos taurus)a 181_187 62,301

Alpha S2-casein gen. var. C, fragment (16-222), bovine (Bos taurus)a 166_172

Alpha S2-casein gen. var. D, fragment (16-213), bovine (Bos taurus)a 157_163

RQFMKSL Positive Lactoferrin binding protein A precursor (Neisseria meningitidis) 203_209 61,136

Lactoferrin receptor (Neisseria gonorrhoeae) 203_209

Lactoferrin binding protein (Neisseria meningitidis) 199_205

http://www.uwm.edu.pl/biochemia/index.php/pL/biopep
https://web.expasy.org/peptide_cutter/
https://web.expasy.org/peptide_cutter/
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Statistical analysis.  Data are presented as means ± standard deviation (SD). Student’s t-test was used for 
between-group comparisons. Statistical significance was set at p < 0.05.
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