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Recent studies highlight the potential of T cell receptor (TCR) repertoires in accurately
detecting cancers via noninvasive sampling. Unfortunately, due to the complicated
associations among cancer antigens and the possible induced T cell responses, currently,
the practical strategy for identifying cancer-associated TCRs is the computational prediction
based on TCR repertoire data. Several state-of-the-art methodswere proposed in recent year
or two; however, the prediction algorithms were still weakened by two major issues. To
facilitate the computational processes, the algorithms prefer to decompose the original TCR
sequences into length-fixed amino acid fragments, while the first dilemma comes as the
lengths of cancer-associated motifs are suggested to be various. Moreover, the correlations
among TCRs in the same repertoire should be further considered, which are often ignored by
the existing methods. We here developed a deep multi-instance learning method, named
DeepLION, to improve the prediction of cancer-associated TCRs by considering these
issues. First, DeepLION introduced a deep learning framework with alternative convolution
filters and 1-max pooling operations to handle the amino acid fragments with different
lengths. Then, the multi-instance learning framework modeled the TCR correlations and
assigned adjusted weights for each TCR sequence during the predicting process. To
validate the performance of DeepLION, we conducted a series of experiments on several
cohorts of patients from nine cancer types. Compared to the existing methods, DeepLION
achieved, onmost of the cohorts, higher prediction accuracies, sensitivities, specificities, and
areas under the curve (AUCs), where the AUC reached notably 0.97 and 0.90 for thyroid and
lung cancer cohorts, respectively. Thus, DeepLION may further support the detection of
cancers from TCR repertoire data. DeepLION is publicly available on GitHub, at https://
github.com/Bioinformatics7181/DeepLION, for academic usage only.
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INTRODUCTION

T cells that respond to tumor antigens are the central mediators of
cancer immunity (Gubin et al., 2014; Tran et al., 2014; Tumeh et al.,
2014). For a cancer patient, the T cell repertoire often undergoes
some cancer-specific changes during the tumor progression
(Schreiber et al., 2011), where whose T cell receptors (TCRs)
are defined as cancer-associated TCRs (caTCRs). It is reported
that some caTCRs may share universal biochemical signatures
(Chowell et al., 2015; Li et al., 2016). Recent studies further
indicated that there are shared antigens and TCRs among the
patients with the same cancer type or subtype (Kvistborg et al.,
2013; Dhodapkar and Dhodapkar, 2016). The rapid development
of immune repertoire sequencing (IR-seq) (Kirsch et al., 2015)
enables a comprehensive view of TCR repertoires on both
individual and population levels. Then, it is natural that several
computational frameworks were proposed to predict the caTCRs,
some of which further attempted to distinguish the cancer-
associated repertoires from those non-cancer ones.

However, accurately predicting the caTCRs is quite challenging
work, mainly due to the tremendous heterogeneity on personal
antigen landscapes, while the lack of knowledge about the cancer
antigens inducing spontaneous T cell responses brings additional
difficulty (Coulie et al., 2014). To complete this work, several
studies attempted to mine the biochemical properties of caTCRs
from TCR sequencing (TCR-seq) data. The majority of them
focused on the TCRβ chain complementarity determining
region 3 (CDR3) because it primarily determines the antigen-
binding specificity as the somatically generated portion of the gene.
Given the computational difficulty of analyzing the entire CDR3
sequences, some approaches simplified computational processes by
preprocessing the original sequences into length-fixed overlapping
adjacent amino acid (AA) fragments and predicted the caTCRs by
identifying key motifs in the fragments, but there is currently no
consensus on the sequence decomposition strategy. Cinelli et al.
decomposed the sequences into triplets (denoted as 3-mers) and
then selected the key motifs from the 3-mers with 1-dimensional
(1-D) Bayesian classifier to train their support vector machine
model for repertoire classification (Cinelli et al., 2017). Sun et al.
adopted Cinelli’s sequence decomposition strategy and trained
their LPBoost model with the frequencies of 3-mers to identify
key motifs and classify repertoires (Sun et al., 2017). Interestingly,
Ostmeyer’s study partitioned the sequence into 4-mers (other than
3-mers) based on the analysis of the X-ray crystal structure of
human TCR bound to peptide-major histocompatibility complex
(MHC) before distinguishing tumor tissue from adjacent healthy
tissue in colorectal and breast cancer samples (Ostmeyer et al.,
2019). Furthermore, the X-ray crystal structure analysis (Ostmeyer
et al., 2019) revealed that the size of adjacent CDR3 residues in
direct contact with peptide varied from two to eight, implying
that the length of the key biochemical motifs in TCRs should
not be fixed. Therefore, decomposing sequences into z-mers,
which limits these approaches to identifying length-fixed key
motifs, is considered to lead to information loss and may
harm subsequent model classification.

In contrast to the above approaches, some studies investigated
the entire CDR3 sequences to consider the correlations among

sequences. Emerson et al. built a statistical classification
framework that could predict cytomegalovirus (CMV) status
from the resulting catalog of CDR3 sequences (Emerson et al.,
2017). Yokota’s approach compared the TCR repertoires in low
dimensions based on entire sequence information, which
estimated the low-dimensional structure after embedding the
pairwise high-dimensional sequence dissimilarities (Yokota
et al., 2017). Both of these approaches concentrated on the
similarity comparisons among the entire sequences. However,
only partial residuals of TCR contribute to antigen-binding
specificity (Ostmeyer et al., 2019), the sequence comparison
approaches were unable to focus on these residuals, potentially
resulting in poor performances. DeepCAT is a deep learning
framework enabling de novo prediction of caTCRs (Beshnova
et al., 2020). Antigen-specific sequences in each repertoire were
selected to be predicted by a set of the trained convolutional
neural network (CNN) models after clustering CDR3 sequences
based on their similarity (Zhang et al., 2020). The cancer score,
which quantifies the likelihood that a repertoire is associated
with cancer, was calculated using the average of the sequence
predictions. Compared to the above two approaches, DeepCAT
was able to predict the caTCRs more accurately and performed
better in repertoire classification due to the cluster analyses
in data preprocessing and deep learning’s excellent feature
extraction ability. However, DeepCAT ignored the
correlations among TCRs in the same repertoire for the
simple definition of cancer score, which assigned the same
weight for all TCRs in a repertoire whereas they may own
distinct weights. Ostmeyer’s approach (Ostmeyer et al., 2019)
attempted to model the TCR correlations with multi-instance
learning (MIL), but it used the standard MIL assumption
(Dietterich et al., 1997; Foulds and Frank, 2010), predicting
the repertoire as cancerous based on the presence of only one
abnormal TCR, which is unsuitable and has a risk of increased
false positives because a cancer patient’s repertoire typically
contains many caTCRs that are related to one another.

In summary, there is a dearth of caTCR prediction
approaches that take into account the cancer-associated
biochemical motifs with various lengths and correctly model
the correlations among TCRs in the same repertoire. To bridge
this gap, we developed a deep MIL method called DeepLION in
this study to improve the prediction of caTCRs using TCR-seq
data (Figure 1). On one hand, the CNN with alternative
convolution filters and 1-max pooling operations was used to
handle AA fragments with different lengths in TCRs, where
various lengths of cancer-associated motifs were identified; on
the other hand, the MIL part of DeepLION assigned
appropriate weights for each TCR after modeling the TCR
correlations during the predicting process. We evaluated the
performance of DeepLION on several cohorts of patients from
nine cancer types and found that it achieved higher prediction
accuracies, sensitivities, specificities, and areas under the
receiver operating characteristic (ROC) curve (AUCs) for
most of the cohorts compared with the current state-of-the-
art methods, with the AUCs for thyroid and lung cancer
cohorts reaching 0.97 and 0.90, respectively. Thus,
DeepLION can accurately predict the caTCRs and distinguish
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the cancer-associated repertoires from those non-cancer ones,
potentially assisting in the detection of malignancies based on
TCR repertoire data.

MATERIALS AND METHODS

DeepLION is a deep MIL method based on TCR-seq data for
caTCR prediction. The workflow of DeepLION consisted of
three parts: data preprocessing, the CNN for TCRs, and MIL
(Figure 1A). First, k TCRβ CDR3 sequences with the highest

abundance in the repertoire were selected and encoded into
the matrixes using AA biochemical features. After data
preprocessing, the TCR matrixes with different sizes were
fed into a deep CNN model, where the biochemical features
of key motifs with various lengths were extracted by
alternative convolution filters and 1-max pooling
operations, and then the scores of TCRs, the probabilities
that they were caTCRs, were calculated. Finally, a one-layer
linear classifier L′ was employed to aggregate k TCR scores as
the cancer score of the repertoire, which is used to predict
whether it is cancerous.

FIGURE 1 | DeepLION for accurate TCR repertoire prediction. (A) The workflow of DeepLION is divided into three parts: data preprocessing, the CNN for TCRs,
and MIL. During data preprocessing, the top kmost abundant TCR sequences were extracted from each repertoire after removing unqualified sequences and they were
encoded into matrixes by the Beshnova matrix. The CNN for TCRs consisted of 14 convolution filters covering six various region sizes, 1-max pooling operations, and a
one-layer linear classifier L. The TCR matrixes were input to the CNN and their scores were output. In the MIL part, DeepLION employed another one-layer linear
classifier L′ to aggregate k TCR scores to predict the repertoire. (B) The details of the convolution and pooling operations of CNN in DeepLION.When a 2 × d convolution
filter (the red box) performed a complete convolution operation on the TCRmatrix from top to bottom, it could be regarded as extracting the biochemical features of the 2-
mers such as "CA", "AS", etc., and then a 10 × 1 feature map, a feature set of all 2-mers, was generated. Other filters performed similar convolution operations and 14
featuremaps were obtained. Themaximum value of eachmap (markedwith a blue box) was selected by a 1-max pooling operation, which could be viewed as the feature
of the z-mers most likely to be the cancer-specific motif. These features were interconnected to generate a 14 × 1 TCR feature vector.
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Data Preprocessing
We collected the CDR3 of TCRβ from TCR-seq data to study.
Considering that low-quality CDR3 sequences will affect the
downstream analysis, the following types of sequences were
removed as described in the previous study (Beshnova et al.,
2020): 1) too short (<10) or too long (>24) sequences; 2)
sequences containing special characters (X, +, p, etc.); 3)
incomplete sequences, according to the ImMunoGeneTics
(IMGT) nomenclature (Lefranc et al., 2015), not starting with
the cysteine (C) or not ending with the phenylalanine (F); and 4)
sequences where variable gene locus was not solved. There were
some overlapping TCR sequences between healthy individuals
and cancer patients, which were considered irrelevant to cancer
and therefore also needed to be excluded. We used known
training data to generate a reference dataset (denoted as DR)
containing sequences that appeared at a high frequency in
both healthy individuals and cancer patients (the top 20,000
sequences with the highest cloning frequency in each TCR-seq
sample). Any sequences in each sample appearing in the DR

were removed. After the above sequences were removed, the
remaining TCR sequences were sorted in descending order of
cloning frequency and the top k sequences were extracted for
downstream analysis.

The raw TCR sequences were not directly input to the CNN
because their antigen-binding ability was not well represented.
AAs in TCR sequences can be represented by biochemical
features, and a TCR sequence with length l is able to be
encoded by a 20 × d feature matrix for 20 AAs into an l × d
TCR matrix. The AA index database (Kawashima and Kanehisa,
2000) documented 566 AA indices containing rich biochemical
information based on previous literature. Since the original 566
AA indices are very large, directly utilizing them to characterize
AAs may lead to a large input data size and too many parameters
of CNN, which may cause problems such as high computational
complexity and overfitting. In addition, many of the original AA
indices are highly correlated with each other. As a result, we
considered dimensionality reduction of the original AA indices.
Currently, many studies have extracted low-dimensional
orthogonal features from high-dimensional AA indices,
reducing the dimensionality of a large number of AA indices
with minimal information loss. Kidera et al. derived a 20 × 10
feature matrix from 188 AA indices (Kidera et al., 1985), and
Atchley et al. derived a 20 × 5 feature matrix from 494 AA indices
(Atchley et al., 2005). Beshnova et al. employed principal

component analysis (PCA) to generate a 20 × 15 feature
matrix from 531 AA indices to characterize AAs (Beshnova
et al., 2020). Considering that the Beshnova matrix was
obtained from the largest number of AA indices and
encompassed the most biochemical information (explaining
more than 95% of the variation in the data), we used the
Beshnova matrix in our experiments (d = 15) to encode the
TCR sequences into matrixes.

Identifying Various Lengths of
Cancer-Associated Motifs
The CNN is able to predict whether a TCR sequence is associated
with cancer. TextCNN in natural language processing (NLP)
firstly applied the CNN model to sequence analysis (Zhang and
Wallace, 2015). Referring to the idea of TextCNN, the model
consisted of a convolutional layer, a pooling layer, and a linear
layer, as shown in Figure 1A. Different from TextCNN, we
developed innovative convolution filters in the convolutional
layer to handle the amino acid fragments with different
lengths according to the X-ray crystal structure analysis
(Ostmeyer et al., 2019). For a TCR matrix with dimension l ×
d, the model extracted its features by a set of convolution filters
with various sizes respectively, performed 1-max pooling
operations for the low-dimensional feature maps obtained by
each convolution filter, and concatenated the pooled results to
generate a TCR feature vector. The TCR score, the probability of
being a caTCR, was obtained by a one-layer linear classifier
finally.

The convolutional layer of the model was designed with
multiple convolution filters to extract the key biochemical
motifs with distinct lengths in TCRs. By analyzing the X-ray
crystal structure, Ostmeyer et al. identified the CDR3 residues
in contact with peptide, which were thought to make the
greatest contribution to the antigen-binding specificity of the
TCRs, and determined the length of the AA fragments
according to the analysis (Ostmeyer et al., 2019). We
counted the contiguous CDR3 residue regions (size ≥2) in
the 55 CDR3 sequences used for analysis (Table 1) and
observed that the regions ranging in size from 2 to 8 were
present, with regions of sizes 2–4 occurring more frequently
and regions of size eight occurring least frequently at 0.017.
These contiguous regions were considered as potential

TABLE 1 | The situation of continuous CDR3 residue regions and convolution filter design.

Size of region Number of region Frequency of region Size of filter Number of filter

2 12 0.207 2 × d 3
3 12 0.207 3 × d 3
4 13 0.224 4 × d 3
5 8 0.138 5 × d 2
6 7 0.121 6 × d 2
7 5 0.086 7 × d 1
8 1 0.017 — —
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cancer-specific motifs that contribute to the antigen-binding
ability of TCRs. After excluding the regions with low
frequencies (<0.05), we designed a set of various
convolution filters and specified the number of
corresponding convolution filters according to the
occurrence frequencies of the regions (Table 1). As shown
in Table 1 and Figure 1A, the convolution filters with six
different sizes were designed to extract features from TCR
matrixes, and the number of convolution filters with each size
was positively correlated with the occurrence frequency of the
corresponding region, for a total of 14 convolution filters.
Every complete convolution operation is defined as:

ℴi,Fj
a � σ(WFj ·Mi[a: a + h − 1] + bFj)

∈ ℴi,Fj � [ℴi,Fj
1 , . . . ,ℴ

i,Fj
l−h+1]T, (1)

where the output sequence ℴi,Fj ∈ Rl−h+1 is composed of the
results of each convolution ℴ

i,Fj
a (a � 1, . . . , l − h + 1), the

activation function σ(x) � max(0, x) is the Rectified Linear
Unit (ReLU), WFj ∈ Rh×d and bFj ∈ R are respectively the
weight matrix and bias of the jth convolution filter Fj with
size h × d, Mi ∈ Rl×d is the ith TCR matrix, Mi[a: b] denotes
the submatrix from row a to row b inMi, and · denotes the dot
product (a sum of element-wise multiplications) between the
submatrix and the filter. Equation 1 showed the convolution
operation that one convolution filter performed on the TCR
matrix, and then the corresponding feature map, oi,Fj , was
obtained. Taking the 11 × d TCR matrix shown in Figure 1B
as an example, when the convolution filter with size 2 × d
performed a complete convolution operation on the matrix
from top to bottom, it could be regarded as extracting the
biochemical features of the 2-mers in TCRs such as "CA",
"AS", etc., and finally obtaining the 10 × 1 feature map, the
feature set of all 2-mers, which probably included cancer-
specific motifs. The filters with other sizes performed similar
convolution operations. Because the frequencies of key motifs
with different lengths varied, the numbers of convolution
filters with various sizes were adjusted to give them
appropriate weights in the model. ReLU was chosen as the
activation function following the convolution operations due
to its low computational complexity. Additionally, it can
avoid the vanishing gradient or exploding gradient
problems that Sigmoid and Tanh can cause. And the
disadvantage of ReLU, the dead ReLU problem, was
mitigated by using the Xavier initialization (Glorot and
Bengio, 2010).

The 1-max pooling function was adopted to pool the feature
maps generated after convolution operations of each convolution
filter, reducing the mapping dimension to 1. The following
pooling functions are commonly used: 1) the element-wise
maximum function (fMax); 2) the element-wise average
function (fAvg); 3) the log-sum-exp (LSE) function (fLSE)
(Sahasrabudhe et al., 2021). These are defined as:

fMax(ℴ i,Fj) � max({ℴi,Fj

1 , . . . ,ℴ
i,Fj

l−h+1}), (2)

fAvg(ℴ i,Fj) � 1
l − h + 1

∑l−h+1
a�1

ℴ i,Fj
a , and (3)

fLSE(ℴ i,Fj) � log⎛⎝ 1
l − h + 1

∑l−h+1
a�1

exp(ℴ i,Fj
a )⎞⎠, (4)

where ℴi,Fj ∈ Rl−h+1 is the output sequence of Fj with size h × d
after the convolution operation onMi. The feature maps obtained
could be viewed as the feature sets of all z-mers (z � 2, . . . , 7).
Regarding that the goal of CNN was distilling the potential
cancer-specific motifs in TCRs, we focused on the most
contributing features in the feature sets, which are most likely
from the key motifs, and ignored the features of other z-mers.
With the 1-max pooling function, the most contributing features
of each feature set were extracted and other non-key motifs’
features were discarded, whereas the features pooled by the
average function and the LSE function were affected by other
non-key motifs, which caused adverse effects on the classification
ability of the model. Considering that one TCR may contain
multiple short key motifs with the same length, the drawback that
the 1-max pooling operation can only extract the feature of one
keymotif from one sequence can be compensated by the design of
multiple convolution filters with the same size in the
convolutional layer. As shown in Figure 1B, the most
contributing features (marked with blue boxes) extracted by
pooling were interconnected to generate a 14 × 1 TCR feature
vector as:

pi,Fj � fMax(ℴ i,Fj) ∈ pi � [pi,F1 , . . . , pi, F14]T. (5)
Equation 5 showed the 1-max pooling operation performed on
the feature map, and then the TCR feature vector, pi, was
obtained, which consisted of the most contributing features
from the feature maps.

Ultimately, a one-layer linear classifier L was applied to
aggregate the features extracted from each convolution kernel
and predict the score for that TCR sequence. L that assigned
scores to the TCRs is given by:

~yi � P(yi � 1
∣∣∣∣Mi) � σ′(WLTpi + bL), (6)

where P(yi � 1|Mi) denotes the probability that the TCR is
associated with cancer, the activation function σ′(x) �
1/(1 + exp(−x)) is the sigmoid function to normalize the
scores, and WL ∈ R14 and bL ∈ R are respectively the weight
matrix and bias of L. Equation 6 showed the operation process in
L, and the probability that the TCR was associated with cancer
was obtained. The TCR was predicted to be caTCR when ~yi > 0.5,
and was otherwise predicted to be noncancerous. A multi-layer
linear classifier is capable of fitting the data better, but it also
makes the structure of CNN more complicated and introduces
the risk of overfitting. To reduce overfitting, a one-layer linear
classifier is applied to the model to predict the TCR scores.

The CNN model jointly learns the various convolution filters
and L so that it is end-to-end trainable and the preprocessed
TCRs and the corresponding labels are needed for model training.
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Because the probability that a TCR is a caTCR obeys a Bernoulli
distribution, the log-likelihood function (also known as the cross-
entropy function) was used as the loss function to train themodel,
which is defined as:

LCNN � −[~yiln~yi + (1 − ~yi)ln(1 − ~yi)]. (7)
During the training process, random dropouts at a rate of 40%
were applied to L to mitigate overfitting.

Because zero-padding will alter the distribution of input data,
DeepCAT (Beshnova et al., 2020) built five distinct CNN models
for TCR sequences from 12 to 16 in length, which made itself
cumbersome and unable to utilize the information of TCRs with
other lengths, whereas TCRs with different lengths were processed
by one model in this method. In the actual training process, we
added zeros to the end of the shorter sequences to achieve the
length of the longest sequences (l = 24) to ensure the consistency of
the dimensionality of the input TCRmatrixes. Because the features
of all motifs containing zero viewed as non-key motifs were
discarded after the 1-max pooling operations in the model, the
classification ability of the model did not deteriorate.

Multi-Instance Learning Modeling the TCR
Correlations
Predicting whether a repertoire is cancer-associated from the
TCRs in every repertoire can be described as MIL, where the
TCRs are instances and the repertoires are bags. The standard
MIL assumption assumes that each instance in a bag can be
classified as either positive (1) or negative (0), and the label of
a bag is 1 when including one or more positive instances
(Dietterich et al., 1997; Foulds and Frank, 2010). Ostmeyer
et al. applied this assumption in their study (Ostmeyer et al.,
2019). However, it is inappropriate to predict the repertoire as
having cancer by the presence of a non-normal TCR because a
cancer patient usually contains many caTCRs, which are
somehow related to each other. In addition, the needed
labels of TCRs are unknown, which means that it is

difficult to know whether a TCR is associated with cancer
or not. Although Beshnova et al. obtained potential caTCRs
used for model training from TCGA tumor RNA-seq samples
in advance in their study by TRUST (Li et al., 2017) and
sequence filtering based on a reference database (Beshnova
et al., 2020), the evidence that all sequences were positive was
lacking. The definition of cancer score for the repertoire by
averaging the predictions for TCRs in a repertoire was also
inaccurate because we could not prove that all TCRs enjoyed
the same weight. Therefore, we designed a one-layer linear
classifier L′ as an aggregating function to combine the scores
of k TCRs collected from repertoires to predict the repertoire.
L′ is defined as:

~Y � P(Y � 1|{M1, . . . ,Mk}) � σ′(WL′T[~y1, . . . , ~yk]T + bL′),
(8)

where P(Y � 1|{M1, . . . ,Mk}) denotes the probability that the
repertoire has cancer, the activation function σ′(x) is the sigmoid
function, and WL′ ∈ Rk and bL

′ ∈ R are respectively the weight
matrix and bias of L′. Equation 8 showed the operation process in
L′, which was similar to Eq. 6, and the probability that the
repertoire was associated with cancer was obtained. The
repertoire was predicted to be cancer-associated when ~Y> 0.5,
and was otherwise predicted to be noncancerous. A MIL model
consisting of the CNN and L′ is also end-to-end trainable, whose
loss function is the log-likelihood function defined as:

LMIL � −[~Yln~Y + (1 − ~Y)ln(1 − ~Y)]. (9)
Instead of simply taking the max value (Ostmeyer et al., 2019)

or the average (Beshnova et al., 2020) value of all TCR scores as
the cancer score of the repertoire, L′ was capable of learning the
interrelationships among TCRs and assigning the appropriate
weights to each TCR after model training. Similar to the idea of L,
the multi-layer linear classifier was replaced by L′ and random
dropouts at a rate of 40% were applied to L′ during training in
order to alleviate overfitting.

RESULTS

We conducted a series of experiments on several cohorts of patients
covering multiple cancers and healthy donors to validate the
performance of DeepLION. In section 3.1, we detailed how we
acquired the data for the experiments. In section 3.2, we assessed
the capacity of the CNN framework in DeepLION to predict the
caTCRs. In section 3.3, we evaluated the performance of the entire
DeepLION when predicting repertoires.

Collecting the Data
We used the publicly available TCR-seq data from Adaptive
Biotechnologies immuneACCESS online database (IA), which
contains eight groups of peripheral blood mononuclear cell
(PBMC) samples with diverse cancer types and one group of
non-cancer PBMC samples. To validate the performance of the
models on Asian patients, the TCR-seq data from the clinical
database of Geneplus Technology Ltd. in Shenzhen (Geneplus)

TABLE 2 | The specifics of the datasets.

Source Disease Cell type Data type Sample size

IA Melanoma PBMCs TCR-seq 21
BRCA PBMCs TCR-seq 16
Ovarian PBMCs TCR-seq 4
Pancreatic PBMCs TCR-seq 7
Bladder PBMCs TCR-seq 30
GBM PBMCs TCR-seq 15
Lung PBMCs TCR-seq 29
CRC PBMCs TCR-seq 3
Non-cancer PBMCs TCR-seq 786

Geneplus THCA PBMCs and TILs TCR-seq 170
Lung PBMCs and TILs TCR-seq 184
Non-cancer PBMCs TCR-seq 260

IA, Adaptive Biotechnologies immuneACCESS online database; BRCA, breast cancer;
GBM, glioblastoma multiforme; CRC, colorectal cancer; THCA, thyroid cancer; PBMCs,
peripheral blood mononuclear cells; TILs, tumor-infiltrating T lymphocytes; TCR-seq,
T cell receptor-sequencing.
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were also used (Lan et al., 2020; Li et al., 2021), which included
PBMC and tumor-infiltrating T lymphocyte (TIL) samples from
patients with thyroid cancer (THCA) and lung cancer, as well as
non-cancer PBMC samples. Table 2 shows the specifics of the
various datasets that were used in the experiments.

In section 3.2, we gathered the training data of DeepCAT to
train the CNN framework in DeepLION. The label-encoded
training data was composed of cancer (n = 30,000) and non-
cancer (n ~ 60,000) TCR CDR3 sequences. The cancer sequences
were derived from The Cancer Genome Atlas (TCGA) (Tomczak
et al., 2015) tumor RNA-sequencing (RNA-seq) samples covering
multiple cancers using TRUST algorithm (Li et al., 2017), whereas
non-cancer sequences were derived from the healthy individuals
H2 (n = 120) (Emerson et al., 2017), which are independent of
healthy individuals H1 (n = 666). The test data consisted of two
datasets (T1 and T2). T1 consisted of eight groups of samples, each
of which contained cancer and H1 PBMC samples from IA. All
TCR-seq data in T2 were obtained from Geneplus, which were
collected from Asian populations. T2 was composed of two groups

of samples: the first group contained THCA PBMC& TIL samples
(n = 170) and the PBMC samples from the healthy individuals H3

(n = 260), and the second group contained lung cancer PBMC and
TIL samples (n = 184) and H3 PBMC samples. Table 3 shows
the training and test data in section 3.2.

In section 3.3, we used T2 to train and test the entire
DeepLION due to the larger sizes of cancer samples in T2

(Table 3). The samples in each group were randomly divided
into five equal parts, three of which were used as the training set,
one as the validation set, and one as the test set.

Predictive Capacity Evaluation of the CNN
Framework in DeepLION for TCRs
DeepCAT (MCAT) (Beshnova et al., 2020) is currently a preferred
method for de novo caTCR prediction from the peripheral blood.
To validate the performance of the CNN framework in
DeepLION (MCNN) when predicting the caTCRs, we
conducted experiments to compare MCNN with MCAT. MCAT

TABLE 3 | The training and test data in experiments.

Section Data type Data source Disease Cell type Sample size

3.2 Training data TCGA Multiple cancers — 30,000
IA Non-cancer (H2) — ~60,000

Test data IA (T1) Melanoma PBMCs 21
BRCA PBMCs 16
Ovarian PBMCs 4
Pancreatic PBMCs 7
Bladder PBMCs 30
GBM PBMCs 15
Lung PBMCs 29
CRC PBMCs 3
Non-cancer (H1) PBMCs 666

Geneplus (T2) THCA PBMCs and TILs 170
Lung PBMCs and TILs 184
Non-cancer (H3) PBMCs 260

3.3 Training and test data Geneplus (T2) THCA PBMCs and TILs 170
Lung PBMCs and TILs 184
Non-cancer (H3) PBMCs 260

TCGA, The Cancer Genome Atlas; IA, Adaptive Biotechnologies immuneACCESS online database; BRCA, breast cancer; GBM, glioblastomamultiforme; CRC, colorectal cancer; THCA,
thyroid cancer; PBMCs, peripheral blood mononuclear cells; TILs, tumor-infiltrating T lymphocytes.

TABLE 4 | The performance of models on different cancer samples.

T1
a T2

Melanoma (21) BRCA (16) Ovarian (4) Pancreatic (7) THCA (170)

MCAT b MCNN MCAT MCNN MCAT MCNN MCAT MCNN
MCAT MCNN

SEN 0.762 0.762 0.438 0.750 1 1 0.714 1 0.353 0.453
AUC 0.912 0.900 0.854 0.892 0.988 0.989 0.945 0.962 0.692 0.724

Bladder (30) GBM (15) Lung (29) CRC (3) Lung (184)
MCAT MCNN MCAT MCNN MCAT MCNN MCAT MCNN

MCAT MCNN

SEN 0.733 0.767 0.133 0.133 0.241 0.310 1 1 0.326 0.473
AUC 0.881 0.913 0.665 0.690 0.535 0.663 1 0.995 0.736 0.753

SEN, sensitivity; AUC, area under the receiver operating characteristic curve; BRCA, breast cancer; GBM, glioblastoma multiforme; CRC, colorectal cancer; THCA, thyroid cancer.
aEach group of samples was a mix of cancer and control samples (n = 666 for groups of T1 and n = 260 for groups of T2).
bThe thresholds of two models were set at 0.9 specificity (MCAT: 0.277 for T1 and 0.351 for T2; M

CNN: 0.392 for T1 and 0.423 for T2).
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and MCNN shared the same training data (Table 3), and we
processed the data as described in MCAT.

Before the training process, all the training sequences were
encoded into l × 15 TCR matrixes (d = 15) by the Beshnova
matrix (Beshnova et al., 2020). To gain the final model, we
trained MCNN

five times independently. In each training
process, we randomly selected two-thirds of the training data
(20,000 cancer and 40,000 non-cancer samples) as the training
set and used them to train the model for 1,000 epochs at a
learning rate of 0.001 with the assurance that the model reached
convergence. The remaining training data were used as the
validation set and AUCs were estimated to evaluate the trained
models. Ultimately, the five trained models had similar AUCs,
and the model with the highest AUC (0.85) was selected as the
final model. The trained MCAT was obtained from Github.

All the test data (Table 3) were processed in several steps. First,
the top 10,000 most abundant sequences (k = 10,000) of each
sample were extracted after low-quality sequences were removed.
Second, we used iSMART (Zhang et al., 2020) with default
parameters to cluster the sequences, and then the antigen-
specific sequences were selected. Third, all the sequences were
encoded into TCR matrixes for the downstream analysis.

The trainedMCAT, as well as the trainedMCNN, was applied to the
processed test data, and the cancer score of each sample was defined
by averaging all the input sequence scores in the sample. The
sensitivities (at 0.9 specificities) and AUCs of both models were
estimated for evaluating the models (Table 4). The results showed
that MCNN performed significantly better than MCAT in terms of
both the sensitivities and AUCs on each group of samples except for
the melanoma, ovarian cancer, and colorectal cancer samples in T1,
where MCNN’s performance was close to that of MCAT.

To further compare the performance of these two models, MCAT

and MCNN were also applied to the combined cancer samples of T1

and T2, which contained all various cancer samples as well as
the control samples, and the ROC curves were generated based
on the prediction results (Figure 2). As shown in Figure 2, the AUCs
of MCNN were higher than those of MCAT on both T1 and T2

(T1: 0.83 > 0.78; T2: 0.73 > 0.71), indicating that it had the better
feature extraction and prediction ability for TCRs.

Performance Assessment of the Entire
DeepLION
In comparison with MCAT and MCNN, we expected that the entire
DeepLION (MLION) as a MIL method was capable of achieving
more accurate caTCR prediction after correctly modeling the
correlations among TCRs. Because the logistic regression model
combined with MIL (denoted as MLOG) (Ostmeyer et al., 2019) is
a classical MIL method to distinguish tumor tissues from healthy
tissues accurately by identifying the cancer-specific motifs in
TCRs, we also compared MLION with it.

We trained two models for THCA and lung cancer (denoted as
MLION

T and MLION
L ) respectively (Table 3). To obtain MLION

T , we
first extracted the top 100most abundant sequences (k = 100) from
each sample and encoded them into l × 15 TCR matrixes (d = 15)
by the Beshnova matrix (Beshnova et al., 2020). Then, we trained
themodel five times independently, in each of which themodel was
trained with the training set for 700 epochs at a learning rate of

FIGURE 2 | The ROC curves of models on combined cancer samples. (A) The ROC curves on T1. The AUC of MCAT is 0.78 whereas the AUC of MCNN is 0.83. (B)
The ROC curves on T2. The AUC of MCAT is 0.71 whereas the AUC of MCNN is 0.73.

TABLE 5 | The performances of models on THCA and lung cancer samples.

THCA (170) a Lung (184)

MLOG
T
b

MCAT MCNN MLION
T MLOG

L MCAT MCNN MLION
L

ACC 0.651 0.693 0.753 0.872 0.659 0.698 0.732 0.818
SEN 0.444 0.488 0.418 0.775 0.552 0.625 0.538 0.730
SPE 0.800 0.827 0.973 0.957 0.712 0.750 0.869 0.882
AUC 0.600 0.692 0.724 0.974 0.680 0.736 0.753 0.899

ACC, accuracy; SEN, sensitivity; SPE, specificity; AUC, area under the receiver operating
characteristic curve; THCA, thyroid cancer.
aEach group of samples was a mix of cancer and control samples (n = 260).
bThe threshold of both MLOG and MLION was 0.5 for two samples and the thresholds of
MCAT and MCNN were set by Youden index (MCAT: 0.336 for THCA and 0.321 for lung
cancer; MCNN: 0.433 for THCA and 0.419 for lung cancer).
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0.001 with the assurance that the model reached convergence. The
AUCs of the trained models on the validation set were estimated
for model selection, and the model with the highest AUC (0.95)
was selected as the final model. MLION

L (AUC = 0.86) was obtained
by the same training procedure. After using the same training sets
as MLION to train MLOG with default training parameters, we also
obtained MLOG

T andMLOG
L for THCA and lung cancer respectively.

Four trained models were applied to the corresponding test sets
and the accuracies, sensitivities, specificities, and AUCs were
calculated based on the sample predictions to evaluate their
performances (Table 5). The results of MCAT and MCNN on the
samples were also shown in Table 5 for comparison. For a fair
comparison, the classification thresholds ofMCAT andMCNN for the
samples (MCAT: 0.336 for THCA and 0.321 for lung cancer; MCNN:
0.433 for THCA and 0.419 for lung cancer) were determined by the
Youden index (Fluss et al., 2005) enabling the selection of an
optimal threshold value for classification, whereas the
classification threshold of both MLOG and MLION for any sample
is a fixed value (0.5). The ROC curves were generated based on the
predicted probabilities of all models on the two samples (Figure 3).
The results demonstrated that despite the specificity of MLION being
slightly lower than MCNN’s on THCA sample, its accuracies,

sensitivities, and AUCs were significantly better than the other
models on both THCA and lung cancer samples, which indicated
that MLION can accurately predict the samples.

DISCUSSION

In this study, we developed a deep learning method combined with
MIL, called DeepLION, to improve the prediction of caTCRs.
Compared to some of the current studies that decomposed TCRβ
CDR3 sequences into z-mers in the data preprocessing, DeepLION
was able to extract the features of the cancer-specific motifs with
different lengths by the group of various convolution filters and the
1-max pooling operations in the CNN; the MIL part of DeepLION
assigned adjusted weights for each TCR after learning the TCR
correlations in the prediction process while the existing methods
often ignored the correlations among TCRs in the same repertoire.
We conducted two experiments on several cohorts of patients from
nine cancer types to evaluate the performances of DeepLION. We
observed that DeepLION achieved higher prediction accuracies,
sensitivities, and AUCs on most of the cohorts than the existing
methods, where the AUC reached notably 0.97 and 0.90 for THCA
and lung cancer cohorts, respectively.

In section 3.2, with the elaborate design of convolution filters
and 1-max pooling operations, MCNN was able to make full use of
the information of all TCR sequences in the repertoire (MCAT

could only process sequences of length 12–16) and extract the
features of motifs of various lengths from TCRs to make more
accurate TCR prediction, which resulted in the better
performance on the test data (Table 4). However, on some
samples, such as glioblastoma multiforme and lung cancer
samples in T1 and both samples in T2, both models performed
poorly (low sensitivities and AUCs) (Table 4). This could be due
to the ambiguity of the training sequence labels (not all cancer
sequences for training were confirmed to be associated with
cancer) and the simple definition of the repertoire cancer
score, averaging all TCR scores as the repertoire cancer score,

FIGURE 3 | The ROC curves of models on T2. (A) The ROC curves on THCA samples. The AUCs of MLOG, MCAT, MCNN, MLION are 0.60, 0.69, 0.72 and 0.97. (B)
The ROC curves on lung cancer samples. The AUCs of MLOG, MCAT, MCNN, MLION are 0.68, 0.74, 0.75 and 0.90.

TABLE 6 | The performances of cross-validations on THCA and lung cancer
samples.

THCA (170) a Lung (184)

K-fold Nested K-fold Nested

ACC 0.843 ± 0.017 b 0.817 ± 0.010 0.786 ± 0.020 0.741 ± 0.010
SEN 0.773 ± 0.025 0.706 ± 0.021 0.697 ± 0.035 0.679 ± 0.026
SPE 0.892 ± 0.035 0.910 ± 0.016 0.848 ± 0.025 0.783 ± 0.019
AUC 0.925 ± 0.010 0.909 ± 0.007 0.841 ± 0.014 0.806 ± 0.011

ACC, accuracy; SEN, sensitivity; SPE, specificity; AUC, area under the receiver operating
characteristic curve; THCA, thyroid cancer.
aEach group of samples was a mix of cancer and control samples (n = 260).
bThe results show 95% confidence intervals for all the validations (totally 50 validations for
each cross-validation).
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which didn’t fully utilize TCR relationships or assign appropriate
weights to them. Due to this definition, the models’ classification
thresholds were unknown, which is a huge challenge for cancer
prediction, despite the high AUCs on samples like melanoma and
ovarian cancer samples in T1. In our experiments, the thresholds
were set based on a fixed specificity to facilitate comparison
between models, and the thresholds set at 0.9 specificities for the
models were different on T1 and T2 (M

CAT: 0.277 for T1 and 0.351
for T2; M

CNN: 0.392 for T1 and 0.423 for T2) (Table 4), indicating
that it is difficult for the models to predict precisely for datasets
from different sources with a fixed classification threshold.
Furthermore, the poor performance of models trained with
TCGA data on both Asian samples in T2 could be explained
by possible differences in TCR repertoires between patients of
different races.

In section 3.3, MLOG performed the worst performance on the
samples (Table 5), because it applied the inappropriate MIL
assumption, using the maximum of TCR score as the repertoire
cance score, and used the Atchley matrix (Atchley et al., 2005) to
characterize AAs, which contained less biochemical information
than the Beshnova matrix (Beshnova et al., 2020), and it couldn’t
extract the features of cancer-specific motifs with distinct lengths
in the repertoire. Although the Youden index was used to define
the classification thresholds for MCAT andMCNN, their accuracies
and sensitivities on two samples were significantly lower than
those of MLION due to the incorrect definition of the repertoire
cancer score and the possible differences in the repertoires of
patients from different races (Table 5). Different from other
methods, MLION used MIL to learn the correlations among TCRs
in the repertoire of the patients with the same cancer type, and
assign the adjusted weights to each TCR when calculating the
cancer scores of the repertoire. Therefore, MLION was capable of
predicting the caTCRs and classifying the samples more
accurately than existing methods.

When the amounts of training data are small, overfitting is a
concern with deep learning models. To reduce overfitting, we
simplified the model by using one-layer linear classifiers instead of
multi-layer linear classifiers. During the training process, we
applied random dropouts at a rate of 40% to each linear
classifier and employed early stopping (Yao et al., 2007) to the
model. Five-fold cross-validation was performed 10 times on
THCA and lung cancer samples separately to assess model
generalization (Table 6). Given that K-fold cross-validation
produces significantly skewed performance estimates with small
sample sizes, whereas nested cross-validation produces robust and
unbiased performance estimates regardless of sample size (Wang
et al., 2018; Vabalas et al., 2019), we also applied the nested five-
fold cross-validation to both THCA and lung cancer samples and
repeated it 10 times to ensure the robustness of our evaluation
results (Table 6). In comparison to the results of the five-fold
cross-validation, some of the metrics in the nested cross-
validation results degraded to some extent, but the overall
performances of our model were stable, and all the metrics
were higher than those of the two existing methods (Table 5),
indicating that our model had a high degree of generalizability.

The results of two cross-validations indicated that our
model had higher specificities than sensitivities on both

THCA and lung cancer (Table 6). We reasoned that this is
likely because some caTCRs have sequence similarities with
non-cancer TCRs, but their antigenic specificities differ due to
their different spatial structures; there are many more non-
cancer TCRs than caTCRs in a cancer-associated repertoire,
which also brings additional difficulty to identifying the
caTCRs based on the limited TCR-seq data. Furthermore,
our model is rigorous in determining cancer samples and
makes negative judgments on ambiguous samples. As a result,
the model is more prone to making mistakes when it comes to
predicting cancer samples. Likewise, the existing methods also
had lower sensitivities than specificities (Table 5). But
DeepLION outperformed them in cancer sample prediction
due to the unique architecture of CNN and the MIL part.

DeepLION has few adjustable hyperparameters except for the
number of TCRs extracted from one repertoire k and the learning
rate, which is easily applied. The computational complexity of the
model is lower when k is smaller, but the information of TCRs
used by the model is less, which could reduce the model
performance. Thus, k should be as small as possible while
ensuring satisfactory model performance. Because we observed
that the model performance was unsatisfactory when k < 100
through experiments, we finally set k to 100 in our experiments.
In addition, the abundance of TCRs affects the predictions of the
model. We discovered that the model performance deteriorated if
we randomly extracted the 100 TCRs instead of the top 100 TCRs.
Because the learning rate is usually set to 0.001, we used this value
as well.

In future work, we will apply DeepLION to other cancer types.
And we plan to improve our method to make it able to extract the
shared correlations among TCRs of patients with various cancers
so that the trained model can be applied to detect various cancers
accurately. In this method, we will utilize TCRα sequences as well
as TCRβ sequences for analysis and explore a better encoding
operation to characterize TCRs.

CONCLUSION

DeepLION introduces a deep MIL framework to consider the
various length of the cancer-associated motifs and the correlations
among TCRs, achieving a higher prediction accuracy in cancer
detection from TCR repertoire data than the current state-of-the-
art methods. Thus, DeepLION has the potential to support cancer
detection from TCR repertoire data.
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