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Abstract

Background: Several algorithms from the literature were compared with the original random walk (RW) algorithm
for brain perfusion heterogeneity quantification purposes. Algorithms are compared on a set of 210 brain single
photon emission computed tomography (SPECT) simulations and 40 patient exams.

Methods: Five algorithms were tested on numerical phantoms. The numerical anthropomorphic Zubal head
phantom was used to generate 42 (6 x 7) different brain SPECT simulations. Seven diffuse cortical heterogeneity
levels were simulated with an adjustable Gaussian noise function and six focal perfusion defect levels with
temporoparietal (TP) defects. The phantoms were successively projected and smoothed with Gaussian kernel with
full width at half maximum (FWHM =5 mm), and Poisson noise was added to the 64 projections. For each
simulation, 5 Poisson noise realizations were performed yielding a total of 210 datasets. The SPECT images were
reconstructed using filtered black projection (Hamming filter: a = 0.5).

The five algorithms or measures tested were the following: the coefficient of variation, the entropy and local
entropy, fractal dimension (FD) (box counting and Fourier power spectrum methods), the gray-level co-occurrence
matrix (GLCM), and the new RW.

The heterogeneity discrimination power was obtained with a linear regression for each algorithm. This regression
line is a mean function of the measure of heterogeneity compared to the different diffuse heterogeneity and focal
defect levels generated in the phantoms. A greater slope denotes a larger separation between the levels of diffuse
heterogeneity.

The five algorithms were computed using 40 99mTc-ethyl-cysteinate-dimer (ECD) SPECT images of patients referred
for memory impairment. Scans were blindly ranked by two physicians according to the level of heterogeneity, and
a consensus was obtained. The rankings obtained by the algorithms were compared with the physicians' consensus
ranking.

Results: The GLCM method (slope = 58.5), the fractal dimension (35.9), and the RW method (31.6) can differentiate
the different levels of diffuse heterogeneity. The GLCM contrast parameter method is not influenced by a focal
defect contrary to the FD and RW methods. A significant correlation was found between the RW method and the
physicians' classification (r = 0.86; F = 137; p < 0.0001).
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Conclusions: The GLCM method can quantify the different levels of diffuse heterogeneity in brain-simulated SPECT
images without an influence from the focal cortical defects. However, GLCM classification was not correlated with
the physicians' classification (Rho = —0.099). The RW method was significantly correlated with the physicians'
heterogeneity perception but is influenced by the existence of a focal defect.

Keywords: Heterogeneity, Quantification, Functional imaging, Brain, Single photon emission computed

Background

Measuring the heterogeneity of medical images has been
described for many medical conditions, including in
bone marrow to quantify osteoporosis [1,2], for tumor
characterization [3-5], myocardial metabolism with posi-
tron emission tomography (PET) [6-10], in subjects with
Alzheimer’s disease (AD) with PET [11], perfusion im-
aging in brain single photon emission computed tomog-
raphy (SPECT) [12-14], and perfusion in brain SPECT
images in patients suffering from AD [15] or from drug-
induced therapy [16].

Heterogeneity is a visual perception that varies by per-
son. In clinical practice, physicians subjectively analyze
the heterogeneity of medical images because of the lack
of an objective and reliable method to quantify this par-
ameter. In functional imaging, such as nuclear medicine,
the analysis of image heterogeneity is complex because
of a low signal-to-noise ratio and low spatial resolution.
Artifacts from the reconstruction process are another
type of noise superimposed on images dedicated to the
exam's interpretation. Because of this subjective aspect,
quantification and analysis of the heterogeneity of med-
ical images are complex and less reproducible. An ideal
mathematical method would be reproducible, objective
and would provide results that are correlated with the
physician's results. Some methods have been described
in the literature to solve the problem of a varying ana-
lysis of heterogeneity in medical images. These methods
are mostly based on a fractal analysis [15,17], coefficient
of variation calculation [11], and texture analysis [18-23].
Recently, descriptors based on the random walk (RW)
theory have emerged [24-28]. Each of these methods is
derived from different mathematical theories and yields
a different view/representation/perception of an image.

Functional imaging of the brain with 99mTc-
hexamethyl-propylene-amine-oxime (HMPAO) or 99mTec-
ethyl-cysteinate-dimer (ECD) SPECT assesses cerebral
blood flow (CBF). A CBF measurement with SPECT is
valuable for most cerebral diseases, particularly in
patients with AD [29,30] or epilepsy [31,32]. In these
pathologies, SPECT abnormalities are focal, and different
methods have been developed to quantify the intensity of
focal CBF abnormalities.

Diffuse brain SPECT abnormalities have been described
in most systemic diseases, such as systemic lupus erythe-
matosus [33,34]; hypothyroidism [35]; after chemotherapy
[16,36], carbon monoxide poisoning [37] or manganese
toxicity [38]; and in cocaine [39] or alcohol abuse [17].
Because objective quantification is lacking, brain SPECT
images were analyzed visually in these previous studies.

The present paper compares our method, which was
based on the RW method, with the five methods com-
monly used in the literature to evaluate the heterogeneity
of SPECT images. The comparison was first conducted
with simulated brain perfusion SPECT images to assess
how the images are influenced by focal cortical defects
(such as in AD) and the global diffuse heterogeneity. The
goal was to find the best algorithm to discriminate the
more diffuse perfusion heterogeneity levels without an
influence from focal defects. The second part of the
manuscript will compare the classification of these algo-
rithms using real brain HMPAO SPECT perfusion
images. The population was composed of 15 normal sub-
jects and 25 patients referred for memory impairment.
The goal of this portion of the study was to find the best
algorithm that correlated with the physicians' consensus.

Methods

To evaluate the RW algorithm, a comparison of five
traditional algorithms was performed on phantom and
real brain perfusion images. Algorithms were computed
only on the cortical rim, obtained with a masking
process (described in § 2.2.2) A brief description of each
method is presented below:

1 The coefficient of variation (CV) is defined as the
ratio of the standard deviation and the mean of the
intensity levels. In our case, the CV was measured in
the whole brain slice (CV3D)

2. The entropy, H, is expressed as:

Q

o) log, [p(1)] (1)

H =

i

Il
o

where p(i) is the density probability of the gray-level
occurrence i, and G is the number of gray levels in
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the image. Entropy was first calculated as a global
3D parameter (entropy 3D). Entropy was also
computed as a 2D parameter as follows: each pixel
was replaced by the measure of the entropy of its
neighborhood (3 x 3 and 5 x 5); the sum of all local
entropies in all brain slices represents the final result
(entropy 3 x 3 and entropy 5 x 5, respectively).

. The fractal dimension (FD) followed two algorithms:
(1) the box counting (BC) method [40] and (2) the
Fourier power spectrum (FPS) method [41].

The 2D FD BC method analyzes the image by the
complexity changes in its different gray-level and
uses a set of threshold values T (0.3 < T < 0.7) to
achieve a set of binary versions of the original
image. The fractal dimension is estimated by the
slope of the regression line between the size of the
boxes (1, 2, 4, 8, and 16 pixels) and the number of
the boxes needed to encompass the binary object. In
this case, the minimum, maximum, median, mean,
and standard deviation were studied along slices.
The Fourier power spectrum method or FD FPS
calculated in 2D (mean of the FD along the slices)
is based on the power spectrum dependence of the
fractional Brownian motion. In the 2D power
spectrum method, each line height profile that
forms the image is Fourier transformed; the power
spectrum is evaluated and all of these power
spectra are averaged. The fractal dimension is
evaluated from the slope, B, of a least-squares
regression line fit to the data points in a log-log
plot of the power spectrum, as FD = 7/2 — /2. The
FPS was also calculated in 3D (FD FPS 3D). Reader
is referred to [40] for a detailed description of the
FD FPS in 2D and its generalization in higher
dimensions. Algorithms are derived from the
original implementation in [42].

. In the gray-level co-occurrence matrices method
(GLCM) [43,44], each matrix represents the joint
probability distributions between the gray-level
values of pairs of pixels at a predetermined distance
(1 pixel) and orientation (0°, 45°, 90°, and 135°). The
GLCMs were averaged to obtain one GLCM for
each 2D slice. Four statistical measures or parameters
of the GLCM (i.e., contrast, homogeneity, energy, and
correlation) were computed on 255 gray levels. A fifth
parameter averaging three spatial distances (1, 2, and
3 pixels) was also created.

. In the random walk method or RW [27,28], a virtual
walking particle performs a random walk on a 2-
dimensional image lattice with a four-neighbor
system. The purpose of the RW is to visit a large
number of new pixels in homogenous regions and to
be confined (i.e., to pass over the same Dpixels
previously visited) within heterogeneous regions.
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Each step of the RW is decomposed into the
following two procedures:

(a) Moving procedure
When (i, j) is the current position of the particle,
the decision to move or not with a probability
(Prmove) is described by the following expression:

Prove(ief) = (L)»)S 2)

max(1(x.y

where I(ij) is the intensity of the pixel, (i), the
denominator is the maximum intensity taken
over all pixels (x,5) from the selected slices, and S
is a slowing parameter (S = 3). The purpose of
this procedure is to differentiate the behavior of
the particle according to the local intensity. A
number, ¢, is randomly chosen between [0, 1]. If
q < Prove the movement is accepted, and the
algorithm continues to the jump procedure. If
q 2 Ppove and the movement is not accepted at
time t, the particle stays at its current position
and a new attempt is made at time ¢ + 1.
(b)Jump procedure

This procedure is performed only if the movement
has been previously accepted. If so, the algorithm
decides which of its four neighbors the particle will
jump to according to the following transition
probabilities. The probability of jumping from a
pixel (i,j) to one of its neighbors (k,l) is given by the
following expression:

exp(I(k,1)/T)
> exp(I(m,n)/T)

(m.m)

Pjump{(iv].)’ (ka 1)} =

(3)

where the denominator is the sum taken over the
four neighbors (m,n) of pixel (ij), and T is the
temperature parameter. The higher T results in an
easier jump from high intensity (hot) regions to low
intensity (cold) regions. We experimentally chose
T=6.

After 1,000 steps, the algorithm outputs the visiting
rate denoted 7, which is the number of visited pixels
divided by 1,000. To provide a good estimation of the
expected value of r, a large number (1,000) of independ-
ent random walks on the 2D-image are computed. This
procedure is repeated on a selected number of slices in
the cortex. At the end, the algorithm outputs R, the
average of r-values over all the selected slices. R is the
average number of visited pixels as a percentage (R value
in percent). The reader is referred to [27] for a full de-
scription and validation of the RW algorithm parameter.
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Phantom study

To study the robustness of the algorithms and their abil-
ity to discriminate between diffuse heterogeneity and a
focal defect, a simulation experiment was performed
using MATLAB, v 7.0 (Mathworks, Natick, MA, USA)
on a standard personal computer platform.

Phantom design
Simulations of normal and pathological phantom are
presented in Figure 1.

Normal phantom The modified Zubal head phantom
[45] was used to simulate normal HMPAO brain perfu-
sion SPECT images. First, the 63 anatomical regions of
the magnetic resonance imaging (MRI)-Zubal head
phantom were transformed into 19 functional regions.
The cortical, extra-cortical, and extra-cerebral blood
flow values were obtained from a normal database of 12
controls (8 women and 4 men; mean age + standard de-
viation (SD), 74. + 3.9 years) followed in the prospective
Eugeria study [46]. Morphologic imaging (magnetic res-
onance imaging and computed tomography) was normal
in the 12 control subjects. The CBF values were ob-
tained from Catafau et al. [47], and the methodology has
been described previously [48]. The cerebellum CBF
value was arbitrarily defined as 100. Effects of sex, inter-
hemispheric asymmetry, and age were not taken into ac-
count with this model.

Pathological phantom Diffuse brain heterogeneity and
focal perfusion defects were successively simulated.
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Diffuse heterogeneity of brain perfusion was simulated
by adding Gaussian noise only in the cortex region. This
Gaussian noise has an adjustable variance and a zero
mean. Six diffuse heterogeneity levels were constructed
(0 = 0 for normal subjects, and successively o = 100,
2,000, 4,000, 6,000, 8,000, 10,000 for the six levels of het-
erogeneity). The focal defect simulation was used to
mimic Alzheimer’s disease, which is characterized by
temporoparietal (TP) defects. Five different levels of TP
perfusion were used (93 for normal subjects, and succes-
sively 80, 70, 60, 50, and 40 for the five pathological
defects). The different levels of heterogeneity and focal
defects were validated by physicians so that the simula-
tions were as realistic as possible compared to clinical
practice. A total of 42 phantoms were simulated: (1
normal + 6 heterogeneity levels) x (1 normal + 5 TP
cortical defect levels). Heterogeneity values (0 to 10,000)
and perfusion defect values (93 to 40) were considered
by physicians to cover the range of CBF observed in
clinical practice.

Simulation of the acquisition and reconstruction process

The 42 phantoms were successively projected in 64 pro-
jections of 128 x 128. The projections were smoothed
with a constant Gaussian kernel rather than a distance
dependent function to simulate the point spread func-
tion of our gamma-camera (DST-XI, GEMS, Buc, France)
equipped with low-energy ultra-high resolution collima-
tors (LE-UHR, GEMS, Buc, France), corresponding to a
full width at half maximum of 5.5 mm for the tomo-
graphic acquisition. Poisson noise was added to the

Focal defects

levels
A

04

Figure 1 Examples of nine samples from the 210 non-masked numerical Zubal phantoms are represented. The diffuse heterogeneity
level and the focal defect level were normalized. Zero is a normal level, and one is the most abnormal level.

Heterogeneity
levels
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projections to simulate the radioactivity emission of the
tracer. For each phantom, the total number of counts
was equal to 10 M. SPECT images were reconstructed
using filtered back projection with a Hamming filter (a =
0.5), which led to 42 reconstructed SPECT exams corre-
sponding to a set of seven levels of diffuse heterogeneity
and six levels of focal defects. For the statistical analysis,
the diffuse heterogeneity level and the focal defect level
were normalized to zero, a normal level, and one, which
was the most abnormal level (i.e, 40 for the ‘highest’
focal defect level and 10,000 for the highest heterogen-
eity level). This scaling is integrated in Figure 2. The
Poisson noise was repeated five times, mimicking five
different acquisitions of each of the 42 simulated phan-
toms, which resulted in a total of 210 different simula-
tions. All the 210 simulations were used in the statistical
analysis and computed with all methods.

To study only cortical activity, all phantoms were
masked. The outward and inward boundaries of the cor-
tical rim were determined by using a threshold of 80%
and 55%, as previously described in Volkow et al. [11].
The right side of the mask was generated symmetrically
from the left side.

After reconstruction, the heterogeneity quantification
parameters, as described above, were computed for each
of the 210 phantoms. The results of each algorithm were
normalized for a statistical comparison of the discrimin-
ation power (a maximal result was a value of 100).

Comparison statistics design: discrimination powers

For each algorithm, a diffuse heterogeneity discrimin-
ation power (HDP) was obtained as follows: for each
level of the six TP perfusion defect, a regression line was
calculated between the heterogeneity level and the par-
ameter of the algorithm studied (Figure 3A). The slope
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of each regression line was calculated. The mean and
standard deviation of the slopes were plotted for com-
parison. The mean slope of the six slopes obtained from
a linear regression was considered to be the discrimin-
ation power of the algorithm studied for the diffuse het-
erogeneity quantification (Figure 3C). A mean slope of 1
denotes a maximal separation between the levels of dif-
fuse heterogeneity. A smaller standard deviation (ie.,
identical slopes for one method) shows that the hetero-
geneity quantification is more independent of the TP
perfusion defect levels.

A focal defect discrimination power (DDP) is
obtained in a same way than the diffuse heterogeneity
discrimination power for every algorithm. For each of
the seven heterogeneity levels, a regression line was
calculated between the perfusion defect level and the
parameter of the algorithm studied (Figure 3B). The
slope of each regression line was calculated. The mean
and standard deviation of the slopes were plotted to
compare the methods. The mean of the seven slopes
obtained by a linear regression was considered to be the
discrimination power of the algorithm studied for the
TP perfusion defect level (Figure 3D). A mean slope of
1 denotes a maximal separation between the levels of
TP. A smaller standard deviation (i.e., identical slopes
for one method) shows that the heterogeneity quantifi-
cation is more independent of the TP perfusion defect
levels.

Mean slopes and range of slopes (i.e., standard devi-
ation) are used as box and whiskers to compare all algo-
rithms (Figure 2). The best heterogeneity quantification
algorithm is the one with high HDP (mean slope) and
low DDP. Moreover, we are searching the algorithm with
HDP as less as possible influenced/correlated with the
defects levels (i.e., low standard deviation).

(HDP)

Heterogeneity discrimination power

— T+ RW

i1
@
o

W

FD BC std

algorithms tested

Cv (3D)
entropy 5x5
entropy 3x3
entropy (3D)
I FD FPS (3D) L]
It FD FPS (2D) |

FD BC mean
FD BC median
FD BC min
FD BC max

DP)

Focal Defect discrimination power

(1]

dev

T T T T

80 60

median, and min-max values)).

GLCM contrast (d=1,2,3)
GLCM contrast
GLCM homogeneity
GLCM energy

GLCM correlation 1 0

T T T 1

slope 0 20 40 60 80

Figure 2 Diffuse heterogeneity and focal defect discrimination power are plotted for each algorithm tested (box and whiskers (mean,




Modzelewski et al. EJINMMI Research 2012, 2:40
http://www.ejnmmires.com/content/2/1/40

Page 6 of 10

Perfusion Defect
100 7 7 T 7 =3 levels
[ 4] 0
a0k )/.,4'/ ] 0,245283
r T 1 0,433962
. [ o ]
g r /.k'" 1 — 0,622642
g 60 - . 5
g L PR { —- 0811321
= N 1 =
5 b
S p
5]
20
ok, ] X . . B
0 0z 04 0§ 0.8 1
Heterogeneity levels
GLCM
[D—{ ’» HDP  contrast
T T T 1
80 60 40 20 0
slope

Figure 3 Diffuse heterogeneity discrimination power and perfusion defect levels. (A) For each heterogeneity level, the GLCM contrast
parameter results are plotted as a function of the perfusion defect levels, leading to seven regression lines (0.7 < R? <0.9). (B) For each perfusion
defect, the GLCM contrast parameter results are plotted as a function of the heterogeneity levels, leading to six regression lines (0.7 < R? < 0.9).
(C€) Box and whiskers (min - max) representation is shown. The mean slope (absolute value) is 1.22, which corresponds to a poor perfusion defect
discrimination power (DDP). (D) The mean slope (absolute value) is 5848, which corresponds to a relatively good HDP.
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Subject study

SPECT population, acquisition, reconstruction, and display
The heterogeneity quantification parameters were ap-
plied to 25 ECD SPECT images from subjects with sus-
pected focal defects, including Alzheimer’s disease,
frontotemporal dementia, and primary progressive apha-
sia (8 women and 17 men; mean age + SD, 63.6 + 7
years), and from 15 normal subjects (6 dementia women
and 9 men; mean age + SD, 51.1 + 13.7 years) acquired in
a normal prospective study (CIC-INSERM 02-112-HP).
All normal subjects had given their written informed con-
sent to participate in the study. The ethical board of the
Medical Faculty of Rouen approved the SPECT proced-
ure. For these normal subjects, the clinical, neurological,
and neuropsychological examinations (i.e., the Mini Men-
tal Score Examination, the Mattis Dementia Rating Scale,
the Grober-Buschke verbal memory test, the Montgomery-
Asberg Depression Rating Scale and Goldberg’s depression
test) remained normal. The MRI imaging was normal in
these 15 control subjects.

SPECT acquisitions were performed in all 40 subjects
with a dual-headed gamma camera (DST-XL, GEMS,
Buc, France) equipped with LE-UHR collimators. Acqui-
sitions were performed 1 h after an intravenous adminis-
tration of 1,000 MBq of 99mTc-ECD under low light
and sound conditions. The subject's head was safely
positioned in an adjustable head holder. For each SPECT
acquisition, 64 angular views of 60 s each were obtained

through a 360° circular orbit (32 angular views per
head). The data were recorded in a 128 x 128 matrix.
The SPECT images were reconstructed from the projec-
tion data using the filtered back-projection algorithm
with a Hann filter (« = 0.5) and a software zoom of 2
(matrix 128 x 128 x 128, voxel size = 1.7 x 1.7 x 1.7
mm). No attenuation correction was performed. The ac-
quisition and reconstruction parameters used are best-
adapted for standard brain SPECT studies in clinical
practice [49]. The French Sopha Rainbow look-up table
(LUT) (Vision Workstation GEMS, Buc, France) was
used for the display of brain SPECT exams. The display
was done without high or low thresholding. The cerebel-
lum was considered as the region of reference for the
LUT normalization. Brain perfusion exams were pre-
sented to physicians in 16 slices (4 x 4) set from the top
of the cortex to the bottom of cerebellum. Recon-
structed images were normalized in the Talairach space
using SPM2 [50].

Physicians’ SPECT image interpretation and random walk
calculation

The 40 reconstructed images were blindly analyzed and
ranked by two physicians according to the degree of dif-
fuse heterogeneity but not according to their focal defect
level. The correlation of the ranking of the two observers
was calculated. The final ranking was obtained after con-
sensus of the two observers. For each of the five
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algorithm families, a diffuse heterogeneity parameter
was calculated for all SPECT data for 40 slices ranging
from AC-PC-10 to AC-PC + 30 after applying both a
spatial normalization and a cortical mask.

Statistics

The rank of each subject, as defined by the physicians’
consensus, was correlated with the rank provided by
each of the five algorithm families with a Spearman coef-
ficient (p). A statistical significance level of 0.0001 was
chosen after Bonferroni correction.

Results and discussion

Results

Phantoms study

The results of the HDP and DDP for each algorithm are
plotted in Figure 2.

The three algorithms that discriminated higher hetero-
geneity levels (i.e, a high HDP) and were least influ-
enced by focal defects (i.e., a low DDP) were the
following: the contrast of GLCM parameter had an aver-
age HDP of 58.5 (range from 51.6 to 63) and a DDP of
1.2 (0.2 to 2.9); the standard deviation parameter of frac-
tal dimension box counting (FDBC) had an HDP of 35.9
(31.1 to 41.2) and a DDP of 3.8 (0.4 to 7.4); and the RW
algorithm had an HDP of 31.6 (22.2 to 44.3) and a DDP
of 20.6 (12.3 to 32.6).

Patient study
The correlation between the two physicians’ ranking was
p = 0.86. The correlation of ranking between every
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algorithm and the physicians’ consensus is presented in
Table 1. The RW algorithm shows a significant correl-
ation with the physicians’ consensus (p = 0.85). The
standard deviation parameter of the FDBC, like the
GLCM contrast parameter ranking, was not significantly
correlated with the physicians’ consensus (p = -0.46 and
p = -0.1, respectively).

The ranking of the 3D and local entropy is signifi-
cantly correlated (p = 0.86). Some parameters of GLCM
are correlated to each other (contrast and contrast 3 N,
for example; p = 0.87).

Discussion

Several algorithms from the literature were compared
with the original RW algorithm for heterogeneity quanti-
fication purposes. These algorithms represented a range
of approaches for the possible quantification of diffuse
brain SPECT perfusion heterogeneity.

The first comparison was achieved on 210 simulated
brain SPECT perfusion exams based on the Zubal head
phantom. The major simulation characteristic was the
seven different heterogeneity levels mixed with six differ-
ent regional defects levels. There is no gold standard in
defining a brain perfusion heterogeneity pattern. Because
this definition is lacking, perfusion heterogeneity was
simulated with a Gaussian noise of zero mean distribu-
ted on the gray matter. The extreme level of heterogen-
eity (o = 10,000) was defined by the physicians. The five
levels of heterogeneity were gradually obtained between
the normal and extreme pathological level. The GLCM
contrast parameter was the more robust algorithm for

Table 1 The correlation (Spearmann coefficient) between the algorithms and the physicians’ consensus

Consensus CV Entropy FD GLCM RW
Consensus CV (3D) 3x3 BC FPS FPS Contrast Homogeneity Energy Correlation Contrast RW
(3D) standard (2D) (3D) 3N
deviation mean

Consensus Consensus 1 -0,549 -0,12 0,099 -0458 —0,321 —0,259 —0,099 0442 0423 0,16 0,07 0,826 *
v CV (3D) 1 -0,013 -0368 —0,023 0446 0,194 -0046 073% -0459 0,033 -0323 -0558
Entropy 3D 1 0864 * 0,024 —0,082 —0404 —0435 0,195 0207 0351 -0364 -0,14

3x3 1 0,122 —-0,199 -0,177 —-0,108  —0,259 0,183 0032 0,029 0,075
FD BC 1 —-0,024 0295 0436 —-0,227 -0246 -0431 038 —0658*

standard

deviation

FPS (2D) 1 0,227 0274 —0,294 -0369 -0,243 -0093 -0211

mean

FPS (3D) 1 0,8* —-0,258 -0,725* -08 * 0,627 -0,197
GLCM Contrast 1 -0,523 -0599 -0936* 0872*  —0,145

Homogeneity 1 -005 0522 -0,731* -0312

Energy 1 0,692 * -0421 0339

Correlation 1 -0,91 0,167

Contrast 3 N 1 0,012
RW RW 1

Correlations with an asterisk correspond to a significant p value < 0.0001 after a Bonferroni correction.
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quantifying the diffuse heterogeneity levels without an
influence from the focal defects. The RW algorithm pro-
vided relatively good results, but it was influenced by
two simulation characteristics, heterogeneity, and focal
defects. The influence of the size and intensity of the de-
fect and acquisition quality (count level) have been pre-
viously tested [28]. Briefly, the minimal count level
acquired must be five million for constant RW measure-
ments. The increase of the size and intensity of the de-
fect result in the increase of the RW results. The
increase of heterogeneity (simulated noise) induces an
increased in the RW results. Most methods (other than
RW and GLCM) are sensitive to focal defects since these
are based on global rather than local measurements.

The second comparison was achieved by ranking a set
of 40 brain SPECT perfusion exams by their diffuse het-
erogeneity. We have compared the ranking from the dif-
ferent algorithms and the ranking achieved from the
physicians’ consensus. We have shown that the RW al-
gorithm is the only one correlated to the physicians’ con-
sensus. In this case, the GLCM contrast parameter was
not correlated with the physicians’ consensus.

For the phantom study, we opted for an analytic simu-
lation method. Our modeling takes into account both
Poisson noise in projections and loss of spatial reso-
lution (constant Gaussian rather than a distance depen-
dent function). This kind of analytic simulation method
was previously described in Aubert-Broche et al. [51].
Other authors have used Monte Carlo simulations to
create brain perfusion SPECT images [52]. Monte Carlo
simulations are more realistic because they model sto-
chastic aspects related to photon emission, propagation,
and interaction. Nevertheless, we believe that this im-
provement in the realism of the simulation process
should not change the performance of the method
tested.

No attenuation correction has been done on patients
and phantom studies. The brain SPECT images are not
corrected from attenuation in our clinical practice.
Therefore, we decided not to test this parameter in this
work. The attenuation correction of the brain SPECT
images could modify the results of all methods. Some of
them may have different sensitivity regarding the attenu-
ation correction.

The results of the two comparison studies seem con-
tradictory. The GLCM contrast parameter provided good
results for the simulated images but was not correlated
to the physicians’ ranking of the real brain SPECT perfu-
sion images. In fact, the contradiction could be ignored
because two different characteristics were tested. In the
algorithm comparison for the phantom images, we
looked at which algorithm discriminated the most differ-
ent levels of heterogeneity. We also looked at whether
this algorithm is influenced by the perfusion defects.
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Furthermore, these simulated pathologies were perfectly
quantified. In the comparison of the algorithms for the
patient population, we looked for an algorithm that
would rank the population in the same order as physi-
cians for a population likely to present with focal defects
but little diffuse heterogeneity.

The RW method and the physicians’ ranking were sig-
nificantly correlated (p = 0.85). It was asked to the physi-
cians to rank the simulated phantoms only regarding the
heterogeneity, excluding the intensity of the perfusion
defect. The RW method was influenced by the perfusion
defects in the diffuse heterogeneity classification in an
almost equivalent manner to the physicians’ ranking.
However, we demonstrated that RW was influenced by
heterogeneity, but also with perfusion defect (Figure 2).
A detailed design, behavior, and properties (influence of
the two pathologies) of the RW algorithm are provided
in an earlier published article [27]. The two physicians
were experts in neuro-scintigraphy with almost 10 years
of experience each and did not know the different levels
of pathology on the phantom set. The physicians classi-
fied the patient as normal or abnormal and not (some-
times) clearly as heterogeneous or perfusion defects.
When physicians ranked simulated phantoms only by
heterogeneity level, they were probably influenced by the
abnormality of images caused by perfusion defect. Char-
acterizing the two pathologies at the same time and dis-
tinguishing the level was probably a difficult task. The
correlation coefficient between the two physicians’ rank-
ing (p = 0.86) showed that the consensus was necessary
for a final decision, and a tool to reduce inter- and intra-
observer bias for diffuse heterogeneity quantification is
needed. This point demonstrates a limitation in the RW
method. This limitation of the RW algorithm looks simi-
lar to the limitation found in clinical interpretation, but
is an advantage if the aim is to obtain a similar ranking
with the physicians.

The GLCM contrast parameter was not influenced by
the focal defects and discriminated diffuse heterogeneity
well. Therefore, it was expected that the classification of
the population by this algorithm was far from the med-
ical classification.

Conclusions
In conclusion, the patient study demonstrated the fol-
lowing: (1) The definition of a normal SPECT exam is
complex because normal subjects can be classified as
clinically heterogeneous apart from all other clinical
data. (2) It is a difficult task to rank patients with ex-
tended focal hypoperfusion as patients not having a dif-
fuse heterogeneity.

The phantom and patient study results demonstrated
the following: (1) The RW method was correlated with
the medical classification. However, an algorithm, such
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as GLCM contrast parameter, provided better results
than the RW method for the diffuse heterogeneity classi-
fication when heterogeneity was strictly defined as a
phenomenon that resembles noise (coming from the ac-
quisition or reconstruction process). (2) Both RW and
physician’s results appear to reflect both heterogeneity
and presence of lesions rather than heterogeneity alone.

These results must be confirmed by future studies of
patients with diseases that have only diffuse heterogen-
eity and no focal defects.
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