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a b s t r a c t

The determination of viral tropism is critically important and
highly recommended to guide therapy with the CCR5 antagonist,
which does not inhibit the effect of X4-tropic viruses. Here, we
report the prevalence of HIV-1�4 HIV strains in 84 proviral DNA
massively parallel sequencing “MPS” data from well-defined non-
recently infected first-time Brazilian blood donors. The MPS data
covering the entire V3 region of the env gene was extracted from
our recently generated HIV-1 genomes sequenced by a paired-end
protocol (Illumina). Of the 84 MPS data samples, 63 (75%) were
derived from donors with long-standing infection and 21 (25%)
were lacking stage information. HIV‐1 tropism was inferred using
Geno2pheno (g2p) [454] algorithm (FPR¼1%, 2.5%, and 3.75%).
Among the 84 data samples for which tropism was defined by
g2p2.5%, 13 (15.5%) participants had detectable CXCR4-using viruses
in their MPS reads. Mixed infections with R5 and X4 were
observed in 11.9% of the study subjects and minority X4 viruses
were detected in 7 (8.3%) of participants. Nine of the 63 (14.3%)
subjects with LS infection were predicted by g2p 2.5% to harbor
proviral CXCR4-using viruses. Our findings of a high proportion of
blood donors (15.5%) harboring CXCR4-using viruses in PBMCs
may indicate that this phenomenon is common. These findings
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may have implications for clinical and therapeutic aspects and may
benefit individuals who plan to receive CCR5 antagonists.

& 2015 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Human immunodeficiency virus type 1 (HIV-1) infects cells through interaction with the CD4
receptor and one of two chemokine coreceptors, either CCR5 or CXCR4 [1]. Approximately 80–90% of
recently infected and treatment-naïve HIV-1 patients have a virus that uses the CCR5 coreceptor (R5
virus) [2], while the CXCR4 coreceptor-using virus (X4 virus) and dual-tropic viruses that use both
CCR5 and CXCR4 (R5�4) emerge and coexist in nearly half of non-treated subtype B and D infected
patients in advanced disease stages but are found less often in subtype A and C infected individuals
[3]. The development of the CCR5 coreceptor blocker maraviroc, which has exclusive activity against
R5 viruses, has attracted considerable attention in co-receptor affinity or tropism [4]. It is strongly
recommended that we determine co-receptor tropism before initiating treatment with entry inhi-
bitors because these drugs have no effect on X4 populations [5].

One of the principal approaches to assess HIV-1 coreceptor use is the genotypic assay, which infers
viral tropism from sequence information of the third hypervariable (V3) loop of gp120 in the envelope
protein. This approach comprises two steps: the sequencing assay, and the prediction method
interpreting the sequence data. Sequencing is usually based on the conventional “bulk” Sanger
sequencing method. This approach is neither ideal for sequencing DNA that contains nucleotide
mixtures (quasispecies) nor DNA with mutations being present in at least 15–20% of the viral popu-
lation. Most of these limitations have now been overcome by the introduction of next generation
sequencing. This technology allows, for instance, sequencing not only single clones but also viruses
prevalent in minor populations [6–8]. Despite the larger number of methods developed for predicting
HIV-1 coreceptor use, only a small number of these algorithms are implemented as web-service.
Among the available web-tools, geno2-pheno co-receptor (g2p) is the most used algorithm applied to
Support Vector Machines (SVMs) to infer coreceptor use. Unlike other methods, gen2pheno, for
example, can handle massively parallel sequencing [MPS] data and allows for changing the
specificity-level of the prediction method.

Our group has recently reported the prevalence of co-receptor tropism of the archived viral strains at
the time of primary infection using MPS data from 45 recently infected Brazilian first-time blood donors
[9]. In continuation with our previous study, here, we assessed the prevalence of virus co-receptor use in
MPS data from 84 Brazilian first-time blood donors with long-standing infection (LS, n¼63) and others
lacking the stage information (n¼21). Although plasma HIV-1 RNA has been widely used to determine
the viral tropism the proviral PBMC DNA sequence can contain a variety of multiple archived genomes
that are not present in plasma. This, combined with the stability of DNA compared with RNA, and the fact
that HIV DNA recovered from the proviral compartment can reliably be used as an alternative to RNA
tropism testing [9–13] influenced our decision to use proviral DNA in this study. No data, to the best of
our knowledge, have been published so far for genotypic tropism analysis in such a specific patient group.
2. Methods

The MPS data used in the present study were derived from 84 HIV-1 proviral near full-length
genomes (NFLG) and larger partial fragment sequences with predetermined subtypes. Of these, 63
(75%) were derived from donors with LS infection and 21 (25%) were lacking stage information. The
genetic subtype was determined by Illumina ultra-deep sequencing technology of the proviral near-
full length genomes (submitted for publication). Samples with long-standing infection were pre-
viously classified by less-sensitive or “detuned” enzyme immunoassay (Vironostika HIV-1 MicroElisa;
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bioMérieux, Durham, NC) or an LS chemiluminescent immunoassay (Vitros HIV-1/2 Assay; Ortho
Diagnostics, Rochester, NY) [14]. None of the participants received antiviral treatment previously. All
study subjects provided written informed consent. The study was approved by the local ethical
review committee of participating institutions as well as the REDS-II collaborating centers (Blood
Systems Research Institute/University of California at San Francisco, San Francisco, CA) and data
coordinating center (Westat, Inc.) in the United States.

The genomic DNA used for the PCR analyses was extracted using the QIAamp blood kit (Qiagen
GmbH, Hilden Germany) according to the manufacturer's instructions. The NFLGs from five over-
lapping fragments were obtained by PCR using the Platinum Taq DNA Polymerase High Fidelity (5 U/
ml) (Invitrogen, Life Technologies, Carlsbad, CA) and determined by a previously reported method
[15,16]. The amplified DNA fragments from the nested PCR products were separated by gel electro-
phoresis and purified using Freeze ‘N Squeeze DNA Gel Extraction Spin Columns (Bio-Rad, Hercules,
CA, USA). Each purified amplicon was quantified using Quant-IT HS reagents (Invitrogen, Life Tech-
nologies, Carlsbad, CA), and all five amplicons from a single viral genome were pooled together at
equimolar ratios.

Sequencing libraries were prepared as described previously [17–19]. Briefly, 1 ng of each sample
amplicon pool was used in a fragmentation and tagmentation reaction mix using the DNA sample
prep kit according to the manufacturer's protocol (Nextera XT, Illumina, San Diego, CA). After neu-
tralization of the fragmented DNA, a light 12-cycle PCR was performed with Illumina Ready Mix to
add Illumina flowcell adaptors, indexes, and common adapters for subsequent cluster generation and
sequencing. Amplified DNA libraries were then purified using Agencourt AMPure XP beads (Beckman
Coulter, Brea, CA), which excluded very short library fragments. Finally, all libraries were pooled and
loaded on an Illumina MiSeq for paired-end 250 sequencing.

Validated fastq files from each viral genome were de novo assembled into contiguous sequences
and annotated with CLC Genomics Workbench Version 7.0.4 (CLC Bio, Aarhus, Denmark) with default
settings and were additionally assembled using Velvet implemented in the Sequencher program 5.2
(Gene Code Corp., Ann Arbor, MI). The contiguous genomic sequence from each NFLGs and larger
fragments of virus strain was extracted from the assembly and used for further analysis.

In this study, a sub-library of the env V3 population sequence derived from each sample was
created by mapping the raw MPS short reads to their corresponding V3 consensus sequence
(Sequences positions: 210–315 [GenBank accession no. K03455] in standard reference HXB2) using
the CLC Genomics Workbench version 7.0.4 (CLC Bio, Aarhus, Denmark). To avoid artificial generation
of in silico chimeras through assembly and to evade inflating the diversity estimates of the V3 region,
the analysis was restricted to individual paired-end reads that encompass the complete V3 region
from each dataset. Only samples with a depth of average coverage of Z500x were considered for the
analysis. Prior to the determination of viral tropism, the MPS data were filtered out by the presence of
frame shifts, stop codons, and base-call ambiguity.

HIV-1 co-receptor tropism was assessed from the filtered V3 MPS data using the g2p [454] tool and
classified as X4 when there were more than 2% of the sequences with g2p false positivity rate (FPR)
cutoffs of 3.75%, 2.5% and 1%. More detailed analysis was performed at FPR set at 2.5% to increase the
X4 detection sensitivity without affecting the specificity. The values of the FPR used here are based on
several studies that indicate the capacity of g2p algorithms to provide reliable discrimination
between R5 and X4 sequences when FPR is set at lower values [20]. In this study, a minority variant
was defined as a variation detected at Z2% and o20% of the virus MPS reads, corresponding to those
mutations that cannot be established using the conventional sequencing technology. The 2% cutoff
was established because it was found to be optimal to predict the clinical response [21].
2.1. Nucleotide sequence accession numbers

The sequencing data have been uploaded to Zenodo. 10.5281/zenodo.32950

http://10.5281/zenodo.32950
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3. Results

Phylogenetic analysis of the NFLGs and larger partial fragment that cover the env gp 120 region
were performed in HIV-1 infected donors with LS infection (n¼193) and an unknown clinical stage
(n¼64) (submitted manuscript). After removal of scaffolding reads not covering the complete V3
region from partial fragments and exclusion of MPS data with low coverage reads (o500x) and poor
quality reads, the number of samples was dropped to 84 samples and these were considered for
analysis. The coverage after mapping of the sample to its corresponding consensus sequence varied
among the patients showing an overall median sequence depth of 1030 (range: 509-6883). Of the 84
investigated subjects, 69 (82.1%) belonged to individuals carrying HIV-1 subtype B, 11 (13.4%) sub-
clade F1, and 4 (4.8%) subtype C. The g2p algorithm1% predicted the occurrence of X4 strains in 494%
of generated MPS reads of three (3.6%) participants (coverage depth range: 636–2300) (Table 1). No
minority variants (X4 viruses at a frequency below 20%) were observed under this algorithm. At a g2p
algorithm 2.5% and 3.75%, the CXCR4-using viruses were predicted in 13 (15.5%) and 20 (23.8%) subjects
(coverage depth range: 564–2937), respectively. At the setting of g2p algorithm 2.5%, three participants
(3.7%) had detectable X4 viruses in 499% of their MPS reads (coverage depth range: 636–2300).
Furthermore, seven (8.3%) subjects were found to harbor minority X4 viruses at a frequency rate
below 20% within their viral population (coverage depth range: 564–1868). Besides the seven par-
ticipants with X4 minority variants, our analysis revealed other three other participants namely:
10BR_PE044, 10BR_PE106, and 10BR_PE024 to harbor CXCR4-using viruses at a frequency of 35.5%,
57.9%, and 65.1%, respectively. Taken together, these results indicate a high rate (11.9%) of R5�4
mixed infection in the studied population. Of note, all the 13 MPS data found to contain CXCR4-using
viruses were characterized by phylogenetic analysis of the V3 region to belong to subtype B viruses.
Analysis of the MPS data from the 63 subjects with LS infection revealed that 9 (14.3%) participants
had CXCR4-using proviruses (coverage depth range: 564–2937). Among the 63 subjects, the minority
variants and R5�4 viruses were detected in 4 (6.3%) and 6 (9.5%) subjects, respectively.
4. Discussion

Recently we reported our initial findings of the prevalence of coreceptor tropism of the archived
strains at the time of primary infection using a total of 45 MPS data from HIV-1 recently infected
Brazilian first-time blood donors [9]. In the present study, we expanded our previous work by
determining the prevalence of CXCR4-using viruses in MPS data from a total of 84 Brazilian first-time
blood donors consisting of 63 subjects with LS infection and 21 with unknown stage information.
Some studies have reported the presence of X4 strains in recent HIV-1 seroconverter Spanish, Bra-
zilian and French subjects [16,22] and in drug-naive chronically HIV-infected individuals [23], in
immunosuppressed patients with a shorter history of viremia suppression [24], in patients failing
antiretroviral therapy [25], and in patients with detectable HIV-1 subtype B RNA receiving highly
active antiretroviral therapy [26]. However, to our knowledge, only one relevant study to date has
explored the coreceptor use in MPS data but from recently infected and therapy naive first-time
Brazilian blood donors [9].

Among the 84 MPS data analyzed by g2p algorithm2.5%, the CXCR4-using viruses were predicted in
13 (15.5%). Also, a higher rate (14.3%) of CXCR4-using viruses was observed among the LS group in this
study. These results were comparable to our previous study [9], which reported a relatively high
frequency (13.3%) of CXCR4-using viruses in 45 HIV-1 recently infected donors, despite the fact that
they were based on different FPR algorithms (43.5% and 42.5%). Our results can also be compared
with those reported in drug-naive chronically HIV-infected individuals [27] and in suppressed
patients with a shorter history of viremia suppression [24]. In contrast, our prevalence estimates of
CXCR4-using viruses are nearly five times higher than those found among recently infected men
having sex with men in the USA [28] and almost half the prevalence rate reported in recently infected
Brazilian subjects [16]. Factors like size and type of samples, the sequencing method, the FPR cutoff,
stage of HIV infection (primary vs chronic infection), and prediction algorithms used may have
contributed to these differences. Studies like ours that based on MPS data generally detect more



Table 1
Tropism predictions of CXCR4-using viruses at FPR cut off of 1%, 2.5%, and 3.75% obtained from massively parallel sequencing data.

Sample number Quality reads Predicted X4 using at FPR%1 cut-off V3 subtype NFLG2 subtype Clinical stage

1 2.5 3.75

10BR_PE004 750 0% 0.4% 2.2% B CRF70_BF1 Lack information
10BR_PE003 2892 0% 0.6% 2.6% B B Lack information
10BR_PE071 1117 0% 0.8% 2.7% B CRF71_BF1 Long-standing infection
10BR_RJ042 613 0.1% 0.8% 5% B B Long-standing infection
10BR_RJ111 906 0.1% 0.8% 2.7% B B Lack information
10BR_RJ085 864 0% 1.1% 2.5% B B Lack information
10BR_PE030 669 0.1% 1.3% 2% B B Long-standing infection
10BR_PE019 564 0.1% 2.1% 2.6% B B Long-standing infection
10BR_PE045 1824 0.4% 2.1% 5% B B Long-standing infection
10BR_RJ101 1868 0.1% 2.1% 2.4% B B Lack information
10BR_RJ110 949 0.1% 2.1% 2.1% B B Lack information
10BR_RJ094 1104 0.1% 2.2% 3.7% B BF1 Long-standing infection
10BR_RJ079 1332 0.1% 3.8% 8.8% B B Lack information
10BR_PE044 753 1.1% 35.5% 90.3% B B Lack information
10BR_PE052 948 0.1% 5.5% 66.6% B B Long-standing infection
10BR_PE106 1358 0.1% 57.9% 98.9% B B Long-standing infection
10BR_PE024 2937 1.4% 65.1% 65.1% B B Long-standing infection
10BR_SP013 636 94.9% 99.6% 99.6% B BF1 Long-standing infection
10BR_PE096 2300 98.2% 99.7% 99.7% B B Long-standing infection
10BR_PE059 1224 96.7% 99.7% 99.9% B BF1 Long-standing infection

1 False positivity rate.
2 Near full-length genomes.
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CXCR4 variants compared to the conventional genotypic sequencing technologies. For instance, of the
84 studied subjects, our study was able to detect seven subjects (8.3%) with X4 minority variants
(fewer than 20% abundance) that would likely have been missed if standard population-based
sequencing data had been used alone. Thus, the application of deep sequencing technology has
significantly improved the prediction of HIV tropism as has been reported in previous studies [9,21].

Detection of R5�4 mixed infection in this study could be either the result of direct transmission of
both variants, successive infections within a short timeframe, or a rapid switch from CCR5-using to
CXCR4-using virus shortly after transmission. The hypothesis of direct transmission of both variants
could result from a stochastic process as has been suggested previously [29].

Because CXCR4-using viruses are more pathogenic than R5 viruses [30], larger studies are needed
to confirm the negative impact of these variants on the subsequent evolution of HIV-1 disease and to
investigate the efficiency of these variants to influence the patient's response to CCR5 antagonists.

We acknowledge that our study had a number of limitations that should be highlighted. The most
important limitation is that the assessment of HIV tropism was limited to sequence-based algorithms
rather than phenotypic methods. Although phenotypic assays still have an edge over genotypic
methods, Ultra-deep sequencing data prove to be highly concordant with phenotype data for
determining HIV-1 co-receptor use during primary HIV infection [31] and can reliably be used to
determine viral tropism with better results in PBMC than in plasma samples [32]. Other limitations
include small sample size and relatively low sequencing coverage (500X). Also, our V3 MPS data were
derived from specific groups of HIV-1 infected first-time blood donors and the results may not reflect
the prevalence in the general populations.

Despite these limitations, our findings show a relatively high frequency of CXCR4-using variants in
long standing HIV-1 infected blood donors. An independent study will be needed to explore the
clinical relevance of these variants in light of the clinical progression, pathogenesis, and therapeutic
approach.
5. Conclusions

Our data on the prevalence HIV-1�4 strains are important for therapy planning and draw
attention to the need to adequately monitor the prevalence of these variants in other clinical settings.
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