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Abstract: Examining mental health is crucial for preventing mental illnesses such as depression. This
study presents a method for classifying electrocardiogram (ECG) data into four emotional states
according to the stress levels using one-against-all and naive Bayes algorithms of a support vector
machine. The stress classification criteria were determined by calculating the average values of the
R-S peak, R-R interval, and Q-T interval of the ECG data to improve the stress classification accuracy.
For the performance evaluation of the stress classification model, confusion matrix, receiver operating
characteristic (ROC) curve, and minimum classification error were used. The average accuracy of the
stress classification was 97.6%. The proposed model improved the accuracy by 8.7% compared to the
previous stress classification algorithm. Quantifying the stress signals experienced by people can
facilitate a more effective management of their mental state.

Keywords: electrocardiogram; support vector machine; naive Bayes

1. Introduction

Recently, mental illnesses such as stress have emerged as social problems in modern
society. Stress refers to the physical and mental responses of a body to physical, emotional,
or mental factors [1]. Mental stress is a type of stress caused by the emotional state of a
person. Since excessive mental stress can cause chronic diseases such as headaches, high
blood pressure, and skin diseases, their prevention and prompt treatment are essential [2,3].

Stress assessment determines the level of stress of an individual using a questionnaire [4].
However, this method cannot determine the exact state of the stress owing to individual
deviations. In addition, the reliability of stress assessment is low, as people might be
reluctant to provide honest answers to certain questions. To accurately determine the stress
state, several studies have been conducted to measure the stress signal using a bio-signal
and determine the stress state using machine learning.

Huang et al. [5] used regression analysis to diagnose early-stage lung adenocarcinoma.
After extracting serum from healthy control groups and lung cancer patients, the blood
volume was calculated using a spectrogram. Lung adenocarcinoma was diagnosed by
analyzing the blood. In addition, as a result of calculating the area under the curve (AUC)
value of the receiver operating characteristic (ROC) curve to evaluate the classification
performance of regression analysis, the classification accuracy was up to 92.6%.

Rongxin et al. [6] used regression analysis to diagnose schizophrenia. Urine and
serum samples were obtained from healthy controls and patients with schizophrenia. Sub-
sequently, urine and serum patterns were analyzed using regression analysis. Furthermore,
as a result of calculating the AUC value of the ROC curve to evaluate the classification
performance of regression analysis, the classification accuracy improved to 96.5%.

Biological processes generate bio-signals inside a living body and electroencephalo-
gram (EEG), electromyogram (EMG), electrocardiogram (ECG), electrodermal activity
(EDA), and respiratory signals [7,8] are a few representative examples. However, stress
measurement methods that utilize bio-signals have difficulty in extracting accurate feature
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points owing to the varying signal size and the presence of excessive noise depending on
the location of the electrode.

In a previous study, Subhani et al. [9] classified EEG signals using logistic regression
(LR), a support vector machine (SVM), and naive Bayes (NB) to obtain an accuracy of 94.6%.
Existing studies used a dataset that measured EEG signals from 42 subjects, comprising
11 females and 31 males, aged 19–25 years. The Mental Arithmetic Task (MAT) method
was used to induce stress. MAT is used to calculate an arithmetic problem using four
operators after randomly designating three numbers. The experiment was conducted by
attaching 128 electrodes between the EEG cap and scalp. First, MAT was calculated for
1 h, and then the EEG signal was measured. Subsequently, the stress signal was analyzed
by measuring the EEG signal during a resting state of 1 h. However, because of the
large number of channels, the analysis of the stress signal is time-consuming, and the
measurement technique is very complicated.

Prasanthi et al. [10] classified EMG, galvanic skin response (GSR), and respiratory
signals using SVM and K-nearest neighbors (KNN) to obtain an accuracy of 93.65%.
However, in this study, the accurate classification of stress signals was difficult because of
the presence of excessive noise in each bio-signal and a low number of parameters.

Stress classification by signal analysis is very complicated because stress measurement
methods using EEG or EMG signals contain a lot of signal noise and require a large
number of channels in the measurement system. In particular, the cost of the system is
very expensive to measure the EEG, and accurate measurements of the stress signal are
difficult because the EMG has different amplitudes and high noise for the same motion.
Electrocardiography is the most common and convenient way to non-invasively check
the heart condition using electrical signals. In addition, the ECG signal has elements with
various characteristic points depending on the shape of a specific signal. The activation
state of the sympathetic and parasympathetic nerves of the autonomic nervous system can
be identified using ECG signals.

In the studies of David and Karthikeyan et al. [11,12], ECG signals were converted into
a heart rate variability (HRV) signal and classified using SVM, NB, and KNN. This method
had accuracies of up to 88% and 96.41%. However, this method cannot accurately detect
the R peak values, and the standard deviation of the R-R interval cannot be calculated
because of the excessive noise in the HRV signals. Furthermore, it is difficult to determine
accurate stress conditions with extraction feature point methods using the R-R interval.

Ishaque et al. [13] classified ECG, GSR, and respiratory signals using linear discrim-
inant analysis (LDA), decision tree (DT), SVM, and NB. The detection accuracy of this
method was 85%. However, the low standard deviation for the R-R interval extracted from
the time domain and LF/HF ratio extracted from the frequency domain made it difficult to
confirm the stress state.

Jeroh et al. [14] classified ECG and GSR signals using LDA and SVM, and the highest
accuracy obtained by this method was 92%. However, the small distance between the
classes made it difficult to classify the stress signal. Markova and Radhika et al. [15,16]
classified ECG and EDA signals using SVM and convolutional neural networks (CNN),
obtaining accuracies of 88.9% and 71.8%, respectively. In this study, the R-R interval
was extracted from the ECG signal and classified into two levels (high-arousal negative
valence and low-arousal positive valence) using SVM and CNN. However, it was difficult
to determine various emotional states because the classification process and criteria for
stress signals using SVM and CNN are unclear.

Therefore, to compensate for these shortcomings, an algorithm was proposed in
this study to ensure the accurate classification of stress signals using an ensemble model
combining SVM and NB. The R-S peak, R-R interval, and Q-T intervals were extracted
from the ECG signal, and the criteria for classifying the stress signal were established
using these signals. Subsequently, the stress signal was classified using an ensemble
model combining one-against-all (OAA), one of the NB and SVM methods. The stress
classification performance was evaluated using the confusion matrix, ROC curve, and
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MCE. An accuracy of 97% was obtained by analyzing the cognitive load effect and stress
(CLAS) database.

2. Materials and Methods
2.1. Subject

Figure 1 shows the classification procedure of the ECG data using a stress classification
model that combines SVM and NB. In this study, the CLAS database was used to analyze
HRV according to the emotional state of the test subject [17]. A Butterworth low-pass
filter was used to remove noise from the ECG signal. After detecting the Q, R, S, and
T peaks of the ECG signal using the threshold values, the average values of the R-S
peak, R-R interval, and Q-T intervals were calculated. Then, the average values of these
quantities were applied to the SVM-NB algorithm to classify the stress signal. Finally, the
stress classification performance used the confusion matrix, ROC curve, and minimum
classification error. The dataset consisted of 31 ECG data in four categories (Picture Test,
Music Video, Stroop Test, and Math Test). Stress levels 1 and 2 indicate calmness and
excitement, respectively, and the signals measured in the picture test and music video
environments in the four emotional states are included. Stress levels 3 and 4 are boredom
and stressed, and include the Stroop Test and Math Test in four emotional states. Therefore,
stress levels 1 and 2 correspond to conditions without stress, whereas stress levels 3 and 4
indicate stress.
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2.2. Preprocessing and Feature Extraction

The ECG signal is widely used owing to its simple measurement technique. When
measuring an ECG, noise is generated by various factors. Noise originating from various
causes hinders the extraction of feature points for analyzing signals and greatly reduces
accuracy [18]. A low-pass filter, such as the Butterworth low-pass filter or Chebyshev
low-pass filter, is used to solve this problem.

However, since the Chebyshev Low Pass Filter has more ripples in the pass band
than the Butterworth low pass filter, noise may occur owing to signal distortion. The
Butterworth low-pass filter is a flat filter that does not generate ripples in the passing band
and attenuates the high-frequency band. Therefore, it is possible to increase the accuracy
of stress classification by outputting ECG signals more clearly than using other filters.
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Equation (1) represents the design process of the Butterworth low-pass filter, where
|H B (jw)|, k, ε,ω, and n represent the size of the low-pass filter, scalar variable, transition
band, low band, and order, respectively:

|HB(jw)| = K√
1+ε2ω2n

n = 1, 2, 3, · · · (1)

Figure 2 shows the ECG signal with the noise removed using the Butterworth low-pass
filter. Noise was reduced by setting the sampling frequency of the ECG signal to 330 Hz
and the cutoff frequency to 120 Hz.
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Figure 3 shows the ECG signals measured under and without stress. The blue and red
curves represent signals measured in the presence and absence of stress, respectively. In the
presence of stress, the heart beats irregularly and rapidly, the R-R interval of the ECG signal
is narrowed, and the R-S peak is increased. On the other hand, in the absence of stress, the
heart beats stably, the R-R interval of the ECG signal is widened, and the R-S peak decreases.
The average R-S peaks were 0.95 mV and 1.23 mV in the absence and presence of stress,
respectively. The heart rate is closely related to stress [19]. When stressed, the sympathetic
nervous system of the autonomic nervous system is activated. The sympathetic nervous
system indicates whether a person is excited or tense and enables the determination of the
stress the subject is under. For example, negative emotions such as anger or fear activate
the sympathetic nervous system and increase the heart rate. On the other hand, positive
emotions such as happiness or joy activate the parasympathetic nervous system which
responds to psychological stability.

Under stress, the heart rate increases and the R-S and Q-T peaks increase. Conversely,
without stress, the heart rate stabilizes and the R-S and Q-T peaks become smaller [20].

To clearly set the stress classification criteria, the characteristic points of the R-S peak,
R-R interval, and Q-T interval were extracted, as shown in Table 1 andTable 2 in the
manuscript. First, the average value of the R-S peak was calculated, and then the stress
classification criteria were presented [21]. Subsequently, the average values of the R-R and
Q-T intervals were calculated, and the stress classification criteria were presented [22,23].
The stress classification criteria were assigned after calculating the average values of R-S
peak, R-R interval, and Q-T interval using Equations (2)–(5). Equation (2) represents the
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process of calculating the R-S peak value, where X, I, and N represent the R-S peak value,
first dataset, and last ECG data, respectively:

∑N
i=1 Xi

N
, X = (Rpeak − Speak) (2)
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Table 1. Average values of the R-S peak, R-R interval, and Q-T interval according to the four
emotional states.

Method
Mean Value R-S Peak

(mv)
R-R Interval

(s)
Q-T Interval

(s)

Picture Test 1.4 mv 0.88 s 1.38 s

Music video 2.3 mv 0.78 s 1.24 s

Stroop Test 2.9 mv 0.68 s 1.09 s

Math Test 3.7 mv 0.61 s 0.9 s

Table 2. Stress classification criteria values according to four emotional states.

Method
Feature Value

Stress Level
R-S Peak

(mv)
R-R Interval

(s)
Q-T interval

(s)

Picture Test 1–1.9 0–1.69 0.85–0.95 1.3–1.44

Music video 2–2.9 1.7–2.5 0.76–0.849 1.191–1.29

Stroop Test 3–3.9 2.51–3.3 0.65–0.759 0.981–1.19

Math Test 4–4.9 3.31–4 0.57–0.649 0.85–0.98

Equation (3) represents the process for calculating the R-R interval, where Y represents
the RR interval:

∑N
i=1 Yi

N
, Y =

60
HR

(3)
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Equation (4) represents the process for calculating the Q-T interval, where Z represents
the Q-T interval value:

∑N
i=1 ZI

N
, z =

QT√
RR

(4)

Equation (5) represents the process of calculating an average value using the R-S peak,
R-R interval, and Q-T interval obtained in Equations (2)–(4):

N

∑
j1

(X j+Xj+1+ . . . + XN

)
N

,
N

∑
j1

(Y j+Yj+1+ . . . + YN

)
N

,
N

∑
j1

(Z j+Zj+1+ . . . + ZN

)
N

(5)

3. Training Model
3.1. Support Vector Machine (SVM)

SVM is a classification method that uses optimal decision boundaries to classify non-
linear data in various dimensions [24,25]. As shown in Figure 4, the stress classification
model using the existing SVM by the CLAS database analysis uses the sequential minimal
optimization (SMO) algorithm. The green line represents the decision boundary between
the two classes. The red line represents the boundary line of the support vector according
to the positive value. The blue line represents the boundary line of the support vector ac-
cording to the negative class. SMO was used to perform binary classification of the training
data [26]. However, the parameter value should be adjusted to determine the decision
boundary between the two sets of data in the presence of enormous amounts of data. In
addition, owing to the excessive computation and complexity in adjusting the parameter
values, overfitting occurs, leading to poor classification accuracy for several classes.
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Figure 4. Stress classification using the SMO algorithm.

To address these problems, classification was performed applying the OAA technique
to the SVM [27]. The OAA technique was used to classify multiple classes. Given K classes,
the label of data in class i is set to +1, the label of data in the remaining classes is set to −1,
and binary classification is performed by the number of classes. Figure 5 represents the
classification process of ECG data for the four emotional states using the OAA technique
of SVM. The picture test corresponds to a signal measured by showing various landscape
photos, while the music video corresponds to ECG data measuring the emotional state
after listening to classical music. The Stroop Test was measured in the process of solving
various color-matching quizzes, and the math test is the measured data after calculating
arithmetic operations.
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using SVM; (c) Q-T interval results using SVM.

The data for the R-S peak, R-R interval, and Q-T interval were classified according to
stress levels after determining the margin for the decision boundary between the classes
of the four emotional states using Equations (6) and (7), where c represents the number
of classes, X represents a decision boundary, W represents a vector perpendicular to the
decision boundary, B represents a bias, and Min represents the margin:

W·Xc +B = ±1, c = 1 . . . N (6)

Min
1
2
‖W‖2 (7)

3.2. Naive Bayes

NB is a conditional probability-based statistical classification method that calculates
the feature probability of data belonging to each class [28]. Naïve means that all variables
are equal, and Bayes means the probability that a variable belongs to a specific class.
NB calculates the probability that the variable belongs to a specific class using Equation
(8), which represents a data classification method using Bayes theorem [29], where P(A)
represents the probability determined before the result appears and p(B|A) represents the
probability that B occurs under the condition that A occurs:

p(B|A)= p(A, B)/P(A), p(A, B)= p(B|A)P(A) (8)

Figure 6 shows the classification process of ECG data for four emotional states using
contours according to NB.
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which represents a data classification method using Bayes theorem [29], where P(A) rep-
resents the probability determined before the result appears and p B|A  represents the 
probability that B occurs under the condition that A occurs: 

p B|A  = p A,B /P(A),  p A,B  = p B|A P(A) (8)

Figure 6 shows the classification process of ECG data for four emotional states using 
contours according to NB. 
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Figure 6. Stress classification using NB. (a) R-S peak results using NB, (b) R-R interval results using 
NB, and (c) Q-T interval result using NB. 
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NB, and (c) Q-T interval result using NB.
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3.3. Support Vector Machine and Naive Bayes

The graph in Figure 7 represents the stress classification process according to the four
emotional states using a stress classification model that combines SVM and NB. Using
the OAA technique of SVM, labels are assigned to the class corresponding to each state,
and the ECG data range is indicated using the decision boundary point. Subsequently, the
probability that the parameter belongs to the corresponding class is calculated using the
contour line according to the NB theorem.
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3.4. K-Fold Cross-Validation

Figure 8 shows the cross-validation process used to evaluate the performance of the
SVM-NB model. K-fold cross-validation divides the data into k groups, extracts one of the
groups, uses it as a test set, and uses the remaining K-1 groups as a training set. Repeated
K times, each test yields one classification accuracy and then an average K to obtain the
final performance of the classification [30].
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As shown in Figure 9, the performance of the stress classification model combining
SVM and NB was demonstrated using 10-fold cross-validation. Owing to the classification,
overfitting can be prevented by achieving accuracies of 98.9%, 98.7%, and 98.4% using
7-fold cross-validation.
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4. Experimental Results

Table 3 presents the values of average accuracy, average precision, and average recall
of the stress classification model combining SVM and NB using Equations (9)–(11) [31,32].
Equation (9) is used to determine the accuracy, which is the probability of accurately
classifying the four emotional states, where Total Dataset represents the total amount of
data in the CLAS database. The average accuracy according to the R-S peak, R-R interval,
and Q-T interval was 97.6% using a stress classification model that combines SVM and NB.

Accuracy =
TP

Total Dataset
(9)

Table 3. Performance evaluation using a stress classification model that combines SVM and NB.

Model

R-S Peak (mv) R-R Interval (s) Q-T Interval (s) Mean

AC
(%)

AP
(%)

AR
(%)

AC
(%)

AP
(%)

AR
(%)

AC
(%)

AP
(%)

AR
(%)

AC
(%)

AP
(%)

AR
(%)

SVM 97.6 96 95.4 94.4 93 92.8 96.8 95.4 94.4 96.3 94.8 94.2

NB 96.8 95.7 94.1 93.5 92.8 92.2 95.2 94.8 93.6 95.2 94.3 92.3

SVM and NB 98.4 98.2 98.1 96.8 96.7 96.7 97.6 97.5 97.3 97.6 97.5 97.4

Equation (10) was used to determine the precision. For example, the precision is the
probability that the algorithm is accurately classified as a Picture Test during the Picture
Test. After calculating the precision for the four emotional states using a similar method,
the average precision was determined. Our model achieved a maximum accuracy of 98.2%
and a minimum accuracy of 96.7%.

Precision =
TP

TP + FP
(10)

Equation (11) was used to calculate the recall. Among the data predicted by the Picture
Test, the recall is the probability that the algorithm is accurately classified as a Picture Test.
After calculating the recall for the four emotional states in a similar manner, the average



Sensors 2021, 21, 7916 10 of 15

recall is shown. Using a stress classification model that combines SVM and NB, the average
recall according to the R-S peak, R-R interval, and Q-T interval was 97.4%.

Recall =
TP

TP + FN
(11)

Figure 10 shows the performance of a stress classification model that combines SVM
and NB using a confusion matrix [33]. The green squares indicate true positives. The blue
rectangle results from the correct classification of data by the designed classifier. The red
squares indicate false positives. The purple rectangle results when the designed classifier
incorrectly classifies music video-related data as Stroop Test data. Therefore, it indicates
that the data related to the Math Test and the Picture Test were classified more correctly
than the data related to the Stroop Test and Music video.
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Existing research results for classifying stress using SVM achieved an accuracy of
88.9%. On the other hand, the average accuracy of the stress classifier proposed in this study
was 96.3%. In addition, the performance of the stress classification model was evaluated by
combining the NB model with the SVM. The average accuracy of the stress classification
model combining SVM and NB was 97.6%. These results demonstrate that the accuracy
improved by 8.7% compared to that of the existing stress classification model using the
CLAS dataset. Additionally, stress classification using four levels classifies emotional status
more accurately compared to that using two levels.

Figure 11 shows the ROC curve according to the R-S peak, R-R interval, and Q-T
interval of the four emotional states using a stress classification model that combines SVM
and NB. ROC curve analysis is a curve drawn with the Y-axis as the true positive rate and
the X-axis as the false positive rate of the tested values [34]. The performance of the stress
classification model was evaluated using the AUC in the graph of the ROC curve.

Table 4 compares the performance with the existing stress classification model using
the AUC value of the ROC curve. The average AUC according to the stress classification
model combining SVM and NB was 97.9%. The AUC of the best stress classification model
using the existing ROC curve was 87%. Therefore, the AUC of the ROC curve improved
by up to 10.9% compared to that of the conventional stress classification model [35].
In addition, models that combined SVM and NB had 1.1% and 2.5% higher AUC values
than those of the SVM and NB models, respectively.
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Table 4. Comparison of the stress classification performance using the AUC value of the ROC curve.

AUC (ROC Curve) R-S Peak
(mv)

R-R Interval
(s)

Q-T Interval
(s)

Mean
AUC
(%)

SVM 97.5% 96.8% 96.2% 96.8%
NB 96.2% 95.1% 94.9% 95.4%

SVM and NB 98.2% 98% 97.6% 97.9%
CNN-LSTM

(Zhang, et al. 2021 [35]) - 87% - 87%

RF, SVM, MLP, KNN
(Dalmeida, et al. 2021 [36]) - (avg.) 83.25% - (avg.) 83.25%

MLP, NB, SVM
(Castaldo, et al. 2016 [37]) - (avg.) 70% (avg.) 70%

Figure 12 shows the MCE and elapsed time according to the R-S peak, R-R interval,
and Q-T interval of the stress classification model combining SVM and NB [38]. MCE is
a method of minimizing classification errors that occur while attempting to classify new
datasets. This method defines the discriminant function Gk(; ) using log likelihood. The
log likelihood refers to a method of extracting parameters from a set of data while the
discriminant function refers to a function that determines the category of a parameter [39].
The classification error function Dk(X k ; θ) is defined by applying gk(X k ; θ), which is the
log likelihood of the feature vector Xk, to the model parameter θ to Equation (12):

Dk(Xk; θ)= Gk(Xk; θ) − gk(X k ; θ) (12)

If Dk(X k ; θ) is positive, it indicates that the discriminant function Gk (; ) is largely reflected.
Gk(; ) indicates that a classification error has occurred because it is a log likelihood using
the remaining classes except for the corresponding class k. Conversely, a negative value
of Dk(X k ; θ) indicates that classification errors have not occurred by reflecting a larger
log likelihood gk(X k ; θ) for the corresponding class. Therefore, the classification model
performs better if the value of Dk(X k ; θ) is small for the given data.

Table 5 compares the performance with the existing stress classification model using
the MCE and elapsed time values. The average MCE of the stress classification model
combining the SVM and NB was 0.054%. In comparison with the MCE of the stress classi-
fication models of SVM and NB, the MCE decreased by 0.012% and 0.026%, respectively,
indicating that its performance improved by 0.068% compared with that of the conven-
tional stress classification model [34]. The stress classification model combining the SVM
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and NB improved the elapsed time by having the lowest MCE compared to the previous
study. Hence, the proposed model can judge determine stress faster and more accurately
than the existing classifier.
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Table 5. Comparison of stress classification performance using MCE and elapsed time.

Model MCE
(%)

Elapsed
Time (s)

MCE
(%)

Elapsed
Time (s)

MCE
(%)

Elapsed
Time (s)

MCE
(%)

Elapsed
Time (s)

SVM 0.034 86.26 0.052 81.48 0.114 78.84 0.066 82.19
NB 0.042 98.65 0.067 97.16 0.133 96.54 0.080 97.45

SVM and NB 0.024 68.89 0.041 69.19 0.097 61.92 0.054 66.66
MLP, RF, GB

(Dameida, et al) - - (avg.)
0.092 - - - (avg.)

0.092 -

In this study, the p-value was calculated, as shown in Table 6, to improve the perfor-
mance of the SVM-NB stress classification model. The p-value evaluates the significance of
an experimentally obtained value. For example, the p-value of SVM-NB was 0.032%, and
the average stress classification accuracy was 96.7%. If the stress classification accuracy is
measured by adding the ECG dataset or improving the algorithm of SVM-NB, the proba-
bility that it will decrease to less than 96.7% can be assumed to be 0.032%. A lower p-value
indicates a better stress classification performance.

Table 6. Evaluation of the stress classification performance using the p-value.

Stress Classification Mean Accuracy (%) p-Value (%)

SVM 96.3 0.094

NB 95.2 0.065

SVM and NB 97.6 0.032

5. Discussion

In this study, four stress classification processes of emotional states according to stress
levels were presented using an ensemble model that combines SVM and NB. The stress
signals under stress and without stress were analyzed by extracting the Q, R, S, and T peak
values of the ECG signals for four emotional states using threshold values. In addition, after
calculating the average values of R-S peak, R-R interval, and Q-T interval, the stress level
classification criteria according to the four emotional states were established to improve
the accuracy of the stress classification model. Subsequently, the performance of the stress
classification model was evaluated using the confusion matrix, ROC curve, and MCE.
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The stress classification model combining SVM and NB exhibited an average accuracy of
97.6%, average precision of 97.5%, and average recall of 97.4%. The accuracy of the stress
classification model combining the proposed SVM and NB was 97.6%, which was 8.7%
higher than that of the existing model. The stress classification model that combines SVM
and NB evaluated the MCE to obtain an optimal data classification performance, yielding
an average MCE of 0.054%. In comparison with the stress classification models of SVM
and NB, the MCE decreased by 0.012% and 0.026% on average, and MCE decreased by
0.068% compared with that of the existing stress classification models. In addition, ROC
curves according to R-S peak, R-R interval, and Q-T interval of the four emotional states
were evaluated using a stress classification model that combines SVM and NB. Hence, it
was observed that the stress classification performance using four levels is superior to
that using two levels, and enables the identification of stress levels and states according to
various emotional states.

6. Conclusions

In this study, an ensemble model combining SVM and NB was used to classify ECG
data into four emotional states according to the stress levels. To confirm the four stress
states according to the stress level, the stress classification accuracy was improved by
calculating the average values of R-S peak, R-R interval, and Q-T interval after extracting
the Q, R, S, and T peak values of the ECG signals. The accuracy of the proposed stress
classification model combining SVM and NB was 97.6%. These results showed an 8.7%
improvement in accuracy compared to that of the existing stress classification model. The
stress classification model can be applied to ECG and pulse diagnosis medical devices
or U-health devices may help to prevent various health conditions such as headaches,
high blood pressure, and myocardial infarction by easily examining the stress conditions.
Additionally, it can be applied in the development of a remote medical system that can
diagnose the health of a patient in real time using the classified ECG data.
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