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Abstract
In S334ter-line-3 rat model of Retinitis Pigmentosa (RP), rod cell death induces the rear-

rangement of cones into mosaics of rings while the fibrotic processes of Müller cells

remodel to fill the center of the rings. In contrast, previous work established that DL-

alpha-aminoadipic-acid (AAA), a compound that transiently blocks Müller cell metabo-

lism, abolishes these highly structured cone rings. Simultaneously, adherens-junction

associated protein, Zonula occludens-1 (ZO-1) expression forms in a network between

the photoreceptor segments and Müller cells processes. Thus, we hypothesized that AAA

treatment alters the cone mosaic rings by disrupting the distal sealing formed by these

fibrotic processes, either directly or indirectly, by down regulating the expression of ZO-1.

Therefore, we examined these processes and ZO-1 expression at the outer retina after

intravitreal injection of AAA and observed that AAA treatment transiently disrupts the dis-

tal glial sealing in RP retina, plus induces cones in rings to become more homogeneous.

Moreover, ZO-1 expression is actively suppressed after 3 days of AAA treatment, which

coincided with cone ring disruption. Similar modifications of glial sealing and cone distri-

bution were observed after injection of siRNA to inhibit ZO-1 expression. These findings

support our hypothesis and provide additional information about the critical role played by

ZO-1 in glial sealing and shaping the ring mosaic in RP retina. These studies represent
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important advancements in the understanding of retinal degeneration’s etiology and

pathophysiology.

Introduction
Retinitis Pigmentosa (RP) is characterized by an initial loss of rod photoreceptors, followed by
a slow, progressive loss of cones and rewiring of the remaining retinal neurons [1, 2]. In addi-
tion, Müller cells increase intermediate filament synthesis and form a dense fibrotic seal
encompassing the outer retina [1, 3]. Whenever the photoreceptors are depleted, the formation
of a distal glial seal is common in retinal degenerations in both animals [1] and humans [3].

In RP rhodopsin S334ter-line-3 rat, death of rods induces cones to lay flat against the outer
retina, which is observed in vertical sections. There are distinct regions full of clusters of cell
bodies of cone that are adjacent to regions devoid of cell bodies but are richer in long processes
[4, 5]. At the same time, Müller cells processes form a dense fibrotic seal or barrier in the outer
retina [4, 6]. In whole-mount retina, cones are distributed in an orderly mosaic of rings. Müller
cell processes cluster in broccoli-like shapes to occupy these zones, interact with the cones, and
induce cone migration to the edges of the holes of rods [7, 8]. Furthermore, glial fibrillary acidic
protein (GFAP) expression appears in processes of Müller cells filled in cone rings [7].

Previously, we tested if Müller cell processes are necessary and sufficient for the rings to
exist. To test the relevance of this interaction, we injected a drug known to disrupt Müller cell
metabolism, DL-α-aminoadipic acid (AAA). The disruption of cone rings suggested that the
maintenance of these cone rings in the RP is dependent on the close interactions with Müller
cells [7]. Furthermore, intravitreal injection of AAA in mice transiently disrupts the integrity
of the outer limiting membrane (OLM) [9]. At the OLM, apical processes of Müller cells and
inner segments of rods and cones are joined together with a specialized adherens junction asso-
ciated protein, ZO-1 [10–14]. In the RP retina, ZO-1 expression is associated with the network
of rings of cones [7]. Thus, we hypothesized that AAA treatment disrupts cone rings by attack-
ing the distal sealing formed by the fibrotic processes of Müller cells. Subsequently, either
directly or indirectly, ZO-1 down-regulation is triggered between the Müller cells and cones. In
this study, we further investigated the fibrotic processes of Müller cells and the expression of
ZO-1 in the outer retina after intravitreal injection of AAA and defined ZO-1’s contribution
using molecular tools in this intricate process with siRNA inhibition of ZO-1 expression.

Materials and Methods

Animals
The third line of albino Sprague-Dawley rats homozygous for the truncated murine opsin gene
(creating a stop codon at Serine residue 334; S334ter-line-3) was generously provided for our
studies fromMatthew LaVail (University of California, San Francisco, CA, USA). Homozygous
S334ter-3 male rats were mated with homozygous S334ter-3 female rats to produce offspring
for the S334ter-3 transgene used for this study and referred to as the RP model in this paper.
RP rats were euthanized at postnatal (P) days 30, 31, 32, 33, 37, 44, 50, and 51 (N = 10 for each
stage). Controls were Sprague-Dawley rats euthanized at P50 (N = 5; Harlan, Indianapolis, IN).
Both sexes of control and RP rats were used. All rats were housed under cyclic 12:12 hour (hr)
light/dark conditions with free access to food and water. The University of Southern Califor-
nia’s Institutional Animal Care and Use Committee approved the research protocol for use of
rats in this study. Research was conducted in adherence with the Association for Research in
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Vision and Ophthalmology (ARVO) Statement for the Use of Animals in Ophthalmic and
Visual Research. All surgeries on rats were performed under anesthesia induced by intra-peri-
toneal injection of ketamine (100 mg/kg; KETASET, Fort Dodge, IA) and xylazine (20 mg/kg;
X-Ject SA, Butler, Dublin, OH) or Euthasol (40 mg/kg body weight).

Administration of Alpha-aminoadipic Acid (AAA)
DL-α-Aminoadipic acid (AAA, Sigma-Aldrich Corp., St. Louis, MO, USA) was prepared in
phosphate-buffered saline (PBS), adjusted to pH 7.5 and sterile-filtered before administration.
AAA was administered by intravitreal injection with a fine-glass microelectrode through the
sclera at the level of the temporal peripheral retina. Higher concentrations of AAA are known
to affect the metabolic pathway in photoreceptors [9, 15]. For preliminary testing, 4 μl of three
concentrations of the AAA (5, 10, 50μg/ml) were intravitreally injected into the eyes of RP rats
at P30. Survival periods of 1–3 days, 1 week and 2 weeks were tested. The 5μg/ml of AAA did
not disrupt cone rings in RP retina; however, 10μg/ml and 50μg/ml of AAA gave similar end
results in terms of the degree of change in the distribution of cones. Thus, 10μg/ml of AAA was
selected. The optimal stage for the injection of AAA was P30 when cones were arranged in
rings across the entire retina. The cone rings were disrupted after 3 days of AAA post-injection.
Thus, as for survival periods, 3 days and 2 weeks were used. Sham injections, for control, con-
sisted of 4μl sterile saline. For each animal, one eye was injected with AAA and the other eye
was used to inject saline for comparison. Surgeries on rats were performed under anesthesia
induced by intra-peritoneal injection of ketamine (100 mg/kg; KETASET, Fort Dodge, IA,
USA) and xylazine (20 mg/kg; X-Ject SA, Butler, Dublin, OH, USA). The entire injection pro-
cedure required only a few minutes, which allowed us to complete the injection before the ani-
mals recovered from anesthesia. Following surgeries, veterinary ophthalmic antibacterial
ointment was applied to prevent drying of cornea and infection.

Preparation and Administration of siRNA
The siRNA technology to produce a knockdown of target proteins in the eye is well established
[12, 16]. We targeted siRNA against ZO-1 expression by generating pre-designed silencer select
ZO-1 siRNA (Gene Name: tight junction protein 1; Gene Aliases: ZO-1; Locus ID: 292994, Spe-
cies: Rat, siRNA ID: s146925, Invitrogen, Carlsbad, CA, USA). The siRNA was resuspended
and diluted to the appropriate concentration in sterile buffer containing lipofectamine using
RNAase-free plasticware. Controls have a 4μl injection of Silencer Select Negative Control
siRNA (Catalog# 4390843, Invitrogen). ZO-1 siRNAs were applied by intravitreal injection to
the temporal peripheral retina at P50. Two concentrations of ZO-1 siRNA (15 and 25μM) were
administered and monitored after 24 hr and 48 hr. However, 15 μM of ZO-1 siRNA did not
disrupt the cone ring and 48 hr of ZO-1siRNA reduced the cone number. Thus, ZO-1 siRNA
of 25μMwas used for 24 hr. This was determined experimentally as the most efficient in terms
of the degree of change in the mosaics of M-opsin cones.

Tissue Preparation
Animals were deeply anesthetized by intra-peritoneal injection of Euthasol (40 mg/kg body
weight, Virbac, Fort worth, TX, USA) and the eyes were enucleated. Animals were then eutha-
nized by an overdose of Euthasol. For secondary method we will perform thoracotomy or
decapitations. Their eyes’ anterior segments were then removed and the eyecups were fixed by
immersion in 4% paraformaldehyde in 0.1 M phosphate buffer (PB), pH 7.4, for 1.5–2 hr. Fol-
lowing fixation, the retinas were carefully dissected and transferred to 30% sucrose in PB for 24
hr at 4°C. For storage, all retinas were then frozen in liquid nitrogen, stored at -70°C, thawed,
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and rinsed in 0.01 M phosphate buffered saline (PBS; pH 7.4). For cryostat sections, eyecups
were embedded in OCT embedding medium (Tissue-Tek, Elkhart, IN, USA), then quickly fro-
zen in liquid nitrogen and subsequently sectioned along the vertical meridian on a cryostat at a
thickness of 20 μm.

Immunohistochemistry
For fluorescence immunocytochemistry, 20μm thick cryostat sections were incubated in 10%
normal goat serum (NGS) or 10% normal donkey serum (NDS) and 1% Triton X-100 in PBS
for 1 hr at room temperature. Sections were then incubated overnight with a rabbit polyclonal
antibody directed against: mouse green opsin (M-opsin, dilution 1:1000) [17] and glial fibril-
lary acidic protein (GFAP, Sigma; 1:500); mouse monoclonal antibody directed against gluta-
mine synthetase (GS, Millipore Temecula, CA, USA; 1:1000), β-tubulin (Sigma; dilution 1:500)
and zonula occludens (ZO-1, Invitrogen; 1:500). Each antiserum was diluted with PBS contain-
ing 0.5% Triton X-100 at 4°C. Retinas were washed in PBS for 45 min (3 × 15 min). Afterwards,
the retinas were incubated for 2 hr in carboxymethylindocyanine (Cy3)-conjugated affinity-
purified, donkey anti-rabbit IgG (Jackson Immuno Labs, West Grove, PA, USA; dilution
1:500); Alexa 488 anti-mouse (Molecular Probes, Eugene, OR, USA, dilution 1:300) or
Cy5-conjugated, donkey anti-mouse IgG (Jackson Immuno Labs; dilution 1:300) at room tem-
perature. The sections were washed for 30 min with 0.1M PBS and cover slipped with Vecta-
shield mounting medium (Vector Labs, Burlingame, CA, USA). For whole-mount
immunohistochemical staining, the same procedure was used. For M-opsin and GS, the pri-
mary antibody incubation was for 2 days and the secondary antibody incubation was for 1 day.
FITC-conjugated mouse monoclonal antibody directed against ZO-1 (Invitrogen; dilution
1:500) was incubated for 1 day.

For double and triple labeling, sections and whole mounts were incubated in a mixture of
following primary antibodies: GS and ZO-1; ZO-1, GS, and M-opsin, followed by the appropri-
ate secondary antibodies and processed. Sections and whole-mounts were then analyzed using
a Zeiss LSM 510, (Zeiss, NY, USA) confocal microscope. Immunofluorescence images were
processed with Zeiss LSM-PC software. The brightness and contrast of the images were
adjusted using Adobe Photoshop 7.0 (Adobe Systems, San Jose, CA, USA). For presentation,
all Photoshop manipulations for brightness and contrast only were carried out equally across
all sections.

Statistical analysis
The density of M-opsin cones was counted in three retinal whole-mount preparations from
each group. In RP and AAA-treated RP retinas, due to loss of some cone outer segments
(COS), we counted their cell bodies. Loss of COS was previously detected in rd1-/- mice [18, 19]
and S334ter-line-3 rats [20, 21]. Confocal micrographs of the retinas were taken at the focal
level of the nuclei of M-opsin cones, covering 1x1 mm2 areas at the central region (1mm away
from optic disc) of the superior part of the retina. At these locations we made serial optical sec-
tions using a confocal microscope. By following each M-opsin cone throughout the sections,
we ensured that every M-opsin cone in the selected region was counted. Each M-opsin stained
cell was marked with a white dot using the paint tool in Photoshop. Applying white dot allowed
easy identification of the position of each M-opsin positive cell in the retinal area. Also, using
these images, Voronoi domain and the coefficient of clustering was measured.

For the Voronoi analysis, the Voronoi domain for each cell was generated and the areas of
each polygon were calculated and plotted in a histogram. To remove the artifacts induced by
the edge effect, we did not include cells around the boundaries. The skewness of the Voronoi
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distribution was also determined. The formula used for quantifying skewness was:

g1 ¼
1
n

Xn

i¼1
ðxi � �xÞ3

ð1
n

Xn

i¼1
ðxi � �xÞ2Þ 3=2

where xi is the area of the i
th Voronoi domain and �x is the sample mean. Also, the coefficient of

clustering (CC) is determined by the ratio between global coefficient of variance and average
local coefficient of variance in Voronoi domain sizes. The formula is as follows:

c ¼ n�x

sx

Xn

i¼1

�ai
sai

where σx is the standard deviation of all the Voronoi domains,�ai and sai
are the mean and the

standard deviation of the size of neighboring Voronoi domains of ith domain, respectively.
All the statistics were expressed asmean ± SEM (standard errors of the mean). ‘Student’s t-

test was used to examine the differences among the group of means. The tests were performed
and graphs were generated by MATLAB version 8.2.0 (The MathWorks Inc., Natick, MA,
USA). A difference between the means of separate experimental conditions was considered sta-
tistically significant at alpha (α) level of 0.05.

Results

Disturbance of the cone rings in RP retinas with AAA treatment
Previously, we demonstrated that the specific glial-cell toxin DL-α aminoadipic acid (AAA)
disrupted Müller cells in S334ter-line-3 RP retina [7]. Consistent with our previous results, we
observed ring-like pattern of cones in saline-treated RP retina (control, Fig 1A). In contrast, we
observed disruption of cone rings after 3 days of AAA post-injection in RP retina (Fig 1B).
Together, these results suggest that the interactions between cones and Müller cells processes
are necessary for the maintenance of the rings in the RP retina [7]. However, we cannot elimi-
nate the possibility that the disruption of the cone rings is due to cone death rather than to
weakening of Müller glial processes after AAA treatment. With higher concentration of AAA,
photoreceptors are affected [9, 15]. Thus, we quantified the cone cell number of the M-opsin
immunological stained cones within the 1x1 mm2 retinal areas. In P33 RP control retina, the
mean density of cells was 5,600 ± 78 cells/mm2 compared to 5,245 ± 430 cells/mm2 in AAA-
treated P33 RP retina, which was not significantly different (p = 0.463, Fig 1C).

Next, we examined the distribution pattern of cones using Voronoi analysis [22]. An exam-
ple of Voronoi tessellation is shown in the inset besides the histogram for each group (Fig 1D
and 1E). The Voronoi diagram for P33 RP control retina revealed the alternation between
small and large Voronoi domains. This alternation was not random. The smaller domains were
clustered with other smaller domains, while larger domains were clustered with other larger
domains (Fig 1D). We quantified the degree of clustering using coefficient of clustering (CC).
The CC is the ratio between the global coefficient of variation and the average local coefficient
of variation in Voronoi-domain sizes [22]. The large CC indicates higher clustering. P33 RP
control retinas exhibited high CC (1.80 ± 0.14), confirming that the spatial alternation between
the smaller and larger Voronoi domains was not random. In contrast, in AAA-treated RP reti-
nas, the rings disappeared and cones redistributed themselves more homogeneously. The
cones appear to spread out to occupy areas inside the rings and larger Voronoi domains
became smaller (Fig 1E). Thus, the distribution of Voronoi domains became more random.
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Therefore, the CC (1.32 ± 0.04) for AAA-treated retinas was significantly smaller than con-
trolled group (Fig 1F, p = 0.03). This indicated cones in RP retinas became more homogeneous
with AAA after 3 days. Our results indicate that AAA disrupt cone rings and redistribute cones
more homogenously without a significant loss of cones.

AAA transiently disrupts the distal glial sealing in the RP retina
Sensitive cellular response markers associated with damage in retinal diseases are the up-regu-
lation of cytoskeletal proteins, including glial fibrillary acidic protein (GFAP) [23–25] and ß-
tubulin [26, 27]. A prominent example of the gliotic responses of Müller cells is correlated with
their structural hypertrophy with increased expression of ß-tubulin and GFAP, which form
distal fibrotic sealing in RP retinas [1, 2]. We hypothesized that the cones are redistributed
with AAA due to its effects on distal glial sealing. To determine how the distal fibrotic processes
of Müller cells responded to AAA treatment, we examined ß-tubulin and GFAP labeling in ver-
tical sections of saline-treated and AAA-treated RP retinas. We examined the effects of AAA
on distal fibrotic processes of Müller cells 3 days and 2 weeks following injection. In RP control
retinas, we observed bundles of fibrotic processes of Müller cells labeled with ß-tubulin at the

Fig 1. Disturbance of the cone rings in RP retinas with AAA treatment.Confocal micrographs of whole-mounts processed for M-opsin
immunohistochemical staining in saline-treated RP (A), and AAA-treated (B) RP eyes. Saline and AAA (10ug/ml) were injected at P30. AAA-treated RP
retinas show disruption of M-opsin rings after 3 days of injection. The summary graph illustrates mean cone density (C) measured from the 1x1 mm2

sampling areas (for details, see methods) of saline-treated RP (RP) and AAA-treated RP (RP AAA 3D) retinas (n = 3 animals per group). The density of M-
opsin cones in AAA-treated RP retinas after 3 days showed no significant difference from RP control retinas. Histograms generated from the Voronoi analysis
on the 1x1 mm2 sampling areas from saline-treated (D) and AAA-treated RP (E) retinas. Results are shown with survival times of 3D. Examples (~ 170 μm x
170 μm) of the resulting Voronoi domains are shown for each group (D, E). The summary graphs for the mean skewness values obtained from the Voronoi
domain distribution curves are plotted for each group (D, E). Also, the graphs for the mean coefficient of clustering measured in all groups are illustrated (F).
Data are presented as mean ± standard error. The symbol * indicates p < 0.05. AAA, DL-α-aminoadipic acid; P, postnatal; D, day; RP, Retinitis Pigmentosa,
Scale bar = 100 μm.

doi:10.1371/journal.pone.0151668.g001
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outer retina (Fig 2A, arrows). The fibrotic processes sealed the outer retina. After 3 days of
AAA post-injection, we observed ß-tubulin immunoreactivity throughout the vertical section
of the retina. However, we did not observe the ß-tubulin-immunoreactive fibrotic processes
sealing the outer retina (Fig 2B, arrowheads). After 2 weeks of AAA post-injection, the thick-
ened distal glial sealing labeled with ß-tubulin reappeared in the outer retina (Fig 2C, arrows).
The distal fibrotic processes of Müller cells at the outer retina immunologically labeled by
GFAP showed a similar pattern to ß-tubulin expression in vertical sections (Fig 2D–2F). These
results suggest that AAA treatment transiently disrupted the distal fibrotic glial sealing at the
outer retina.

AAA transiently suppressed ZO-1 expression in the RP retina
AAA reversibly disrupts the integrity of outer limiting membrane (OLM) potentially by induc-
ing toxicity in Müller cells [28, 29]. Also, ZO-1 expression at the OLMwas shown to be discon-
tinuous and fragmented during the drug application [9]. This specialized adheren-junction
associated protein ZO-1 appears between the cones and the processes of Müller cells in the cone
rings in RP retinas [7]. Thus, we explored the behavior of ZO-1 in RP after AAA treatment at
P30 by examining ZO-1 expression after 3 (P33) days and 2 (P44) weeks. The retinas were
labeled for GS, a marker of Müller cells (Fig 3, red) and ZO-1 (Fig 3, green). In normal retinas,
Müller-cell processes were present throughout the retina (Fig 3A) and ZO-l immunological
staining appeared at the OLM (Fig 3B). In the OLM region, ZO-1 was expressed and co-local-
ized with GS (Fig 3C inset, arrows). More importantly, ZO-1 formed a continuous line at the
OLM. In contrast, the RP retina showed discontinuous and fragmented immunological staining
for ZO-1 at the OLM (Fig 3E). Double immunological labeling of GS (Fig 3D) and ZO-1 (Fig
3E) showed that the ZO-1 expression was weaker and more fragmented (Fig 3F inset, arrow-
heads) but still co-localized with GS at the outer part of the retina. Interestingly, AAA treatment
did not affect the overall expression of GS (Fig 3G). The AAA treatment suppressed ZO-1
expression after 3 days (Fig 3H and 3I inset). However, we observed reappearance of ZO-1 (Fig
3K) at the outer retina 2 weeks after the AAA post-injection (Fig 3J–3L inset).

Whole-mounts were triple labeled with antibodies against M-opsin, GS, and ZO-1. Fig 4
shows an example of P50 normal, P50 RP control, and AAA-treated P50 RP (after 3 days of

Fig 2. AAA transiently disrupts the distal glial sealing in the RP retina. Confocal micrographs of vertical sections labeled with ß-tubulin (A-C) and GFAP
(D-F) in saline treated RP (A, D) and AAA treated RP retinas after 3 days (B, E) and 2 weeks (C, F). The fibrotic processes were sealing the outer retina of
saline-treated P33 RP retina (A, D, arrows). After 3 days of AAA post-injection, ß-tubulin and GFAP immunoreactive fibrotic sealing disappeared at the outer
retina (B, E, arrowheads). After 2 weeks of AAA post-injection, the thick distal glial sealing labeled with ß-tubulin and GFAP reappeared in the outer retina (C,
F, arrows). D, days; OPL, outer plexiform layer; INL, inner nuclear layer. Scale bar = 10 μm.

doi:10.1371/journal.pone.0151668.g002
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Fig 3. AAA transiently suppressed ZO-1 expression in the RP retina.Confocal micrographs of vertical saline-treated P50 normal (A-C), saline-treated
P50 RP (D-F), AAA-treated P33 RP, and AAA-treated P44 RP retinal sections processed for GS (A, D, G, J) and ZO-1 (B, E, H, K) immunohistochemical
staining patterns. Double exposure shows that the ZO-1 is expressed and co-localized with GS at the OLM (C inset—arrows). Double labeling of GS (D) and
ZO-1 (E) in P50 RP retina shows that the ZO-1 expression is weaker and more fragmented (F inset—arrowheads) but still co-localized with GS at the OLM. In
AAA-treated P33 RP retina (G-I), GS immunohistochemical staining still appears in Müller cells but ZO-1 is no longer expressed in outer part of the retina (I
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AAA post-injection) retina whole-mounts processed for these antibodies. In this figure, the
focal plane of the outer retina was examined. The normal retina treated with saline labeled M-
opsin cones segments throughout the photoreceptor array (Fig 4A and 4D red). GS immunore-
activity displayed the normal spatially homogeneous mesh network of Müller cell processes (Fig
4B and 4D green). In the OLM region, ZO-1 was expressed (Fig 4C and 4D blue). We confirmed
that triple immunohistochemical staining pattern with these markers in photoreceptor inner
segments and the apical processes of Müller cells are closely associated with ZO-1 expression

inset). In AAA-treated P44 RP retina, ZO-1 reappeared after 2 weeks of AAA treatment in RP retinas (K, L inset). AAA, DL-alpha-aminoadipic acid (AAA); N
normal; D days; WK weeks; RP, Retinitis Pigmentosa; GS, glutamine synthetase; ZO-1, zonula occludens 1; OLM, outer limiting membrane; ONL, outer
nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer, GL, ganglion cell layer. Scale bar = 50 μm, 10 μm in inset.

doi:10.1371/journal.pone.0151668.g003

Fig 4. AAA disrupts cone rings by affecting ZO-1 expression between Müller cells and cones.Confocal micrographs taken from whole-mounts of
saline-treated P50 normal (A-D), saline-treated P50 RP (E-H), and AAA-treated P50 RP (I-L) retinas processed for M-opsin (red), GS (green), and ZO-1
(blue) show immunohistochemical staining patterns. Saline and AAA (10ug/ml) were injected at P47. The micrographs show P50 N (A-D) retinas 3 days post-
saline application. Triple immunohistochemical labeling of M-opsin (A), GS (B), and ZO-1 (C) shows that ZO-1 is closely associated between cone inner
segments and the apical processes of Müller cells in P50 normal retinas (D inset). The micrographs for P50 RP (E-H) retinas show 3 days post-saline
application. Triple labeling of M-opsin (E), GS (F), and ZO-1 (G) shows that the ZO-1 is closely associated with segments of photoreceptors and processes of
Müller cells in rings (H inset). The micrographs for AAA-treated P50 RP retinas show 3 days post-application of the drug. Triple labeling of M-opsin (I), GS (J),
and ZO-1 (K) shows that the ZO-1 is no longer expressed between cones and Müller cells with AAA treatment (L inset). In addition, Müller cell processes are
homogenously distributed (J). AAA, DL-alpha-aminoadipic acid (AAA); N normal; D days; RP, Retinitis Pigmentosa; GS, glutamine synthetase; ZO-1, zonula
occludens 1. Scale bar = 20 μm, 10 μm in inset.

doi:10.1371/journal.pone.0151668.g004
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(Fig 4D inset). In RP control retinas, we again observed an array of cone rings (Fig 4E and 4H).
Furthermore, we observed that the processes of Müller cells formed broccoli-like shapes (Fig 4F
and 4H) and ZO-1 formed a network of rings (Fig 4G and 4H). The labeling showed that the
ZO-1 also underwent remodeling, which allowed the Müller cells processes and cones to re-
establish contact (Fig 4H inset). In contrast, RP eyes injected with AAA revealed neither rings of
cones (Fig 4I) nor broccoli-like processes of Müller cells (Fig 4J). Müller-cell processes were
homogeneously distributed with cones (Fig 4J and 4L). Furthermore, we also observed a disap-
pearance of ZO-1 expression after 3 days of AAA treatment (Fig 4K), which coincided with the
rearrangement of the cones (Fig 4K and 4L inset). Therefore, we propose that AAA disrupts
cone rings by weakening the distal fibrotic processes of Müller cells (Fig 2) and also by affecting
ZO-1 expression between Müller cells and cones (Figs 3 and 4).

ZO-1 represents a critical component for cone rearrangement in RP
retina
To confirm if the down-regulation of ZO-1 is essential to disrupt the cone rings, we suppressed
ZO-1 expression using ZO-1 siRNA technology. If ZO-1 siRNA leads to the disruption of cone
rings then we propose that it plays a critical functional role in shaping the ring mosaic in RP. In
RP retinas treated with the control, non-targeting siRNA for 24 hrs, we still observed an array of
cones rings (Fig 5A). Furthermore, we observed ZO-1 expression in a network of rings (Fig 5B).
Merged immunohistochemical images of M-opsin and ZO-1 showed that the segments of cones
were closely associated with ZO-1 (Fig 5C and 5D). In ZO-1-siRNA-treated retina, cone rings
were disrupted (Fig 5E) and ZO-1 expression was successfully suppressed (Fig 5F). Thus, the
specific inhibition of ZO-1 promoted the disruption of cone rings in RP retina (Fig 5G and 5H).

To further examine the effects of ZO-1 siRNA on the rearrangement of cones, we also per-
formed Voronoi domain analysis on the cone mosaic. Consistent with the data in Fig 1, we

Fig 5. ZO-1 represents a critical component for cone rearrangement in RP retina.Whole-mounts for M-opsin (red) and ZO-1 (green)
immunohistochemical staining in P50 RP retinas treated with non-targeted siRNA (A-D) and ZO-1 siRNA (25uM, E-H) for 24 hrs. In control retina, ZO-1 is
closely associated with segments of photoreceptors (C, D). In ZO-1 siRNA treated retina, cones are re-occupying the space homogeneously (E, G) and ZO-1
is suppressed (F, G). D and H are higher-power micrographs of C, G, respectively. RP, Retinitis Pigmentosa; ZO-1, zonula occludens 1. Scale bar = 50μm.

doi:10.1371/journal.pone.0151668.g005
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observed ring-like pattern of cones in non-targeting siRNA RP retina (Fig 6A). In contrast, we
observed disruption of cone rings after 24 hrs of ZO-1 siRNA in RP retina (Fig 6B). The cone
density was not significantly different between the specific control, non-targeting siRNA, and
ZO-1 siRNA treated RP retinas (Fig 6C, p = 0.3952). RP retinas treated with the control siRNA
showed a long tail in the VD histogram (Fig 6D) and high CC, which indicate the existence of
ring structures (Fig 6A). However, the number of larger VD domains decreased in ZO-1
siRNA treated RP retinas (Fig 6E). Moreover, the CC was significantly reduced in these retinas
(Fig 6F, p = 0.0021). These dramatic and significant effects of ZO-1 siRNA indicate that ZO-1
expression between cones and Müller cells processes are sufficient for the maintenance of rings
in the RP retina.

ZO-1 is important for the formation of glial sealing in the outer retina
Since ZO-1 siRNA treatment disrupted cone rings in a similar manner as AAA treatment, we
tested whether or not the distal glial sealing would also be disrupted by ZO-1 siRNA treatment.
Similarly, we examined both ß-tubulin and GFAP immunological labeling in vertical sections of

Fig 6. ZO-1 expression between cones andMüller cell processes are sufficient for the maintenance of rings.Confocal micrographs of whole-mounts
processed for M-opsin immunohistochemical staining in non-targeted siRNA for 24 hr (A), ZO-1 siRNA treated for 24 hr (25uM, B) at P50. ZO-1 siRNA
treated RP retinas show disruption of M-opsin cone rings in 24 hrs. The summary graph illustrates mean cone density (C) measured from the 1x1 mm2

sampling areas (for details, see methods) of non-targeted siRNA RP and ZO-1 siRNA treated RP retinas (n = 4 animals per group). The density of M-opsin
cones in ZO-1 siRNA treated RP retina after 24 hrs showed no significant difference from non-targeted RP retinas. Histograms generated from the Voronoi
analysis on the 1x1 mm2 sampling areas from non-targeted (D) and ZO-1 siRNA treated RP (E) retinas. Results are shown with survival times of 24 hrs.
Examples (~ 170 μm x 170 μm) of the resulting Voronoi domains are shown for each group (D, E). The summary graphs for the mean skewness values
obtained from the Voronoi domain distribution curves are plotted for each groups (D, E). Also, the graphs for the mean coefficient of clustering measured in all
groups are illustrated (F). Data are presented as mean ± standard error. The symbol * indicates p < 0.05. ZO-1, zonula occludens 1; P, postnatal; D, day; RP,
Retinitis Pigmentosa, Scale bar = 100 μm.

doi:10.1371/journal.pone.0151668.g006
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RP retinas treated with control siRNA and ZO-1 siRNA after 24 hrs (Fig 7). In RP retinas treated
with control siRNA, we observed stronger ß-tubulin labeled fibrotic processes of Müller cells
forming glial sealing at the outer retina (Fig 7A, arrows). After 24 hr ZO-1 siRNA post-injection,
we did not observe glial sealing that was apparent in control retina (Fig 7B, arrowheads). GFAP
immunoreactivity was present in bundles of fibrotic processes of Müller cells at the outer retinas
of the control, non-targeting siRNA (Fig 7C, arrows). In contrast, we did not observe processes
of Müller cells sealing the outer retina in ZO-1 siRNA treated retina (Fig 7D, arrowheads). These
results suggested that ZO-1 is important for the formation of glial sealing in the outer retina.

Discussion

Dramatic effect of AAA treatment on the cone distribution and glial
sealing
With a single intravitreal injection in RP retinas of AAA at P30 the rings of cones are disrupted
without reducing the cone numbers at P33 (Fig 1). In addition, Müller cells processes were no
longer clustered in broccoli-like shapes and the Müller cells processes were wrapping around
the redistributed cones in the outer retina (Fig 4L). The Voronoi domain analysis confirmed
disruption of cone rings statistically (Fig 1D–1F). These dramatic changes in cone distribution
may be due to the changes in the integrity of the outer retina where Müller cells processes
formed a dense fibrotic sealing (Fig 2 [6, 7]). This is supported by impairment of OLM integrity
and presence of photoreceptor mislocalization at the outer retina after AAA treatment [9].

In S334ter-line-3 retina, we observed expression of GFAP and ß-tubulin throughout the
Müller cells including fibrotic processes at the outer retina (Fig 2A and 2D). Furthermore, with
the injection of AAA, the distal sealing formed by fibrotic processes of Müller cells was not
apparent with ß-tubulin and GFAP after 3 days of post-injection (Fig 2B and 2E). This result is
somewhat different from the previous study showing increased expression of cytoskeletal pro-
teins including ß-tubulin and GFAP in disrupted Müller cells [29–31]. This discrepancy may

Fig 7. ZO-1 is important for the formation of glial sealing in the outer retina.Confocal micrographs of vertical sections labeled with ß-tubulin (A, B) and
GFAP (C,D) in retinas treated with non-targeting siRNA (A, C) and ZO-1 siRNA (B, D). The fibrotic processes were labeled with ß-tubulin (A) and GFAP (C) at
the outer retina of non-targeting siRNA treated RP retinas (A, C, arrows). After 3 days of AAA post-injection, ß-tubulin and GFAP immunoreactive fibrotic
sealing disappeared at the outer retina (B, D, arrowheads). OPL, outer plexiform layer; INL, inner nuclear layer. Scale bar = 10 μm.

doi:10.1371/journal.pone.0151668.g007
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be due to lower doses of AAA used in this study than those in other studies cited above and
had limited effect on Müller cells toxicity. The thick distal glial sealing labeled with ß-tubulin
and GFAP reappeared in the outer retina after 2 weeks of post-injection (Fig 2C). The transient
effects of AAA on distal fibrotic glial sealing at the outer retina may be due, in part, to the dis-
rupting adherens junctions at the outer retina. Normally, ZO-1 [10, 11, 13] is present between
the inner segments of rods and cones and the apical processes of Müller cells [12]. In our previ-
ous study we showed that ZO-1 is expressed between the photoreceptor segments and the pro-
cesses of Müller cells and also in between the Müller cells processes [7]. Upon injection of
AAA, we observed a transient disappearance of ZO-1 expression after 3 days of AAA treatment
(Figs 3 and 4); however, it reappeared 2 weeks after treatment (Fig 5). This disappearance coin-
cided with cone mosaic rearrangement (Fig 2C). Therefore, we suggest that suppression of ZO-
1 allows the rearrangement of cone mosaics and the reappearance of ZO-1 fixed the spatial dis-
tribution of cones. The support for this hypothesis comes from reversible effects of AAA on
ZO-1 and the integrity of OLM [9]. Furthermore, pharmacological interference or genetic dis-
ruption of various components of the adherens junction and /or the supporting scaffold leads
to significant impairment in the OLM integrity [32, 33]. In either case, AAA suppression of
ZO-1 expression is still an unresolved mechanism. But since the junctional complexes at het-
ero-cellular adhesion sites are composed of many proteins that may traffic as supramolecular
complexes [34], multiple pathways could effectively suppress ZO-1 expression.

Effects of ZO-1 on cone distribution and glial sealing
In the RP retinas, ZO-1 expression still exists in the network of cone rings [7]. However, ZO-1
siRNA inhibition spreads cones out in the retina homogeneously without reducing cone num-
ber (Fig 5), which was confirmed statistically with Voronoi domain analysis (Fig 6). These
results were mirrored in cone distribution in AAA-treated RP retina (Fig 1). These findings sug-
gest that the ZO-1 represents at least one critical component for cone rearrangement in RP ret-
ina. Again, this dramatic change in cone distribution may be due to the changes in the integrity
of the outer retina where Müller cells processes formed a dense fibrotic sealing (Fig 2 [6, 7]).
ZO-1 is known to act as a molecular scaffold that organizes, assembles, and links the tight junc-
tional complexes to the cytoskeleton through a number of protein-protein interactions[35]. Of
note, there are significant differences in OLM adherens junction composition in the different
models. In normal mice, these junctions form between photoreceptors and Müller cells. How-
ever, in another RP model, for example, PDE6βrd1/rd1, many junctions formed directly in
between Müller cells, indicating significant OLM remodeling [36]. Thus suppressing the ZO-1
expression may weaken the bundles of filament by affecting the tight junctional complexes
within them at the distal sealing. Therefore, in our study we have shown that ZO-1 is a critical
component forming the glial sealing in the diseased retina.

Therapeutic implications
The outer nuclear layer (ONL) of the vertebrate retina contains a tightly packed, uniform array
of rods and cones, which is essential to ensure that the visual world is regularly sampled with
no empty visual space. However, cones in the S334ter rat model of RP were recently shown
both to survive for a longer period of time after the early rod deaths and to remodel in their
mosaic pattern into orderly arrays of rings [4, 5, 7]. The relevance of cone rings extends beyond
the S334ter RP model with well documented studies highlighting the appearance of dark
patches or ‘‘holes of photoreceptors” in both animal models such as the cyclin D1 (cd1) mutant
and P23H-line1 rat [37, 38], plus human retinal dystrophy, inherited retinal degeneration, and
photo-pigment genetic perturbations in M-opsin cones [39–42]. Thus, the cones in ring,

AAA Promotes Remodeling of the Cone Mosaic by Modulating the ZO-1

PLOS ONE | DOI:10.1371/journal.pone.0151668 March 15, 2016 13 / 17



though frequently absent in RP, is a major pathologic hallmark of retinal dystrophic condi-
tions. The center of these rings lack photoreceptors, indicating regional loss of visual function
(Yu WQ, et al. IOVS 2014; 55: ARVO E-Abstract 6198). Therefore, investigation of the patho-
logical etiology of cone rings is both fundamentally interesting and informative. Furthermore,
knowledge on modulating and rearranging photoreceptors from the ring patterns into a more
homogenous distribution may improve visual performance in these patients. In the current
study, we clearly demonstrated for the first time that siRNA inhibition of ZO-1 expression
spread cones out in the retina homogeneously leaving no empty space in RP and the dosage
used for ZO-1 siRNA did not harm cones up to 24 hrs. However, additional studies are essen-
tial to determine if the effect on cone density can be sustained for a longer duration. Previous
studies have shown that higher doses of ZO-1 siRNA can reduce ZO-1 expression, but results
in photoreceptor death 48 hrs after treatment [12]. Furthermore, ZO-1 exists at the tight junc-
tions of the retinal pigment epithelium [43] and at the composition of tight or adherens junc-
tions around gap-junctional plaques at the outer plexiform layer [44]. Therefore, effects of ZO-
1 siRNA need to be carefully monitored in order to translate its potential use into a pharmaco-
logical tool of preventing or slowing progressive forms of retinal dystrophy. Strong evidence
exists that targeted disruption of the OLM junctional proteins enhances the integration and
migration of photoreceptor transplantation in degenerating retina [12]. Therefore, developing
siRNA technology on proteins that are involved in glial sealing may lead to substantial
increases in transplanted cell survival in degenerating retinas.

Conclusion
In our experimental RP rat model, AAA treatment reveals disruption of cone rings and distal
fibrotic processes of Müller cells, in part, by suppression of ZO-1 expression. Furthermore, we
discovered the importance of ZO-1’s role by silencing its expression through siRNA technology
to preserve cone rings and to contribute significantly to glial sealing formation. This represents
a key element to identifying the host of essential components involved in retinal degeneration’s
etiology and potential therapeutic targets to prevent blindness.
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