
Several inherited retinal diseases present at birth, mani-
festing as nystagmus and decreased vision in infants [1]. 
These retinal conditions, such as Leber congenital amaurosis 
(LCA) and congenital stationary night blindness (CSNB), 
represent genetically and clinically heterogeneous groups 
of retinal disorders. Accurate diagnosis of an infant with 
decreased vision is often difficult, as presentations within the 
groups can overlap. Furthermore, LCA, achromatopsia, and 
CSNB can all present initially with a normal fundus appear-
ance. Thus, precise diagnosis relies on electroretinography 
(ERG) and genetic diagnostic testing. In general, infants with 
severely attenuated or nonrecordable photopic and scotopic 
responses on ERG are diagnosed as having LCA, whereas 
those with absent cone-specific ERG responses and normal 
rod function are thought to have achromatopsia [1]. A ratio 
of the scotopic b-wave to a-wave amplitude of less than one 
(i.e., an electronegative waveform) indicates a possible diag-
nosis of CSNB [2]. However, performing ERGs in infants 

can be challenging, and ERG responses continue to mature 
throughout the first year of life, making it difficult to inter-
pret responses measured in infancy and to attain a definitive 
diagnosis early in disease [3].

CSNB can be further classified as type 1 (CSNB1) or 
type 2 (CSNB2), depending on symptoms and abnormalities 
on the ERG [4]. CSNB1, or complete CSNB, is characterized 
by predominant night blindness, mildly decreased visual 
acuity, moderate to high myopia, and nystagmus that tends to 
lessen with time [4]. On ERG testing, the scotopic b-wave is 
unrecordable, but the photopic system is less abnormal, with 
typical broadening of the a-wave, due to absent photopic ON 
responses visible on photopic cone-specific ERG responses. 
The phenotype of CSNB2, or incomplete CSNB, is less 
distinct, and patients can present with impaired night vision, 
decreased visual acuity (VA), a variable degree of refractive 
error, nystagmus, light sensitivity, and the characteristic 
electronegative waveform on ERG [2,4]. ERG also shows a 
reduced but recordable scotopic b-wave, reduced photopic 
b-wave, and reduced 30-Hz flicker, due to abnormalities at 
the level of the scotopic and photopic ON and the photopic 
OFF responses [4,5]. CSNB2 can be difficult to diagnose due 
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to its relatively low incidence and lack of specific symptoms. 
Furthermore, studies have shown that at least one of the major 
phenotypic features (night blindness, decreased visual acuity, 
myopia, and nystagmus) may be absent in up to three-quarters 
of cases [6-8].

The lack of specific symptoms and ocular findings in 
CSNB2 makes genetic testing a necessary component of 
diagnosis [8]. CSNB2 is most often caused by mutations in 
the CACNA1F gene (MIM#300110) [6,9,10], which encodes 
the α1F subunit of Cav1.4, a retina-specific voltage-gated 
L-type calcium-channel located in the membrane of photo-
receptor and bipolar cell ribbon synapses [11,12]. CaV1.4 
(α1F) knockout mouse models and mice with null mutations 
exhibit abnormally formed synaptic ribbons and cone photo-
receptors, and outgrowth of rod bipolar and horizontal cell 
processes into the outer retina [13-15]. Furthermore, knock-in 
mice with the equivalent amino acid change of a known muta-
tion in human CACNA1F, p.(Ile756Thr), also show immature 
ribbon synapses and diminished cone and rod photoreceptor 
terminals [16,17]. These findings support the long-postulated 
reduced signal transfer to ON and OFF bipolar cells as the 
reason for the decreased b-wave amplitudes and night blind-
ness, reduced best-corrected visual acuity (BCVA), as well as 
photophobia in CSNB2 [10,11].

Interestingly, mutations in CACNA1F have also been 
linked to cone-rod dystrophy 3 (CORDX3), Åland island eye 
disease (AIED), and X-linked retinitis pigmentosa (XLRP), 
supporting the idea that one gene can be involved in multiple 
clinical entities [18-20]. Retinal dystrophies often present as a 
spectrum of clinical findings that do not always concur with a 
defined set of diagnostic characteristics, especially in infancy. 
Here, we describe two cases that further illustrate this theme. 
These patients were seen at the clinic with an initial presenta-
tion suggestive of LCA, including severely reduced photopic 
and scotopic functions on ERG and nystagmus, but upon 
genetic testing, they were found to have novel mutations in 
CACNA1F. This report demonstrates the significant overlap 
in phenotypes between LCA and CSNB2 and emphasizes 
that genotype often cannot be predicted by phenotype. We 
further propose that the classification of diseases by geno-
type (CACNA1F-associated retinal dystrophy) provides a 
more precise diagnosis for patients rather than the traditional 
phenotypic names (CSNB, LCA, etc.).

METHODS

The study protocol was approved by the Institutional Review 
Boards of Massachusetts Eye and Ear Infirmary (MEEI), 
Boston Children’s Hospital (BCH), and the Children’s 
Hospital of Philadelphia (CHOP). Patients were recruited 

and clinically evaluated at three centers (Electroretinography 
Service at MEEI and BCH and the Ophthalmic Genetics & 
Visual Electrophysiology Clinic at CHOP), and the parents 
of the patients provided informed written consent for the 
study. This research adhered to the tenets of the Declaration 
of Helsinki and was conducted in accordance with the Health 
Insurance Portability and Accountability Act.

Clinical evaluation: The patients underwent a full ophthalmic 
examination which included best-corrected preferential 
looking and Kay picture tests, followed by Snellen visual 
acuity depending on age, visual field testing on the Gold-
mann perimeter with the V-4e white test light, the Lang 
Stereotest, the Ishihara 38 plate color test, the Farnsworth 
Dichotomous-15 color vision test, dark adaptation testing 
performed with the Goldmann-Weekers dark adaptometer, 
and full-field ERG testing. ERG responses were obtained 
following protocols as described elsewhere [21-23]. To 
summarize, a calibrated photodiode (IL1700; International 
Light, Newburyport, MA) with a scotopic or photopic filter 
was used at BCH to measure stimulus strength. For the 
dark-adapted eye, responses to full field, blue stimuli were 
recorded over a 5 log unit range (from -2 to 3 log scot td s) 
at increments of 0.3 log unit steps. Cone and cone-driven 
responses were recorded to a range of red flashes (0.3 – 35 
cd·s/m2) presented on a steady, white rod-saturating back-
ground (25.5 cd/m2). Photopic function was also tested with 
a 30-Hz flickering stimulus of 2.25 cd·s/m2 [21]. At MEEI, 
full-field ERGs were elicited in response to single flashes of 
0.5 Hz dim blue light, 0.5 Hz white light, and 30 Hz white 
light at durations of 10 µs [22]. At CHOP, full-field ERGs 
were obtained according to ISCEV standards as outlined 
previously [23]. 0.01 cd·s/m2 was used for rod stimulation, 
3.0 cd·s/m2 for all other standard responses, and 30 cd/m2 for 
light adaptation and background luminance. After parents of 
the patients provided informed consent, blood samples were 
collected from the patients and available family members 
for DNA extraction. Blood samples were collected from the 
patients and available family members. Leukocyte DNA was 
purified using standard procedures.

Genetic analysis: Before the current study, both patients 
had undergone limited genetic diagnostic testing at several 
testing laboratories. The testing included testing for identified 
mutations in known LCA disease genes (the John and Marcia 
Carver Nonprofit Genetic Testing Laboratory, Iowa City, IA) 
and direct sequencing of the LCA and/or RP genes in-house 
and through the ARUP Laboratories (Associated Regional 
and University Pathologists, Inc., Salt Lake City, UT).

The patients then underwent more thorough genetic 
testing for the studies reported here. Patient 1 was genetically 
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diagnosed with whole-exome sequencing of the patient and 
available family members. The whole-exome libraries (Sure-
Select Human All Exon V4, Agilent Technologies, - Santa 
Clara, CA) were sequenced on a HiSeq platform (Illumina, 
Inc., San Diego, CA) as previously reported [24]. Patient 2 
was genetically screened with targeted exon sequencing with 
the Genetic Eye Disease (GEDi) test, as previously described 
[25]. Briefly, the custom SureSelect targeted enrichment 
GEDi capture kit (Agilent Technologies, Inc, Santa Clara, 
CA) was designed to capture and enrich coding exons and 
select deep intronic regions associated with 257 genes, 
including known IRD genes, early-onset glaucoma and optic 
atrophy genes, and candidate IRD disease genes. The targeted 
enrichment GEDi capture set included all currently known 
monogenic inherited retinal degeneration genes [25]. GEDi 
targeted enrichment sample sequencing was performed on a 
MiSeq NGS platform (Illumina, Inc.).

NGS sequencing data were analyzed using custom 
and publicly available tools. The Burrows-Wheeler Aligner 
(BWA) was used to align the sequence reads to the human 
reference genome (GRCh37) and SAMtools to remove poten-
tial duplicates and identify initial single nucleotide polymor-
phisms (SNPs) and insertions and deletions [26,27]. Custom 
and publicly available variant filtering programs were applied 
to remove likely false positive calls [27,28]. The resulting 
variant calls were annotated using a custom human base-
pair codon resource and public resources [UCSC Genome 
Browser, ENSEMBL, 1000 Genomes Project, Exome Variant 
Server (EVS), SIFT, and PolyPhen-2] [29,30]. Variants were 
filtered by frequency (<0.15%) based on the EVS database 
and the Single Nucleotide Polymorphism Database (dbSNP), 
as before [31]. Non-synonymous variants, nonsense muta-
tions, potential splice-site changes, and rare synonymous 
variants were considered. Rare synonymous changes were 
evaluated in terms of the possibility of affecting splicing.

Mutations in CACNA1F were confirmed through Sanger 
sequencing and cosegregation analysis in available family 
members. Regions of interest were PCR amplified (Taq 
DNA Polymerase, Life Technologies, Carlsbad, CA), purified 
(ExoSap-IT, Affymetrix, Santa Clara, CA), and sequenced 
(BigDye Terminator v3.1, ABI 3730xl, Life Technologies, 
Grand Island, NY). Regions of interest were PCR amplified 
for 35 cycles using the following conditions: denaturation 
at 95°C, annealing at 60°C, and extension at 72°C. Variant 
annotations were performed according to the transcript 
ENST00000376265.

RESULTS

Case 1: Patient 1 (OGI 117_301) presented at age 3.5 months 
with nystagmus, which had been noted by his parents since 
1 month after birth. He showed fixation on faces and seemed 
to have normal visual attention. The fundus exam was 
normal. The ERGs were notable for decreased scotopic and 
photopic responses with amplitudes of rod-specific, maximal 
combined rod-cone, and cone-specific responses at 10% of 
normal (Figure 1A). No obvious electronegative aspect of the 
maximal combined rod-cone response was noted at that time. 
A preliminary clinical diagnosis of LCA was made. However, 
genetic testing for mutations in previously identified LCA 
genes was negative.

At 7.5 months, the maximal combined ERG response 
began to show an electronegative waveform (Figure 1A), 
which was confirmed more clearly at age 4 years. The fundus 
exam was normal at that time (Figure 1B). His nystagmus had 
resolved by age 10 months, and he had no refractive error. 
His parents also noted that his fixation on objects and faces 
improved, and his BCVA was 20/60 oculus dexter (OD) and 
20/70 oculus sinister (OS) at age 4 (Appendix 1). There was no 
history of vision loss or consanguinity in the family (Figure 
1C). Using whole-exome sequencing, a new nonsense muta-
tion in CACNA1F was discovered at c.966 G>A, resulting in 
truncation of the protein at codon 332 [p.(Trp332*)].

Case 2: The parents of Patient 2 (D226–1) brought him to the 
clinic after noticing “flickering of eyes” since age 3 weeks. 
On his first ophthalmologic exam at 5 months, the patient 
was interactive and visually responsive. He had vertical 
nystagmus, visual acuity of 20/270 with binocular viewing 
(20/360 OD and 20/270 OS) as measured with preferential 
looking, cycloplegic refraction of +9.50 S OD and +9.00 S 
OS, and esotropia of 30 prism diopters (Appendix 1). On 
the fundus exam, slightly increased pigmentation was noted 
in the parafoveal area. Scotopic ERG testing performed at 
BCH showed response amplitudes below the 99% prediction 
interval for normal. Photopic function was also considerably 
attenuated, with b-wave responses below the normal mean 
for his age by two standard deviations (Figure 2A). The 
responses did not demonstrate an electronegative waveform. 
The amplitudes of the 30-Hz flicker response were 10% of 
normal. His dark-adapted visual threshold was found to be 
elevated by 1.46 log units. These findings resulted in an 
initial diagnosis of LCA.

Patient 2 was followed regularly at BCH, and his best-
corrected visual acuity improved to 20/150 OD and 20/200 OS 
by age 3. His hyperopia increased slightly to +11.00 OU. He 
continued to have alternating esotropia of 30 prism diopters, 
and no stereopsis was demonstrated with the Lang test. At age 
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3, on a clinical exam, blunted foveal reflexes and a faint bull’s 
eye pattern in the macula were noted but were not evident 
on fundus photography (Figure 2B). At age 6, ERG testing 
showed improved scotopic responses compared to previous 
recordings, with b-wave amplitudes of approximately half the 
lower normal limit. Cone response amplitudes were 20% of 
normal. The amplitudes of the 30-Hz flicker were 20–25% 
of normal. At that visit, color vision testing was essentially 
normal, with only a few minor errors on the Ishihara plate 
test. Cycloplegic refraction was +11.50 sphere in both eyes. 
Best-corrected letter acuity was 20/100 OD and 20/70 −2 OS. 
Nystagmus and esotropia were present (Appendix 1).

At that time, further comprehensive genetic testing, 
which included sequencing all of the known inherited retinal 

disease (IRD) genes [25], showed a c.4487G>A mutation in 
CACNA1F, leading to a p.(Gly1496Glu) change. This position 
was highly conserved (Figure 3A), and this mutation was 
predicted to be deleterious (PolyPhen-2, SIFT, Protein Varia-
tion Effect Analyzer (PROVEAN), and MutationTaster; Table 
1) [29,32-34]. Family history was significant for a maternal 
aunt with Stargardt disease (Figure 2C). There was no history 
of consanguinity in the family.

DISCUSSION

The two patients described had early onset retinal degen-
eration and based on their clinical findings were initially 
diagnosed with LCA. Genetic diagnostic testing, however, 

Figure 1. Exam findings for Patient 1. A: Full-field flash electroretinography according to International Society for Clinical Electrophysiology 
of Vision (ISCEV) standards is shown at ages 3.5 months (black traces) and 7.5 months (gray traces). At 3.5 months, the electroretinogram 
(ERG) traces showed notably decreased amplitudes in the rod and cone responses, with the amplitudes in the rod-specific, maximal combined 
rod-cone, and cone-specific responses at 10% of normal. No obvious electronegative aspect was evident at that time. At 7.5 months, the 
ERG traces showed significantly reduced amplitudes in the rod and cone responses and an electronegative waveform on maximal responses. 
Control ERGs performed at the same institution for a healthy 8-month-old are included for comparison (red traces). DA = dark adapted; 
LA = light adapted. B: Right and left fundus photographs showing essentially normal fundi at age 4 years. C: Family pedigree of Patient 1.
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did not identify mutations in known LCA genes. Instead, 
both patients were found to have mutations in the CACNA1F 
gene as the likely cause of their retinal disease, which is 
usually associated with CSNB2. These findings are impor-
tant for several reasons. First, these findings demonstrate 
that phenotypes caused by mutations in different IRD genes 
overlap, and thus, it is difficult to predict genotype based 
on phenotypic characteristics. In particular, the phenotype of 
CSNB2 is intermediate between the archetypes of LCA (poor 
acuity, nystagmus, and hyperopia) and the more familiar 
form of CSNB1 (good acuity, less nystagmus in adulthood, 
and myopia). Further, clinical exams and electrophysiologic 

testing can be difficult in young children, compounding the 
clinical diagnostic challenge. The apparently atypical genetic 
diagnosis made for these patients emphasizes the importance 
of broad genetic diagnostic testing for patients with IRD, 
such as panel-based NGS tests [25,35-37]. Finally, the find-
ings reported highlight the importance of continued studies 
of the genetic causality of IRD, including investigation of 
potential modifier alleles that may contribute to determining 
the severity of disease [38-43].

The mutations in CACNA1F in the two patients reported 
here are novel, and we strongly believe these mutations are 

Figure 2. Exam findings for Patient 2. A: Electroretinograms (ERGs) recorded from Patient 2’s right eye at 5 months old (black traces). 
Scotopic and photopic responses closest in flash strength to International Society for Clinical Electrophysiology of Vision (ISCEV) standards 
are shown. Mixed-response ERGs at 1.3 cd·s/m2 are shown instead of at the traditional 3.0 cd·s/m2 flash strength. Light-adapted ERGs at 
2.25 cd·s/m2 are shown instead of at the traditional 3.0 cd·s/m2 flash strength. Scotopic ERG testing showed response amplitudes below the 
99% prediction interval for normal, with prolonged b-wave implicit times [69]. Photopic function was also significantly attenuated, with 
b-wave responses below the normal mean for his age by two standard deviations and implicit times prolonged [70]. The amplitude of the 
30-Hz flicker response was 10 µV, about 10% of normal. Control ERGs performed at the same institution for a healthy 10-month-old are 
included for comparison (red traces). DA = dark adapted; LA = light adapted. B: Right and left fundus photographs at age 3 years, showing 
red foveal areas and increased pigmentation in the parafoveal area. C: Family pedigree of Patient 2. Stripes indicate a maternal aunt with 
Stargardt disease. 
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the disease-causing variants. The positions of both mutations 
are near other known pathogenic mutations in CACNA1F 
(Figure 3B). The missense mutation [p.(Gly1496Glu)] in 
Patient 2 is predicted to be a deleterious change at a conserved 
position (Table 1), and Patient 1 has a nonsense mutation 

[p.(Trp332*)] that causes a truncation at exon 7 (out of 48 
in total) of CACNA1F, which is presumed to result in a null 
allele. Further, neither patient had potential disease-causing 
mutations in other known IRD genes.

Given the genetic diagnoses of CACNA1F-associated 
retinal degeneration, the clinical findings in the patients 
described demonstrate the overlap in symptoms and clinical 
findings between LCA and CSNB. The clinical presenta-
tions of both patients were consistent with LCA: decreased 
vision and nystagmus in infancy and significantly reduced 
photopic and scotopic ERG responses. Patient 2 also had high 
hyperopia and an abnormal fundus exam, usually associated 
with LCA, whereas patients with CSNB tend to have myopia. 
Although hyperopia in CSNB is less common, it has been 
reported in other studies [44-46]. Neither patient underwent 
an electronegative ERG when they presented. Patient 1 did 
not show this finding until months to years after the initial 
presentation, and Patient 2 did not develop an electronega-
tive ERG, even at 6 years of age. A possible contributing 
factor is Patient 2’s refractive error, as high hyperopia has 

Figure 3. Schematics. A: Schematic showing the conservation of the amino acid p.(Gly1496Glu) across the genomes of ten species. B: 
Schematic of the CACNA1F transmembrane protein and the positions of mutations p.(Trp332*) and p.(Gly1496Glu). (Adapted from [4]). 

Table 1. PredicTion of PaThogeniciTy of CACNA1F 
c.4487g>a muTaTion leading To P.(gly1496glu) change.

 Variables Prediction 
software Prediction Score

Amino-Acid 
change

Polyphen-2 Probably 
Damaging 1

SIFT Damaging 0
Provean Deleterious −7.49

MutationTaster Disease 
causing 0.9999

Nucleotide 
conservation

PhyloP Conserved 5.512
PhastCons Conserved 1

GERP Conserved 5.37
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been reported to correlate with increased b-wave amplitudes 
[47]. It has also been reported that the development of the 
characteristic electronegative waveform in CSNB can take 
time to manifest [48].

Both patients reported here were diagnosed with LCA 
but were found to have mutations in a “CSNB gene,” demon-
strating that different types of IRD cannot be separated based 
on phenotype alone. In addition, distinguishing between 
different types of IRD, such as LCA and CSNB, based on 
ERG findings can be problematic, especially in young chil-
dren. ERGs are difficult to interpret in young infants as their 
amplitudes are smaller and increase with age [3,49]. Thus, 
what may initially seem like severely reduced ERG ampli-
tudes may improve on subsequent testing. This was observed 
in Patient 1, as his serial ERGs performed at one institution 
showed progressive development of retinal function over 
time. Furthermore, visual function during infancy can be 
initially profoundly subnormal and then improve months 
later, making early diagnosis challenging [48].

Adding to the already challenging task of differentiating 
LCA and CSNB is that some patients with LCA can exhibit 
improvements in visual function temporarily [50]. Several 
studies have reported that certain patients, such as those with 
mutations in RPE65 (Gene ID 6121, OMIM 180069), may 
show improved visual function over the first few years of life 
and deteriorate only as they reach their third to fifth decades 
[51,52].

One question raised by the findings presented here is 
why the retinal phenotypes produced by different mutations 
in genes associated with different types of retinal degenera-
tion overlap. It does not appear that the primary mutations in 
the disease gene account completely for severity, as Patient 
1 had clinically milder disease than Patient 2 but had a null 
allele of CACNA1F. This observation is common for patients 
with IRD, and it has been suggested that variants in addi-
tional genes may modify the severity of the phenotype from 
the primary mutation in CACNA1F, as has been suggested 
for other types of IRD [53-57]. Both patients had variants in 
other IRD genes (Table 2) that were ruled out as pathogenic 
but may function as modifier alleles.

The cases reported here exemplify the wide range 
of phenotypic variability encompassed by mutations in 
CACNA1F, which can present as CSNB2 or with LCA-like 
symptoms, or as AIED, CORDX3, or XLRP, as previously 
reported [18-20]. As indicated above, similar phenotypic 
variations are observed with many other forms of IRD. We 
believe these findings support broader use of genetic diag-
nostic testing for patients with IRD. This is especially true 
of making a correct diagnosis of the condition underlying 

nystagmus in the newborn. Multiple groups have reported 
successful application of panel-based tests and whole-exome 
sequencing to patients with IRD [25,58-62]. The present 
data suggest that panel-based testing is more accurate than 
exome sequencing at present, and as the costs of whole-
genome sequencing continue to fall, this modality may be 
applied more broadly for clinical diagnostic testing [25,63]. 
In concert with increased use of genetic diagnostic testing, 
we encourage clinicians to adopt a genotype-based system 
of disease classification, as this approach is more precise and 
will facilitate identification of patients who may benefit from 
gene-based therapies for these disorders, which show great 
promise in ongoing clinical trials [64-68].

APPENDIX 1. CLINICAL FINDINGS FOR PATIENTS 
1 AND 2.

To access the data, click or select the words “Appendix 1.”
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