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Excess of body fat often leads to obesity. Obesity is typically associated with serious medical diseases, such as cancer, heart disease,
and diabetes. Accordingly, knowing the body fat is an extremely important issue since it affects everyone’s health. Although there
are several ways to measure the body fat percentage (BFP), the accurate methods are often associated with hassle and/or high costs.
Traditional single-stage approachesmay use certain bodymeasurements or explanatory variables to predict the BFP.Diverging from
existing approaches, this study proposes new intelligent hybrid approaches to obtain fewer explanatory variables, and the proposed
forecastingmodels are able to effectively predict the BFP.The proposed hybridmodels consist of multiple regression (MR), artificial
neural network (ANN), multivariate adaptive regression splines (MARS), and support vector regression (SVR) techniques.The first
stage of the modeling includes the use of MR and MARS to obtain fewer but more important sets of explanatory variables. In the
second stage, the remaining important variables are served as inputs for the other forecasting methods. A real dataset was used to
demonstrate the development of the proposed hybrid models. The prediction results revealed that the proposed hybrid schemes
outperformed the typical, single-stage forecasting models.

1. Introduction

In recent years, cancer, heart disease, and diabetes have been
reported to be the leading causes of death for most countries
in the world [1, 2]. One of the most common risk factors
for those diseases is the obesity, and excess of body fat
often leads to obesity. One common cause of heart disease
is the process called atherosclerosis. This happens when fat
accumulates in the blood vessels, and it usually results in
the thicker walls of the vessels. The thicker walls lead to a
reduced flow of blood to the heart, and the heart becomes
damaged resulting in a heart attack. It has been reported
that excess body fat can increase the risk of six different
types of cancers, including bowel, oesophagus, pancreas,
kidney, endometrium, and breast cancers, respectively [3].
In addition, type II diabetes is also found in those who are
carrying too much body fat. Therefore, how to avoid obesity
has become a very important issue.

Although excess of body fat causes obesity, extremely low
BFP is also undesirable, as there are minimum requirements

for brain function.Accordingly, knowing the BFP can provide
a great deal of information regarding the current state of
health.

Maintaining a good BFP is a must for human health.
However, accurate and convenient ways to measure body fat
are not straightforward [4, 5]. For example, the hydrostatic
weighing was reported to be a reliable method for the
measurement of body fat content, but it is not convenient
[4]. A new technology, Dual Energy X-ray Absorptiometry
(DEXA), is very accurate and precise tomeasure the body fat.
However, DEXAmay suffer from standardization issues; that
is, resultsmay varywith the specific equipmentmanufacturer,
data collection methods, and/or software analysis. Conse-
quently, it is desirable to have some convenient methods to
predict the BFP.

While some typical studies have employed data mining
techniques to classify the existence of certain diseases [2,
6, 7], the present study focuses on the development of
intelligent forecasting techniques to effectively predict the
BFP. The body fat datasets used in this study were real data
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obtained from Johnson [5]. The datasets contain the BFP
which were determined by underwater weighing and 13 body
circumference measurements for 252 people. Although one
can employ the aforementioned variables to predict BFP
through the use of multiple regression (MR) techniques or
some machine learning approaches, the true relationship
between these measurements and BFP may not be easy to
determine. Several studies have used multiple regression
techniques to build a forecasting model to estimate the BFP
[5, 8–10]. However, the MR models are criticized for its
strong assumptions such as variation homogeneity [2]. In
addition, some data mining techniques, such as artificial
neural network (ANN), multivariate adaptive regression
splines (MARS), and support vector regression (SVR), have
become alternatives in modeling forecasting problems due
to their capability to capture complex nonlinear relationships
among variables [11–13]. Those data mining techniques have
been reported to have better forecasting capability than the
regression technique [14–18]. Nevertheless, those techniques
may have some limitations. For example, ANN has been
criticized for its long training process in designing the
optimal network’s topology. Also, ANN is unable to identify
the relative importance of potential input variables [19–
22]. Additionally, using a single technology to address all
of the prediction problems may not always be possible
[23].

To overcome the aforementioned difficulties and main-
tain the prediction accuracies of existing approaches for
BFP, this study is aimed at proposing single and hybrid
forecasting models to predict BFP. The single-stage fore-
casting modeling includes MR, ANN, MARS, and SVR
approaches. The hybrid models integrate two modeling
components. The first component of the model uses its
own feature to capture the important but fewer explanatory
variables. The second component of the hybrid schemes gen-
erates the predictions based on those explanatory variables.
Because MR and MARS have great capability to select the
important explanatory variables, in this study, the combina-
tions of MR and ANN (MR-ANN), MR and MARS (MR-
MARS), MR and SVR (MR-SVR), MARS and MR (MARS-
MR), MARS and ANN (MARS-ANN), and MARS and
SVR (MARS-SVR) are employed as the hybrid forecasting
models.

In terms of prediction capability, this study compares
the typical single-stage forecasting models and the proposed
hybrid model for BFP application. The mean absolute per-
centage error (MAPE), the root mean square error (RMSE),
and themean absolute difference (MAD) are used as the fore-
casting accuracymeasures.The superior prediction capability
of the proposed hybrid approach is addressed.The remainder
of this study is organized as follows. The following section
introduces themethodologies ofMR,ANN,MARS, and SVR,
and a literature review is also provided. The designed MR,
ANN, MARS, and SVR models are presented in Section 3,
and a real BFP dataset is used to verify the typical and
proposed forecasting models. The performances for all of the
forecastingmodels are demonstrated and discussed.The final
section addresses the research findings and concludes this
study.

2. Research Methodologies

This study considers MR, ANN, MARS, SVR, and their
hybrid modeling schemes as possible forecasting models for
BFP. These methodologies are addressed as follows.

2.1. Multiple Regression Modeling. Multiple regression analy-
sis can be deemed as one of the most used statistical methods
in modeling real-world applications.TheMR involves setting
up the relationships between one response variable and
several explanatory variables. The performance of MR is
acceptable when the assumptions have been met. However,
the assumptions of theMRmodelmay confine its application.
The general MR model is represented as follows:

𝑦 = 𝛽
0
+ 𝛽
1
𝑋
1
+ 𝛽
2
𝑋
2
+ ⋅ ⋅ ⋅ + 𝛽

𝑝
𝑋
𝑝
+ 𝜀, (1)

where 𝛽
0
, 𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑝
are model parameters and 𝜀 is the

error term.The 𝜀 accounts for the variability in 𝑦 that cannot
be explained by the linear effect of the𝑝 explanatory variables.
There are four assumptions about the 𝜀 inMRmodel, and they
are as follows.

(1) The 𝜀 is a normally distributed random variable.
(2) The 𝜀 is a random variable with a mean value of zero;

that is, 𝐸(𝜀) = 0.
(3) The variance of 𝜀 is denoted by 𝜎2 and is the same for

all values of the explanatory variables𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑝
.

(4) The values of 𝜀 are independent.

Also, because collinearity among explanatory variables
will lead to imprecise estimates and serious stability prob-
lems, the collinearity diagnosis procedure should be per-
formed first before screening important explanatory vari-
ables. In this study, a well-known criterion, the variance
inflation factor (VIF), is applied to examine collinearity. The
VIF is described as follows:

VIF (𝑋
𝑗
) =

1

1 − 𝑅2
𝑗

, 𝑗 = 1, 2, . . . , 𝑘, (2)

where𝑅2
𝑗
is the coefficient of determination of a regression𝑋

𝑗

that evaluates all other explanatory variables.The tolerance is
defined as the reciprocal of the VIF. It has been suggested that
when the value of VIF is greater than 10, the sample set may
have enough variation to suggest serious multicollinearity.
This study used the technique where one or some explanatory
variables could be dropped from the model in order to lessen
the collinearity and thus reduce the standard errors of the
estimated regression coefficients of the explanatory variables
remaining in the model. In addition to the simplicity and
effectiveness, this technique has another advantage of reduc-
ing the number of explanatory variables. This characteristic
is very suitable for hybrid modeling since it usually captures
less explanatory variables for the initial stage of modeling.

Typically, when considerable explanatory variables are
involved in the MR design, a great amount of computation
is required for examining a large volume of computer out-
puts, much of which are associated with poor MR models.
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As a consequence, three variable selection procedures are
employed in this study. Those three selections include for-
ward selection, backward elimination, and stepwise regres-
sion procedures. Given a BFP dataset with 13 explanatory
variables, this study uses the aforementioned selection proce-
dures to select the explanatory variables that lead to the best
model.

2.2. Artificial Neural Network Modeling. Due to ANN’s asso-
ciated memory characteristic and its generalization capa-
bility, ANN has been increasingly utilized for modeling
nonstationary processes [24–28].

ANN is usually classified into two categories: feedforward
and feedback networks [28]. The nodes in the ANN can be
divided into three layers: the input, the output, and one or
more hidden layers. The output of each neuron in the input
layer is the same as the input to that neuron. For each neuron
𝑗 in the hidden layer and neuron 𝑘 in the output layer, the net
inputs are given by

net
𝑗
= ∑

𝑖

𝑤
𝑗𝑖
× 𝑜
𝑖
, net

𝑘
= ∑

𝑗

𝑤
𝑘𝑗
× 𝑜
𝑗
, (3)

where 𝑖(𝑗) is a neuron in the previous layer, 𝑜
𝑖
(𝑜
𝑗
) is the output

of node 𝑖(𝑗), and 𝑤
𝑗𝑖
(𝑤
𝑘𝑗
) is the connection weight from

neuron 𝑖(𝑗) to neuron 𝑗(𝑘). The neuron outputs are given by
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𝑖
, (4)
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where net
𝑗
(net
𝑘
) is the input signal from the external source

to the node 𝑗(𝑘) in the input layer and 𝜃
𝑗
(𝜃
𝑘
) is the bias.

The transformation function shown in (4) to (6) is called a
sigmoid function.

The generalized delta rule is the conventional technique
used to derive the connection weights of the feedforward
network [28]. Initially, a set of random numbers is assigned
to the connection weights. Then, to determine the pattern 𝑝
with a target output vector 𝑡

𝑝
= [𝑡
𝑝1
, 𝑡
𝑝2
, . . . , 𝑡

𝑝𝑀
]
𝑇, the sum

of the minimized squared error is given by
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𝑝𝑗
)
2

, (7)

where𝑀 is the number of output nodes.

2.3. Multivariate Adaptive Regression Splines Modeling.
MARS has been generally applied in many fields [29–33].
The general MARS function can be represented as follows
[33]:

𝑓 (𝑥) = 𝑏
0
+

𝑀
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where 𝑏
0
and 𝑏
𝑚
are parameters, 𝑀 is the number of basis

functions (BF), 𝐾
𝑚

is the number of knots, 𝑆
𝑘𝑚

takes on

values of either 1 or −1 and indicates the right or left sense
of the associated step function, ](𝑘,𝑚) is the independent
variable, and 𝑡

𝑘𝑚
is the knot location.

A two-stage process is usually used to choose the optimal
MARSmodel. Initially, a large number of basis functionswere
used to fit the data. Secondly, the basis functionswith the least
contributionswere deleted using generalized cross-validation
(GCV) criterion. A measure of variable importance can be
obtained by observing the decrease in the calculated GCV
values when a variable is removed from the model. The GCV
can be expressed as follows:

LOF (𝑓
𝑀
) = GCV (𝑀) =

(1/𝑁)∑
𝑁

𝑖=1
[𝑦
𝑖
− 𝑓
𝑀
(𝑥
𝑖
)]
2

[1 − (𝐶 (𝑀) /𝑁)]
2

. (9)

2.4. Support Vector Regression Modeling. While support vec-
tor machine (SVM) is a powerful technique in machine
learning areas, SVR can be deemed as a special form of
SVMs. Due to its prediction capability, SVR has been used for
predictions inmany fields [34–36]. Based on the computation
of a linear regression function in a high-dimensional feature
space, the inputs for SVR are mapped via a nonlinear
function. The modeling of SVR can be described as follows.
Suppose

𝑓 (𝑥) = (𝑤 ⋅ Φ (𝑥)) + 𝑏, (10)

where 𝑤 is the weight vector, 𝑥 represents the model inputs,
𝑏 is a bias, and Φ(𝑥) stands for a kernel function which uses
a nonlinear function to transform the nonlinear input to be
linear mode in a high-dimensional feature space.

Usually, the regression modeling obtains the coefficients
through minimizing the square error, which can be con-
sidered as empirical risk based on loss function. The 𝜀-
insensitivity loss function was introduced [37], and it can be
described as follows:

𝐿
𝜀
(𝑓 (𝑥) , 𝑦) = {

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑦
󵄨󵄨󵄨󵄨 − 𝜀, if 󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑦

󵄨󵄨󵄨󵄨 ≥ 𝜀,

0, otherwise,
(11)

where 𝑦 is the target outputs; 𝜀 defines the region of 𝜀-
insensitivity. When the predicted value falls into the band
area, the loss is zero. However, when the predicted value falls
outside the band area, the loss is defined as the difference
between the predicted value and the margin.

When empirical risk and structure risk are both con-
sidered, the SVR can be set up to minimize the following
quadratic programming problem:
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2
‖𝑤‖
2
+ 𝐶

𝑛

∑

𝑖=1

(𝜉
𝑖
+ 𝜉
∗

𝑖
)

subject to (𝑦
𝑖
− (𝑤 ⋅ Φ (𝑥

𝑖
)) − 𝑏 ≤ 𝜀 + 𝜉

𝑖

(𝑤 ⋅ Φ (𝑥
𝑖
)) + 𝑏 − 𝑦

𝑖
≤ 𝜀 + 𝜉

∗

𝑖

𝜉
𝑖
, 𝜉
∗

𝑖
≥ 0, for 𝑖 = 1, . . . , 𝑛,

(12)

where 𝑖 = 1, . . . , 𝑛 is the number of training data, (𝜉
𝑖
+

𝜉
∗

𝑖
) represents the empirical risk, (1/2)‖𝑤‖2 stands for the
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structure risk preventing overlearning and lack of applied
universality, and𝐶 is a modifying coefficient representing the
trade-off between empirical risk and structure risk. With an
appropriate modifying coefficient 𝐶, band area width 𝜀, and
kernel function, the optimum value of each parameter can be
solved by Lagrange procedure.

The SVR-based regression function can be described as
follows [37]:

𝑓 (𝑥, 𝑤) = 𝑓 (𝑥, 𝑟, 𝑟
∗
) =

𝑁

∑

𝑖=1

(𝑟
𝑖
− 𝑟
∗

𝑖
)Φ (𝑥, 𝑥

𝑖
) + 𝑏, (13)

where 𝑟
𝑖
and 𝑟∗

𝑖
are Lagrangian multipliers and satisfy the

equality 𝑟
𝑖
𝑟
∗

𝑖
= 0. Additionally, since the radial basis function

(RBF) is themost widely used kernel function [36], this study
uses it for our experimental study.The RBF can be defined as
follows:

𝜙 (𝑥
𝑖
, 𝑥
𝑗
) = exp(

−
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖
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𝑗

󵄩󵄩󵄩󵄩󵄩

2

2𝜎2
) , (14)

where 𝜎 denotes the width of the RBF.

3. BFP Data and Modeling Results

3.1. The BFP Dataset. In order to compare the forecasting
performance of the single-stage and the proposed hybrid
models, a real dataset of BFP is analyzed [5]. The dataset
consists of 252 records. Each person consists of 15 variables
and they are summarized in Table 1 (i.e., readers can refer to
the website http://wiki.stat.ucla.edu/socr/index.php/SOCR
Data BMI Regression for more details and descriptions
about the dataset).

In this dataset, the response variable BFP is denoted by𝑌.
Since the BFP (𝑌) is difficult to measure, Siri’s equation, as in
(15), is used to compute the value of 𝑌:

𝑌 =
495

𝐷
− 450. (15)

In the initial “cleaning” phase for this real dataset, this
study has found the body fat measurements of the 96th,
172nd, and 182nd cases are 0.4, 0.7, and −3.6, respectively.
Generally speaking, those three measurements deviate too
much from normal conditions, and this study has decided to
delete those three cases.This study also deleted the 42nd case
where the height is only 74.93 cm. Consequently, the sample
size becomes 248 cases. With the 248 cases used in this study,
the first 174 cases (around 70%of the total cases) were selected
as the model training sample while the remaining 74 (around
30% of the total cases) will be retained as the testing sample.

3.2. Typical Single-Stage Modeling Approaches. This study
considers the BFP (i.e., 𝑌) as the response variable and the
thirteen body circumference measurements (i.e., 𝑋

1
to 𝑋
13
)

as the explanatory variables. The first variable, density deter-
mined from underwater weighing, in Table 1 is just for
computing the values of BFP. To exclude variables with

Table 1: Variables’ definition in the BFP dataset.

Variable Meaning
𝐷 Density determined from underwater weighing
𝑌 BFP
𝑋
1

Age (years)
𝑋
2

Height (cm)
𝑋
3

Weight (kg)
𝑋
4

Neck circumference (cm)
𝑋
5

Chest circumference (cm)
𝑋
6

Abdomen 2 circumference (cm)
𝑋
7

Hip circumference (cm)
𝑋
8

Thigh circumference (cm)
𝑋
9

Knee circumference (cm)
𝑋
10

Ankle circumference (cm)
𝑋
11

Biceps (extended) circumference (cm)
𝑋
12

Forearm circumference (cm)
𝑋
13

Wrist circumference (cm)

high collinearity, the Pearson correlation coefficients between
variables are used. Table 2 shows the corresponding results.
When the correlation coefficient 𝜌

𝑋𝑖 ,𝑋𝑗
between variables 𝑋

𝑖

and 𝑋
𝑗
is greater than 0.7, we exclude the variable that

has a lower relationship with 𝑌 (i.e., exclude the variable
with a smaller correlation coefficient 𝜌

𝑋,𝑌
). After discarding

variables with high collinearity, eight explanatory variables
𝑋
1
, 𝑋
2
, 𝑋
4
, 𝑋
6
, 𝑋
10
, 𝑋
11
, 𝑋
12
, and 𝑋

13
remain in the MR

models.
In addition, this study employed three selection tech-

niques to develop alternativeMRmodels for BFP.These three
techniques include forward selection, backward elimination,
and the stepwise regression analysis. The forward selection
is similar to the stepwise selection. The first explanatory
variable is selected for inclusion of the regression equation
is the one with the largest positive or negative correlation
with the response variable, 𝑌. This explanatory variable is
entered into the regression equation only if it satisfies the
tolerance criterion for entry. If the first variable is entered,
the explanatory variable not in the regression equation that
has the largest partial correlation is considered next. The
forward selection procedure would stop when there are
no explanatory variables that meet the entry criterion. The
back elimination procedure initially considers all explanatory
variables to be included in the regression equation and
then sequentially removed. The explanatory variable with
the smallest partial correlation with the dependent variable
is first for the removal. If that variable meets the tolerance
criterion for elimination, it is removed. After the first variable
is removed, the variable remaining in the regression equation
with the smallest partial correlation is considered next. The
procedure would stop when there are no variables in the
regression equation that satisfy the removal criteria. At each
step for the stepwise selection procedure, the explanatory
variable which is not in the regression equation that has
the smallest probability of 𝐹 is entered, if the probability
is sufficiently small. Explanatory variables that have already
existed in the regression equation are removed if their

http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_BMI_Regression
http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_BMI_Regression


The Scientific World Journal 5

Table 2: Pearson correlations for pairs of variables.

𝑌 𝑋
1

𝑋
2

𝑋
3

𝑋
4

𝑋
5

𝑋
6

𝑋
7

𝑋
8

𝑋
9

𝑋
10

𝑋
11

𝑋
12

𝑋
13

𝑌 1.00
𝑋
1

0.296 1.00
𝑋
2

−0.076 −0.243 1.00
𝑋
3

0.559 −0.065 0.454 1.00
𝑋
4

0.433 0.069 0.275 0.820 1.00
𝑋
5

0.674 0.091 0.196 0.890 0.770 1.00
𝑋
6

0.789 0.180 0.169 0.882 0.735 0.907 1.00
𝑋
7

0.568 −0.091 0.323 0.944 0.736 0.841 0.876 1.00
𝑋
8

0.538 −0.210 0.244 0.872 0.706 0.759 0.788 0.898 1.00
𝑋
9

0.492 −0.043 0.421 0.854 0.660 0.727 0.756 0.831 0.814 1.00
𝑋
10

0.236 −0.092 0.356 0.586 0.435 0.463 0.429 0.533 0.489 0.580 1.00
𝑋
11

0.447 −0.049 0.261 0.784 0.701 0.718 0.667 0.732 0.764 0.678 0.432 1.00
𝑋
12

0.317 −0.127 0.272 0.597 0.587 0.543 0.456 0.497 0.543 0.501 0.358 0.634 1.00
𝑋
13

0.308 0.152 0.364 0.737 0.732 0.655 0.614 0.646 0.585 0.645 0.551 0.630 0.564 1.00

probability of 𝐹 is sufficiently large. The stepwise selection
procedure would stop when nomore variables are eligible for
inclusion or removal.

In this study, all those three selection procedures resulted
in the sameMRmodel. Table 3 lists the results of the parame-
ter estimates. As shown in Table 3, all the values of VIFs of the
remaining variables are smaller than 10. Accordingly, there is
no high collinearity among these explanatory variables. This
model is described in the following:

𝑌 = 12.253 + 0.101𝑋
1
− 0.133𝑋

2
− 0.685𝑋

3
+ 0.753𝑋

6

+ 0.653𝑋
12
− 1.971𝑋

13
.

(16)

It has been reported that more than 75% of neural
networks applications would employ the BPN structure, and,
thus, this study uses the BPN in building the ANN fore-
casting model [8, 38]. Also, since one-hidden-layer network
has been reported to be sufficient to model the complex
system, this study considers one hidden layer for the ANN
modeling structures [39–41]. This study uses 13 input nodes
(or explanatory variables) and one output node. The hidden
nodes range from 𝑛 − 2 to 𝑛 + 2, where 𝑛 is the number
of input variables. Thus, the hidden nodes are chosen as 11,
12, 13, 14, and 15, respectively. The ANN model has only one
output node, the prediction of BFP. According to the findings
of [42], the learning rates were set to be 0.01, 0.005, and 0.001,
respectively.

In addition, sinceMAPE is one of themost important per-
formance measurements for the forecasting capability, this
study uses the smallest MAPE as the criterion for selecting
theANN topology. After performing theANNmodeling, this
study found that the {13-11-1} topology with a learning rate of
0.01 provides the best results and a minimum testing MAPE.
Here, {𝑛

𝑖
-𝑛
ℎ
-𝑛
𝑜
} stands for the number of neurons in the input

layer, number of neurons in the hidden layer, and number of
neurons in the output layer, respectively. Table 4 presents the
corresponding MAPE values for various settings of the ANN

Table 3: The results of parameter estimates using three selection
procedures.

Variables Coefficient estimates 𝑡 VIF
Constant 12.253 1.247
𝑋
1

0.101 3.583 1.250
𝑋
2

−0.133 −2.408 1.292
𝑋
4

−0.685 −2.971 3.244
𝑋
6

0.753 16.479 2.317
𝑋
12

0.653 3.143 1.739
𝑋
13

−1.971 −3.509 2.662

Table 4: The topology setting results for the ANN model alone.

ANN topology MAPE
{13-11-1} 25.33694
{13-12-1} 25.48976
{13-13-1} 25.39417
{13-14-1} 25.49184
{13-15-1} 25.51463

topologies. Accordingly, the ANN topology of {13-11-1}with a
learning rate of 0.01 is chosen for the model of ANN alone.

This study also performed the MARS modeling to the
BFP dataset; the selection results are displayed in Table 5.
During the selection process, four important explanatory
variables were chosen. The corresponding relative impor-
tance indicators are shown in the last column of Table 5. As
a consequence, those seven important variables would be
served as the input variables for intelligent hybrid modeling
process. For SVRmodeling, same as ANNmodeling, we have
13 input variables. The two parameters, 𝐶 and gamma, were
estimated to be 23 and 2−7, respectively.

3.3. Proposed Hybrid Modeling Approaches. In this study, the
initial stage of the proposed hybrid modeling is to obtain
the fewer but more important input variables for the second
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Table 5: Basis functions and important explanatory variables for the MARS model.

Function Std. dev. Cost of omission Number of BF Variable Relative importance (%)
1 8.870 33.093 2 𝑋

6
100.000

2 2.000 19.513 1 𝑋
8

38.199
3 2.021 18.448 1 𝑋

13
28.095

4 2.865 17.664 1 𝑋
3

17.210
5 1.132 17.652 1 𝑋

1
16.981

6 1.230 17.627 1 𝑋
12

16.511
7 1.099 17.506 1 𝑋

4
14.027

Table 6: Performance comparison of typical single-stage and the
proposed hybrid models.

MAPE RMSE MAD
Single-stage models

MR 26.8337 4.8033 3.9596
ANN 25.3369 4.6958 3.7805
MARS 25.3455 4.6498 3.7646
SVR 25.2577 4.6432 3.7568

Proposed hybrid models
MR-ANN 25.7275 4.7099 3.8169
MR-MARS 24.2874 4.6384 3.6974
MR-SVR 25.2996 4.6427 3.8402
MARS-MR 25.8319 4.6760 3.8636
MARS-ANN 25.8000 4.6631 3.8898
MARS-SVR 24.3078 4.6946 3.8967

stage of forecasting models. Because this study utilizes MR
and MARS modeling selections, the explanatory variables
which were selected from MR and MARS models were used
to serve as the input variables for other prediction models.
Accordingly, this study employs six combinations of the
candidate hybrid models to predict the BFP. Those hybrid
models include MR-ANN, MR-MARS, MR-SVR, MARS-
MR, MARS-ANN and MARS-SVR, respectively.

For the hybridMR-ANNmodel, this study sets up 6 input
nodes in the input layer, and the number of hidden nodes was
set to 4, 5, 6, 7, and 8.The learning rates were identical to those
used in the single-stage ANN model. The {6-6-1} topology
with a learning rate of 0.01 provided the best results for the
hybrid MR-ANNmodel. For the MARS-ANN hybrid model,
this study used 4 input nodes in the input layer. The number
of hidden nodes was set to 2, 3, 4, 5, and 6. Accordingly, the
{4-3-1} topology with a learning rate of 0.01 provided the best
results. For the other hybrid models, this study used 6 and 4
important explanatory variables, which are selected by using
MR and MARS models, respectively, to predict BFP.

3.4. Prediction Results and Performance Comparison. In
addition to presenting the single-stage prediction modeling,
this study develops various hybrid models for prediction
of BFP. This study considers the forecasting accuracy mea-
sures of MAPE, MSE, and MAD to address the forecasting

performance for typical single-stage and the proposed hybrid
models. The prediction measurements are defined as follows:

MAPE = 1
𝑛

𝑛

∑

𝑡=1

󵄨󵄨󵄨󵄨𝑒𝑡
󵄨󵄨󵄨󵄨

𝑌
𝑡

× 100,

RMSE = √ 1
𝑛

𝑛

∑

𝑡=1

(𝑒
𝑡
)
2
,

MAD = 1
𝑛

𝑛

∑

𝑡=1

󵄨󵄨󵄨󵄨𝑒𝑡
󵄨󵄨󵄨󵄨 ,

(17)

where 𝑒
𝑡
stands for the residual at time 𝑡. A lowMAPE, MSE,

or MAD is associated with better forecasting accuracy.
The prediction results for single and the proposed hybrid

modeling are listed in Table 6. In Table 6, by considering
single-stage modeling approaches, we note that SVR model
has the best performance in terms of MAPE, RMSE, or
MAD indices. For the hybrid models, the MR-MARS has the
best prediction performance. In comparison to the single-
stage and the proposed hybrid models in Table 6, one is
able to observe that some of our proposed hybrid models
provide more accurate results than the single-stage models.
For example, in terms ofMAPE,MSE, orMAD, the proposed
hybrid MR-MARS model possesses the lowest values among
all the models.

Accordingly, the MAPE percentage improvements of the
proposed MR-MARS model over the single MR and MARS
models are 4.2% and 9.5%, respectively. In addition, the
MAPE percentage improvements of the proposed MR-SVR
model over the singleMR and SVRmodels are 4.1% and 3.8%,
respectively. Although the hybrid ANN models do not make
any significant improvements, the fewer body circumference
measurements were used for our proposed approach. This is
another significant advantage of using our hybrid models.

4. Conclusion

Maintaining appropriate body fat is very crucial for human’s
health. However, the measurement of the BFP is not straight-
forward. Accordingly, this study proposes the hybrid models
to effectively predict BFP. Although the 13 body circum-
ference measurements are involved in the real dataset, the
proposed models are able to provide better predictions
with fewer body circumference measurements. Actually, it
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is much more convenient to predict BFP with fewer body
circumference measurements for most of the people.

The rationale of the proposed hybrid modeling was
initially to obtain fewer important explanatory variables by
performing MR and MARS modeling techniques. Those
important variables were served as inputs for other designed
prediction models. According to the modeling results, the
proposed hybrid approaches were most appropriate for
predicting the BFP. Additionally, the proposed hybrid MR-
MARS model was the best alternative because it contained
fewer number of explanatory variables and provided the best
prediction MAPE precision.

In order to obtain more accurate predictions of BFP,
in addition to the existing 13 body circumference mea-
surements, one may collect some other measurements so
that the prediction precision can be increased. Moreover,
the proposed hybrid modeling is not the only prediction
technique that can be employed.Onemay combine other data
mining techniques, such as rough set or genetic algorithms,
to refine the structure of the hybridmodels.The possibility to
apply the same procedure to combine other methods as are
the evolving systems deserves further research.
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