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Due to the limitations of myoelectric control (such as dependence on muscular fatigue

and on electrodes shift, difficulty in decoding complex patterns or in dealing with

simultaneous movements), there is a renewal of interest in the movement-based control

approaches for prosthetics. The latter use residual limb movements rather than muscular

activity as command inputs, in order to develop more natural and intuitive control

techniques. Among those, several research works rely on the interjoint coordinations

that naturally exist in human upper limb movements. These relationships are modeled

to control the distal joints (e.g., elbow) based on the motions of proximal ones (e.g.,

shoulder). The regression techniques, used to model the coordinations, are various

[Artificial Neural Networks, Principal Components Analysis (PCA), etc.] and yet, analysis

of their performance and impact on the prosthesis control is missing in the literature. Is

there one technique really more efficient than the others to model interjoint coordinations?

To answer this question, we conducted an experimental campaign to compare the

performance of three common regression techniques in the control of the elbow joint on

a transhumeral prosthesis. Ten non-disabled subjects performed a reaching task, while

wearing an elbow prosthesis which was driven by several interjoint coordination models

obtained through different regression techniques. The models of the shoulder-elbow

kinematic relationship were built from the recordings of fifteen different non-disabled

subjects that performed a similar reaching task with their healthy arm. Among Radial

Basis Function Networks (RBFN), Locally Weighted Regression (LWR), and PCA, RBFN

was found to be the most robust, based on the analysis of several criteria including

the quality of generated movements but also the compensatory strategies exhibited

by users. Yet, RBFN does not significantly outperform LWR and PCA. The regression

technique seems not to be the most significant factor for improvement of interjoint

coordinations-based control. By characterizing the impact of the modeling techniques

through closed-loop experiments with human users instead of purely offline simulations,

this work could also help in improving movement-based control approaches and in

bringing them closer to a real use by patients.

Keywords: upper-limb prosthetics, movement-based control, shoulder-elbow coordinations, regression

algorithms, motor strategy
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1. INTRODUCTION

Advances in mechatronics and robotics over the last years have
led to the production of more biomimetic active prostheses with
more andmore degrees of freedom (DoFs). Upper limb amputees
can thus be proposed complex active mechatronic devices like
polydigital hands or whole arm prostheses like the Luke Arm by
Deka (Resnik et al., 2013) or the modular arm by the Applied
Physics Laboratory of Johns Hopkins (Johannes et al., 2011),
among other examples. However, while the hardware improved,
there remains a lack of natural, easy and intuitive control of
these artificial limbs with numerous active DoFs (Engdahl et al.,
2012; Cordella et al., 2016). Conventional myoelectric control
commands these multiple DoFs with only one or two muscles,
which leads to complex and sequential control schemes. Indeed,
depending on the amputation level, there can be the hand, the
wrist and the elbow to control at the same time, each with
at least two distinct actions to pilot. To improve myoelectric
control in such a case, solutions like pattern recognition have
been developed for more than 20 years (Saridis and Gootee,
1982; Park and Lee, 1998; Chu et al., 2006). Myoelectric
control via time-invariant muscle synergies is also explored to
allow continuous and simultaneous control of multiple DOFs
(Lunardini et al., 2016). Yet, with all the limitations of the
EMG signals measurement and its decoding [electrode shift,
sensibility to perturbations like sweat or skin impedance, etc.
(Castellini et al., 2014), leading to a robustness issue], there is a
renewal of interest in movements, that humans are more likely to
control than individual muscle contractions (see works by Kaliki
et al., 2008, 2013; Popovic and Popovic, 2001, 2002; Alshammary
and Bennett, 2016 for instance). It is actually easier to master
a sequence of movements than a sequence of contractions/co-
contractions, which is highly unnatural. We indeed receive
numerous sensory feedbacks of our own movements (vision
but also proprioception or tactile), compared to the one of
our muscular activity. Movement-based control approaches aim
to create a more intuitive and natural control by using the
motion of the residual limb to predict the movement of the
prosthesis. Indeed, it has been showed that one way the Central
Nervous System (CNS) deals with the redundancy of the human
body is to control synchronously several muscles or joints, by
grouping them into “synergies” (which exist at the muscle and
at the joint levels). For example, for a given space and task
type, there exist some synergies synchronizing shoulder and
elbow movements (Soechting and Lacquaniti, 1981; Lacquaniti
and Soechting, 1982; Lacquaniti et al., 1982; Cirstea et al.,
2003). These synergies can be modeled to then determine elbow
motions from shoulder motions (Popovic and Popovic, 2001;
Kaliki et al., 2008; Farokhzadi et al., 2016). Exploiting synergies
could especially be useful in prosthetics control since regression
methods could be used to predict motion of a distal prosthetic
joint from motion of residual proximal joints.

Of course, it is important to remind that different tasks and
motion spaces are associated to different synergies. It seems
therefore difficult to use movement-based control to predict
every motion, as each of them requires a different model; some
voluntary control would always be needed. Nonetheless, for some

given generic movements from the Activities of Daily Living,
there could be a functional gain for patient if, for fast motion
like reaching, part of the prosthesis joints was synchronously and
automatically controlled, avoiding a fatiguing and slow sequential
decomposition of joint actions. In this work, we thus focused
on reaching tasks, for which people do not naturally concentrate
on the intermediate joint control, making this motion perfectly
adapted to movement-based control. For now, our approach
is hybrid: movement-based control does not totally replace
myoelectric control but substitutes it only for the elbow even if
synergy-based control could be used for the wrist (Montagnani
et al., 2015). Long-term goal would be to control both elbow and
wrist with joint synergies; we chose to focus first on the elbow.
Joint synergies yet cannot control the hand as it is not part of a
synergistic scheme with more proximal joints.

Some studies have already been conducted on movement-
based control for elbow-shoulder motion. Merad et al. (2016a,b),
for instance, used Radial Basis Function Networks (RBFN),
one of the simplest Artificial Neural Networks (ANNs),
to estimate flexion/extension elbow angular velocity from
shoulder Euler angular velocities, measured with embedded
Inertial Measurement Units. In a wider context, Kaliki et al.
(2013) developed an inferential control scheme to command
elbow flexion/extension, forearm pronation/supination and
opening/closing of the hand at the same time. They combined
three ANNs and proportional control that took shoulder
rotational and/or translational movements as inputs (recorded
with a magnetic tracking system) and predicted the outputs cited
above. In addition to the work of Kaliki et al. and Merad et al.
several other studies on shoulder-elbow coordinations have been
published (Popovic and Popovic, 2002; Iftime et al., 2005;Mijovic
et al., 2008; Farokhzadi et al., 2016). At this time, two points can
be raised:

• There is not one accepted regression method to model
shoulder-elbow synergies, each research group or study uses
a different one, without any clear justification;

• The validation of the models are generally performed offline,
through simulations, or in a virtual reality environment. This
limits the evaluation of the robustness of the model in real case
scenario (i.e., in a closed-loop with a human user adapting in
return to the prosthetic reaction).

This study addresses these two issues. Starting from the fact
that none of the cited studies has used a linear regression
technique, we first wondered whether it was really unsuitable
(whereas it has been showed that shoulder-elbow synergies can
be approximated by a linear relationship; Micera et al., 2005).
Then, we wanted to compare the prediction ability of several
models to objectively and reliably determine the best modeling
tool for the control of a prosthetic elbow. We here focused on
three relatively simple methods: RBFN, the simplest ANN, which
was shown to correctly model shoulder-elbow synergies (Iftime
et al., 2005); Principal Components Analysis (PCA), to test the
prediction ability of a linear regression technique; and Locally
Weighted Regression (LWR), whose complexity is between PCA
and RBFN. We conducted a preliminary experimental session,
with fifteen healthy subjects that performed reachingmovements,
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to gather training data and build the three generic interjoint
coordination models. Once the models were implemented in the
prosthesis, a second experimental session was conducted with
ten other healthy subjects who performed the same tasks as in
the preliminary session but with the prosthesis substituting to
their natural arm. The prosthesis was controlled through the
mobilization of the subjects’ shoulder as the control input. To
determine the best regression methods for prosthetic control, six
metrics, that characterize the task achievement, the joint motions
and the body compensations, were assessed.

In this paper, we thus focus on the elbow-shoulder synergies
to automatize a prosthetic elbow during reaching tasks. Real tests,
in “closed loop” situation, were conducted to compare the three
elbow-shoulder coordination models obtained with RBFN, PCA,
and LWR respectively. During these tests, the participants could
directly react to the system behavior, which is closer to real life
scenario and gives more weight to the reflection on the models
robustness than fixed offline data simulation.

2. MATERIALS AND METHODS

2.1. Preliminary Session: Training Data
Acquisitions
To build and train the coordination models, data of motions
from healthy subjects are required. These training data were
collected from fifteen healthy subjects (different from those who
participated to the second session) who performed pointing
movements with their natural arm. Kinematics was recorded
with motion capture (Figure 1). Ten subjects used their right
arm, ten their left arm (five subjects participated twice). This
work was carried out in accordance with the recommendations
of the Université Paris Descartes ethic committee CERES.
Subjects provided written informed consent to participate in
the study, in accordance with the Declaration of Helsinki. Two
Inertial Measurement Units (x-IMUs from x-io technologies©),
a Codamotion (a camera-based motion capture system from
Charnwoods Dynamics, Leicestershire, UK) and a Nintendo
WiiTM balance board were used to record the movements. IMUs,
one located on the latero-posterior part of the arm, the other on
the trunk, at the sternum level, recorded the arm orientation in
the trunk coordinate system, represented by quaternion values
and then transformed into ZYX Euler angles. Codamotion
markers were placed on the hand, forearm, arm, shoulders and
hips to record elbow flexion/extension angle as well as other
kinematic parameters for further analysis. The balance board
was used to measure the variations of the weight repartition at
the feet level when performing the task. Subjects had to reach
nine targets at two different distances (18 targets in total), whose
height and position were adapted to subjects’ morphology (the
length of the subject’s armminus 10 cm defined the first distance,
the second one was 15 cm closer. Targets 1, 2, and 3 were at the
hip level, targets 7, 8, and 9 were at the shoulder level, targets 4,
5, and 6 were in-between see Figure 2). Each target was reached
three times with pause between each movement. No specific
instruction were given to the participants, to let them move
naturally. Only the initial position was imposed: subjects were

FIGURE 1 | Experimental set-up for training data recordings: participants

performed natural reaching movements toward 18 targets (9*2 distances).

x-IMUs are placed over the arm and the trunk; Coda markers on the arm,

shoulder, and trunk. Written informed consent for publication of images was

obtained from the participants.

asked to start with the humerus along the body and the elbow
flexed at 90◦. Shoulder ZYX Euler angular velocities, computed
in the trunk frame, and elbow flexion/extension angular velocity
(obtained from IMUs and Codamotion markers respectively)
were collected and used to train the three models offline, thanks
to a Matlab (Mathworks Inc.) script. As the aim is to predict
elbow motions from shoulder ones, the inputs of the models
were the shoulder data (ZYX Euler angular velocities in the trunk
frame) and the output was the elbow data (flexion/extension
angular velocity, see Figure 3). We chose to use joint velocities
to avoid any dependence on the initial position. Shoulder Euler
angles were selected as input data since they are commonly
used in shoulder-elbow coordination modeling (Lacquaniti et al.,
1982; Popovic and Popovic, 2001; Wu et al., 2002; Kaliki et al.,
2008). The kinematic data were filtered (low-pass filter with a
cut-off frequency of 5 Hz) and segmented. The start and end
of the movements were automatically determined with a Matlab
script, using a threshold on the hand velocity profile (30% of the
maximum velocity± an offset adapted to each subject). Only the
go were used for training the models.

2.2. Models
Let f be the function that approximates the relationship between
the selected inputs/outputs sets. For PCA, used for regression as
in Vallery and Buss (2006), we have, for a given input vector x
(the three shoulder Euler angular velocities for one time sample
in our case):

f (x) = Ŵ2Ŵ
+
1 x (1)

with Ŵ the matrix of principal components of the training
data, Ŵ1 and Ŵ2 the corresponding sub-matrices. The first two
Principal Components were kept since they were enough to
account for 98% of the total variance. We thus have Ŵ1 ∈ R

3×2
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FIGURE 2 | Localization of targets to reach.

FIGURE 3 | Inputs and output of the models. The inputs are ψ̇ , θ̇ , φ̇, the ZYX

Euler angular velocities of the shoulder, in the trunk frame. The output is β̇, the

elbow flexion/extension angular velocity. Written informed consent for

publication of images was obtained from the participants.

and Ŵ2 ∈ R
1×2. Ŵ+

1 = (ŴT
1 Ŵ1)

−1ŴT
1 is the left pseudo-inverse

of Ŵ1.
For LWR, the output is defined as:

f (x) =

E∑

e = 1

φ(x, θe) · ae
Tx, (2)

(with E the number of local linear models, φ the weighting
functions of these models -here Gaussian functions-, θe which
accounts for the localization and ae parameters of the linear
models) (Stulp and Sigaud, 2015). The number of local linear
models, which minimized the residual error (between real and
predicted output), was set to 2 after cross-validation.

For RBFN, we have:

f (x) =

E∑

e = 1

we · φ(x, θe), (3)

(with the radial basis functions φ, set as Gaussian functions, and
we the weight for each function, determined with linear least
square method) (Stulp and Sigaud, 2015). The number of basis
functions E, that minimized the residual error, was set to 5 after
cross-validation.

2.3. Experimental Session: Testing the
Models in Closed Loop Situation
Ten different healthy subjects, who did not contribute to
the collection of training data, participated in the second
experimental session. They were equipped with a prosthetic
elbow prototype with one active DoF (flexion/extension of
the elbow). The prototype was attached laterally to an elbow
orthosis worn by the subject (attached to his arm), installed
such that the prosthesis rotation axis was aligned with the
natural elbow flexion/extension axis of the participant. The
elbow orthosis blocked any motion of the natural elbow
(it was fixed at 90◦ during the whole experiment). Five
subjects used the prototype to the right, five to the left. The
control models were trained on the data of the preliminary
experimental session from the right and left arm group
respectively.

2.3.1. Prosthetic Elbow Prototype
The prosthetic elbow is a 1-DoF (flexion/extension) prototype
whose functional characteristics are based on the ones of
commercialized active elbow prostheses (10 N/m of nominal
torque, 80◦/s of nominal speed). The angular velocity is
controlled by a DC motor driver (Ion motor control, Ltd) via
an optical encoder placed on the motor rear shaft (resolution of
2,048 ppr and gear ratio of 1:1,000). The prototype is controlled
by a Raspberry PI, which controls the DC motor driver. It
reads data from two x-IMUs (Xio Technologies, Ltd.) placed
on the subjects arm and trunk, at the same location as for the
preliminary experimental session. The IMUs gave quaternion
values representing the arm orientation, from which ZYX Euler
angular velocities of the shoulder, in the trunk frame (ψ̇ , θ̇ , φ̇)
were computed. IMUs were reset at the beginning of each
experimental session, and their position remains unchanged
during the whole experiment. They are the only devices used
for control. The Codamotion and balance board were used for
analysis purpose only; specific Coda markers were placed on the
arm, the shoulders and the hip (see Figure 4). A prosthetic hand,
blocked in an open posture (forming a u-shape in the horizontal
plane), was placed at the extremity of the prosthetic limb.
The subjects reached the targets by placing this hand around
them.

2.3.2. Experimental Set-Up
Participants were asked to use the prosthesis to reach the same
eighteen targets as for the preliminary experimental session.
We did not ask them to reach new targets because this
study particularly focused on the robustness of the interjoint
coordination models (obtained through RBFN, PCA, and LWR)
to the inter-subject variability. We were interested in the
prosthesis response to different motor behaviors and kinematics.
Elbow angular velocity β̇ was estimated by the different
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FIGURE 4 | Experimental set-up: participants wore the prosthetic elbow as a supernumerary arm thanks to an orthosis. x-IMUs are put on the arm and on the trunk

and Coda markers on the arm, shoulder, and trunk; a balance board is placed under participant’s foot. Task consists in reaching the targets with the prosthesis. Left:

initial position. Right: reaching movement. Written informed consent for publication of images was obtained from the participants.

regression models from ψ̇ , θ̇ , φ̇, the shoulder Euler angular
velocities, computed in the trunk coordinate system, obtained
from the IMUs. The initial position, to which the participants
had to come back after every movement, was defined with the
prosthetic elbow at 90 degrees and subject’s humerus at zero
degrees, along the body. The task was limited to the go (from
initial position to target), the return of the prosthesis (from target
to initial position) was automatic. The end of the movement was
defined by the end of the prosthesis motion toward the target
(elbow velocity set to zero when the shoulder angular velocities
dropped below a chosen threshold). Subjects were asked not to
correct the final reached position with visual feedback, even if
the prediction was bad. Each target was reached 3 times, each
time with a different model. The order of models used for control
was randomized before the experimental session, and subjects
were not aware of this order. Models were implemented in the
Raspberry PI which controls the prosthesis. ψ̇ , θ̇ , φ̇, obtained
from xIMUs, were sent as model inputs. The total experimental
session (placement of the markers and the prosthesis, reaching
tasks and removal of the markers and the prosthesis) lasted
approximatively 2 h.

2.3.3. Performance Quantification
Evaluating whether a movement was correctly performed is a
complex task. Indeed, despite some characteristics shared among
subjects in reaching motions, there is a significant inter-subject
variability that prevents the use of traditional error values.
Figure 5 illustrates the inter-subject variability of β̇ for the ten
subjects that performed reaching motions with their right arm
in the preliminary experimental session (without the prosthesis).

On the box-plot of the maximum of |β̇| (Figure 6), we can
see that the range of variation is large and that there is even
some outliers identified, whereas all the motions were correct.
Considering an average healthy β̇ and compute an error with
respect to it for a given motion is thus not relevant. Moreover,
the targets can be correctly reached but with the help of
compensatorymovements (such as trunk flexion or rotation) that
have to be avoided. Musculoskeletal pain and overuse injuries
are actually a well-known problem for the upper-limb amputee
population (Kontson et al., 2017; Postema, 2017). Error value
of β̇ only concentrates on functional performance and does not
take this point into account. For these reasons, we developped
sixteen features to evaluate the performance of the models used
for prosthetic control. They were defined in order to give a
measure of the achievement of the task, the natural (or unnatural)
aspects of the arm movements and the importance of the body
compensations. Six of the most relevant metrics are presented
here, since the others lead to the same conclusion (see Appendix
for the exhaustive list) :

• The distance between the final position of the index finger and
the target to reach, δ. As the subjects were asked not to correct
the final position of the prosthesis, δ gives a measure of the
good (or bad) achievement of the task;

• The delay 1t introduced by the control schemes before the
activation of the elbow. It is defined by the difference between
the beginning of the shoulder motion (when the first Euler
angular velocity is higher than 5% of its extremum) and the
beginning of the elbow motion (β̇ higher than 5% of its
extremum). It illustrates how fast the model reacts to the
subject’s command;
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FIGURE 5 | Illustration of inter-subject variability in elbow flexion/extension angular velocity. Example of time evolution of β̇ (target 1) for the ten healthy subjects that

performed the preliminary session with their right arm.

FIGURE 6 | Box plot of the maximum of |β̇| for the ten healthy subjects that performed the preliminary session with their right arm, for the nine targets of distance 1.

• The curvature of the trajectory, c, that illustrates the deviation
of the hand from a straight line trajectory toward the target. It
is defined as

c =
max(||

−−−−−→
P(t)H(t)||)

||
−−−−−−−→
P(tfinal)P(t0)||

(4)

with P the end-effector position at each time step and H the
orthogonal projection of P on the straight line (P(t0)P(tfinal)).
It measures the natural aspect of the movement.;

• The smoothness s of the elbow angular velocity (β̇) measured
by its spectral arc length (Balasubramanian et al., 2012).
During the experiment, we observed that, for somemodels, the
extension of the elbow (and so the arm movement) was jerky,
which was very unpleasant for the user. It is thus important

to quantify the smoothness of the movement to select a model
that predicts a natural (i.e., smooth and fluid) motion;

• The final angular posture of the elbow, final β ;
• The amplitude ratio of the force on the ipsilateral feet, a,

F
tf
ips − F

t0
ips

Fmean
ips + Fmean

contra

(5)

(with F
tf
ips and F

t0
ips the force on the ipsilateral feet at the

end and the beginning of the movement respectively, and
Fmean
ips and Fmean

contra, the mean of the force on the ipsilateral and

contralateral feet, respectively). It is given in percentage of total
force applied on both foot. It measures how much the subject
moves its center of mass and thus moves its trunk laterally
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from the start to the end of the reaching. It is a direct measure
of the body compensations.

Values of these metrics for prosthetic motions were compared
with values for motions performed without the prosthesis
(motions performed during the preliminary session, later called
“natural” motions), except for δ that is zero for natural
motions (the target was always perfectly reached without the
prosthesis).

3. COMPARISON OF THE MODELS

3.1. Results
δ and 1t were averaged over subjects and targets to have one
global error value per model. The curvature, c, and the spectral
arc length of β̇ , s, were first averaged over subjects, to have one
value per model and targets, and then over targets to simplify
the analysis. The final extension of the elbow, βfinal, and the
amplitude ratio of the ipsilateral force, a, were only averaged
over subjects (the average over targets does not make any
sense since the two metrics directly depend on target location).
Statistical analysis (Wilcoxon test for difference between models
and ANOVA of Friedman for targets location dependency),
performed on Statistica R©, was conducted for every metrics
except βfinal because of the lack of data for some targets. The final
position error, δ (see Figure 7), is bigger for motions induced
by PCA controller than for motions induced by RBFN or LWR
controllers (+10 and +15 mm respectively, p < 0.05). δ of
motions controlled by LWR is the smallest (53 mm) and its

FIGURE 7 | Distance δ between the end-effector of the prosthetic hand and

the target to reach. Values are averaged over subjects and targets. There is no

value for natural reaching motions without prosthesis as the task was always

perfectly achieved in the preliminary session. *indicates a statistically significant

difference (p < 0.05).

standard deviation is smaller than the one of δ of RBFN- or
PCA-controlled movements.

On Figure 8, we note that there is a natural delay between
shoulder and elbow motions, which is most of the time positive
(the elbow moves after the shoulder). The sign of 1t has no
evident correlation neither with the target location nor with the
subjects. We can still see that, compared to the natural 1t , the
most reactive model is PCA, with 7 ms of delay. RBFN is a bit
slower, with 8 ms. Both stay in the natural baseline. LWR shows
a different behavior since , on average, the elbow starts moving
before the shoulder (1t is -60ms). Very small shoulder angular
velocities are enough to cause elbow motion. 1t of LWR is thus
significantly different from the one of RBFN and PCA but also
from natural1t (p < 0.05).

On Figure 9, we first see that c depends on the target reached
(p<0.05). It is an expected result as the curve described by
the end-effector varies according to the height and the lateral
position of the targets. For most of the targets, movements
estimated by PCA and LWR controllers have a larger curvature
than those estimated by RBFN controller or than natural
motions. This is confirmed by the mean of c , whose values for
PCA and LWR are significantly different from the value of RBFN-
controlledmotions (p < 0.05) or from the one of natural motions
(p < 0.05). Reaching motions performed with PCA and LWR
control have thus a less natural trajectory than those performed
with RBFN control, even though they still stay in the range of
natural motions.

Concerning the smoothness s, the more negative, the less
smooth is the motion. s does not depend on the target location

FIGURE 8 | 1t, delay between the shoulder and the elbow motions, that

illustrates the time of response of the model, mean over subjects and targets.

Straight and dotted red lines are respectively the mean and standard deviation

of the values from natural reaching motions without the prosthesis. *indicates a

statistically significant difference (p < 0.05).
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FIGURE 9 | Curvature c of the movements obtained by the three regression models. Values are averaged over subjects. From left to right: c for targets of distance 1,

c for targets of distance 2 and mean of c over targets. Straight and dotted red lines are respectively the mean and standard deviation of the values from natural

reaching motions without the prosthesis (preliminary experimental session). Numbers correspond to the targets location, see Figure 2. *indicates a statistically

significant difference (p < 0.05).

for PCA-controlled, LWR-controlled and natural motions but
depends on location for RBFN-controlled motions (p < 0.05).
On Figure 10, we can quickly notice that motions made with
LWR control are always less smooth than all other modes of
control (RBFN, PCA and natural). s values of LWR are indeed
significantly different from natural ones (p < 0.05 for 14 targets
out of 18). s values of RBFN are significantly different for 10
targets out of 18 but are still lower than s values of LWR
and the mean value of s for RBFN is in the natural baseline
(i.e., lower than mean+standard deviation of smoothness for
natural movements). PCA provoked significantly less smooth
movements for only 3 targets out of 18 and the mean value of
s for PCA is very close to the one of natural motions (−3.218
and −3.213, respectively). Figure 11 first shows that the elbow is
too extended, in the final posture, with all regression models for
the three higher targets of distance 1 and the six higher targets
of distance 2. The range of βfinal is smaller for motions with the
prosthesis than for natural motions. The natural variations of
βfinal are not fully reproduced with the prosthesis, maybe because
reaching of higher and/or closer targets involve slightly different
joint synergies, as explained in the introduction. βfinal especially
discriminates PCA control since its estimation by this technique
is higher than the normal extension and the one predicted by
RBFN and LWR. This higher extension can explain the bigger
δ of the movements with PCA control, observed Figure 7.

Finally, Figure 12 shows that there are important body
compensations with the prosthesis, whose amplitude depends on
the target side location. These compensations may be mainly due
to the weight repartition of the prosthesis which is different from

the one of a natural arm, to the orthosis discomfort and/or to
the shift of the prosthetic forearm relatively to the humeral axis.
The body motions caused by the three regression models are
significantly different from natural body motions (p < 0.05), but
there is no significant difference between models.

3.2. Discussion
With these six metrics, the robustness (capacity to control the
prosthesis in closed loop situations) of themodels considered, the
delay of their response and their generalization to new subjects
can be analyzed. It can be seen that:

• Control obtained through movement estimation by PCA
creates smoother movements. This seems normal as PCA
is a linear model and thus has an effect similar to a low-
pass filter. The timing of shoulder and elbow motions is
close to the natural one, there is no annoying response
delay. However, the movements created by this control have
a bigger error in final position and do not have a natural
trajectory. They are wider (larger curvature) and, even if β̇ is
smooth, it is overestimated (resulting in too important elbow
extensions);

• Control obtained through movement estimation by LWR
predicts globally correct elbow movements (except for highest
targets of distance 1 and up and middle targets of distance
2, which were more difficult to reach because of their
localization) and leads to the smallest final error in position.
Nevertheless, the movements have a larger curvature, like
the ones created by PCA control, and they are not smooth,
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FIGURE 10 | s, spectral arc length of β̇, for the three regression models. The more negative, the less smooth. Values are averaged over subjects. From left to right: s

for targets of distance 1, s for targets of distance 2 and mean of s over targets. Straight and dotted red lines are respectively the mean and standard deviation of the

values from natural reaching motions without the prosthesis. Numbers correspond to the targets location, see Figure 2. *indicates a statistically significant difference

(p < 0.05).

FIGURE 11 | Final β, elbow final extension, of the movements obtained with the three regression models. Values are averaged over subjects. From left to right: βfinal
for targets of distance 1, βfinal for targets of distance 2. Straight and dotted red lines are respectively the mean and standard deviation of the values from natural

reaching motions without the prosthesis. Numbers correspond to the targets location, see Figure 2.

which is a major limitation since the motion appears non
natural and hardly usable to perform some tasks (like
carrying delicate objects). Moreover, the elbow starts to

move with very small shoulder angular velocities, which
does not make the prosthesis control very confortable nor
robust;
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FIGURE 12 | a, amplitude ratio of the force on the ipsilateral feet, mean over subjects. From left to right : a for targets of distance 1, a for targets of distance 2.

Straight and dotted red lines are respectively the mean and standard deviation of the values from natural reaching motions. Numbers correspond to the targets

location, see Figure 2.

• Control obtained through movement estimation by RBFN is
less smooth than the one through estimation by PCA but
it still remains within the natural baseline. The trajectory of
these movements is close to natural movements (see c) and the
predicted extensions are globally correct, except for the same
targets as for LWR control. The delay between shoulder and
elbow motions is close to the natural one.

RBFN seems thus to be the most suitable algorithm for elbow
prosthetic movement-based control, among the three models
considered in this study. Nonetheless, it cannot be concluded
that RBFN really outperforms PCA and LWR and predicts a
totally natural and accurate elbow motion. In particular, βfinal is
overpredicted for the highest targets, δ is still not close to zero (60
mm), and the body compensations are not smaller than with PCA
and LWR control. Moreover, we can notice that each metric has
an important standard deviation, be it for natural motions or the
ones estimated by PCA, LWR or RBFN control. Indeed, beyond
the common characteristics of reaching, each subject has its
proper joint coordinations. This raises the following points : can
we expect to find amodel of joint coordinations that will perfectly
perform for all subjects? To which extent the optimization of the
regression algorithm used to build the interjoint coordination
model can contribute in improving the control of the prosthesis?
The results of this study show that, even if a global RBFN
model (i.e., trained with data from several healthy subjects) has
a good overall performance, the elbow extension is not correct
enough to satisfy the accuracy required for the use of a prosthesis.
Additional control schemes are needed.

The experiment performed to test the real-time response
of the regression models also has some limitations, especially
because the subjects wore the prosthesis as a supernumerary
arm. Indeed, the artificial arm is not aligned with the shoulder,
as in the case of amputated patients wearing a prosthesis,
which can disturb the participant and might modify the natural
shoulder/prosthetic elbow coordinations. The weight of the
prosthesis and the weight repartition (different from the natural
one, due to the motors and electronic parts) can destabilize the
participants and partly explains the significant difference between
“without-prosthesis” and “with-prosthesis” values of a. The real
arm of the subjects (blocked in the orthosis) also hid the targets
and reduced the visibility for some movements, especially when
reaching the highest targets, which is one of the explanations of
the bad predictions of elbow extension for these targets.

4. CONCLUSION AND FUTURE WORKS

This paper presents the experimental comparison of three
regression models for movement-based control of a prosthetic
elbow. This was performed through real-time tests, with human
performing a reaching task with an arm prosthesis instead of
their natural arm. Real-time tests are a significant contribution
in movement-based control study since very few have been
done so far (Bennett, 2016; Merad et al., 2016b). It is yet very
important to take the prosthesis user in the loop as he reacts
during the movement of the prosthesis and creates perturbations
that cannot be studied in simulations or even in virtual reality
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environment. The three models were deliberately chosen among
the simplest techniques in order to evaluate to which extent they
can be performant, instead of immediately using more complex
models (e.g., Multi-Layer Perceptron or multi-layer ANNs). We
focused on reaching movements because, due to their high speed
and the absence of concentration on intermediate joint control,
they are absolutely adapted to movement-based control. Elbow
flexion/extension was estimated from shoulder Euler angular
velocities, computed in the trunk frame. The quantification of
the prediction ability was assessed by six metrics (chosen as
the most representative among sixteen), which accounted for
task achievement, joint motion and body compensations. RBFN
showed better performance than PCA and LWR. It predicted
smooth enough movements, with a natural-like trajectory and
correct timing but it does not reduce the body compensations
nor always lead to a correct final elbow angle. An approximate
interjoint coordinations modeling can also be done by PCA
but it seems not performant enough to control a prosthesis,
which requires very good predictions to satisfy the users. LWR
predictions corresponded to the desired elbow extension angles
but the problems of the smoothness of the output and the
too sensitive response yet remain discriminating. Nevertheless,
even if some performance differences exist between the models
considered, none of them outperforms significantly the others.
The regression technique used to model joint synergies may not
be a key factor to improve prosthetic movement-based control.

This paper also highlights interesting elements to justify
the use or the exclusion of some models for elbow/shoulder
movement-based control. A sensible continuation of this study
would first be to expand the comparison to more complex
(multi-layer) ANNs, to evaluate if they are worthy or if the
RBFN’s ability is good enough to control a prosthesis. Moreover,
the experiment conducted in this study remains perfectible.
As said above, wearing the prosthesis as a supernumerary
arm is not natural and raises some problems. Motions of
healthy subjects and amputees are also different (Merad
et al., 2018). It is known that upper limb amputees generally
exhibit particular movement strategies and numerous body

compensation strategies (for example, an overuse of the trunk;
Metzger et al., 2012), because performing a task with a
natural arm or with an artificial one remains a very different
sensorimotor experience. The inter-subjects variability for
amputees may also be higher than for non-amputees (different
amputations, stump morphology, healing, etc.). Therefore, next
experimental tests should be performed in a near future with final
end users.

Finally, according to the results of this study that illustrate the
rather little influence of the regression techniques and interjoint
model on the control performance, we believe that new research
directions should be explored. First, the individualization of the
models could improve the prediction performance by tackling
the issue of inter-subject variability. Future studies aim to directly
build and improve the model on the user, taking into account
his own coordinations, during first uses of the prosthesis with
movement-based control. This is different from building the
model with data from the remaining arm, which is a solution
we do not consider as several studies have shown that joint

coordinations of dominant and non-dominant arms are distinct
(Bagesteiro, 2003; Sainburg et al., 2011; Schaffer and Sainburg,
2017). Second, “shared control paradigm” would offer an ability
to the user to correct instantaneously the movement when
the prediction was wrong or not adapted. This would also
allow for voluntary control for smaller, more precise or slower
movements.
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APPENDIX

Complementary Features for Performance
Quantification of the Regression Models
Task realization

• Distance end-effector ratio
characterizes the trajectory of the end-
effector (the index finger). It is defined by

total distance followed by the end-effector
distance between initial and terminal points of the trajectory

. It measures if

the hand shakes during the movement or if there is bumps
due to the regression. If it is the case, it provokes extra traveled
distance. Distance end-effector ratio will also be higher if the
elbow is too extended for the target;

• Smoothness of end-effector velocity
• Time to perform the task

Articulation features

• Smoothness of Euler angular velocities
To know if the difference in smoothness for β̇ comes from the
models or from the inputs (possibility of sub-movements), we

also looked at the smoothness of ψ̇ , θ̇ , φ̇;
• Maximum of humerus aperture angle

an important parameter to characterize and compare shoulder
motions of healthy subjects and of subjects with the
prosthesis;

• Elbow final altitude
demonstrates if the participants did unnatural movements to
compensate for bad β̇ predictions by lifting their elbow;

• PCA distance between β̇ and Euler angular velocities
subspaces
proposed by Bockemühl et al. (Bockemühl et al.,
2010), measures the similarity of synergies between two
movements.

Body compensation

• Amplitude (difference between end and beginning) of body
inclination,

• Amplitude of body rotation,
• PCA distance between shoulder and trunk angles subspaces

(Euler angles for shoulder and inclination/rotation angles for
the trunk).
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