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Abstract
Previous studies revealed DNA damage to occur during the toxic action of PaT, a fungal

anticodon ribonuclease (ACNase) targeting the translation machinery via tRNA cleavage.

Here, we demonstrate that other translational stressors induce DNA damage-like

responses in yeast as well: not only zymocin, another ACNase from the dairy yeast Kluyver-
omyces lactis, but also translational antibiotics, most pronouncedly hygromycin B (HygB).

Specifically, DNA repair mechanisms BER (base excision repair), HR (homologous recom-

bination) and PRR (post replication repair) provided protection, whereas NHEJ (non-homol-

ogous end-joining) aggravated toxicity of all translational inhibitors. Analysis of specific

BER mutants disclosed a strong HygB, zymocin and PaT protective effect of the endonucle-

ases acting on apurinic sites. In cells defective in AP endonucleases, inactivation of the

DNA glycosylase Ung1 increased tolerance to ACNases and HygB. In addition, Mag1 spe-

cifically contributes to the repair of DNA lesions caused by HygB. Consistent with DNA dam-

age provoked by translation inhibitors, mutation frequencies were elevated upon exposure

to both fungal ACNases and HygB. Since polymerase ζ contributed to toxicity in all

instances, error-prone lesion-bypass probably accounts for the mutagenic effects. The find-

ing that differently acting inhibitors of protein biosynthesis induce alike cellular responses in

DNA repair mutants is novel and suggests the dependency of genome stability on transla-

tional fidelity.

Introduction
The aminoglycoside antibiotic hygromycin B (HygB) from Streptomyces hygroscopicus displays
activities against pro- and eukaryotic organisms [1,2]; it possesses unique structural and func-
tional properties [3, 4]. Unlike other aminoglycosides, HygB has a dual impact on mRNA
translation. It primarily interferes with the ribosomal translocation process by hampering
tRNA and mRNA movements on the ribosome [5–7] and—as for other aminoglycoside antibi-
otics—it disturbs aminoacyl-tRNA recognition by distorting the ribosomal decoding center
(A-site). Thus, HygB not only inhibits ribosomal translocation but promotes codon misreading
as well, even though to a lesser extent than other aminoglycoside antibiotics, such as neomycin,
paromomycin or gentamycin [2,7–8].
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Anticodon nucleases (ACNases) acting as killer toxins of the yeasts Pichia acaciae and Kluy-
veromyces lactis (PaT and zymocin, respectively) [9, 10] are encoded by virus like elements
(VLEs) which persist in the cytoplasm of the respective host cells [11–13]. Specific immunity
proteins ensure stable propagation of the extranuclear elements via autoselection [14–16].
Secreted heteromeric killer toxins bind to the target cell’s chitin via carrier subunits [17–20]
which subsequently release their toxic cargo, i.e. the ACNases, into target cells where they
cleave specifically tRNAGln (PaT) or tRNAGlu (zymocin) respectively [9, 10].

PaT action not only disables translation at the step of tRNA supply but also interferes with
genome integrity [10, 21–23]. Mutation rates are enhanced upon PaT exposure and the DNA
damage checkpoint kinase Rad53 is activated, ultimately resulting in a cell cycle arrest in the S-
phase, followed by programmed cell death [23, 24]. Genetic analysis of mutants defective in
various DNA repair pathways, such as base excision repair pathway (BER), homologous
recombination (HR), non-homologous end-joining (NHEJ) and post replication repair (PRR)
revealed evidence for the accumulation of apurinic (AP) sites and the formation of replication
fork stalling derived DNA double strand breaks (DSB) upon PaT exposure [21, 22]. While BER
and HR are probably involved in repairing the toxic DNA lesions induced by the killer toxin,
thereby promoting resistance, PRR represents an important alternative for handling stalled
forks by preventing their collapse into DSBs [21]. Even though PaT and zymocin target differ-
ent tRNA species, several DNA repair mutants responded rather uniformly to both toxins, sug-
gesting that loss of DNA integrity might be a general effect of tRNA cleavage [10, 21]. Only
rather recently, we reported that loss of DNA integrity seen upon PaT treatment is caused by a
mechanism that involves the depletion of the highly and periodically S-phase specific ribonu-
cleotide reductase (RNR) as a consequence of specific tRNA offence [25]. Reduced dNTP levels
cause replication fork stalling and collapse into DSBs [10, 22]. Interestingly, RNR is not only
affected by PaT, but also by another translational inhibitor paromomycin [26], which led us to
surmise that translational stress may disturb the target cell’s DNA integrity in general. Here,
we provide genetic evidence for a possible general and novel principle that links genome stabil-
ity to translational fidelity.

Materials and Methods

Strains, growth conditions and transformation
Strains used in this study are listed in Table 1. Yeasts were grown in YPD (2% peptone, 1%
yeast extract, 2% glucose) at 30°C. Transformation of S. cerevisiae CEN.PK2-1c was performed
by the LiAc / SS carrier DNA / PEG method according to [27]. Mutants were selected on YPD
with 200 μg ml-1 G418 or on YNB (0.67% YNB w/o AA, Carbohydrate & w/AS (Y2025; BIO-
MOL, Hamburg, Germany), 2% glucose) with 30 μg ml-1 L-leucine, 20 μg ml-1 L-histidine,
20 μg ml-1 L-methionine, 20 μg ml-1 L-tryptophan or 20 μg ml-1 uracil when required. Gene
disruption cassettes were generated by PCR (primers -koF/-koR) with plasmids pUG6
(kanMX), pUG27 (SpHIS5) or pUG72 (KlURA3) (Tables 2 and 3) [28]. Gene deletions were
verified by PCR with primers located outside of the target genes (-outF/-outR) and/or marker
specific primers (-up/-down) (Table 2).

Killer toxin and DNA damage assay
Killer toxins were partially purified from supernatants of Pichia acaciae NRRL Y-18665 or
Kluyveromyces lactis AWJ1347 stationary phase cultures by ultrafiltration using Vivaspin 20ml
centrifugal devices with 100 kDa cutoff membranes (Sartorius Stedim Biotech GmbH, Göt-
tingen, Germany). Killer assays were performed as previously described [22]. Microtiter assays
were performed in 200μl YPD with increasing concentrations of PaT, zymocin or the
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ribosomal inhibitors neomycin, HygB, cycloheximide, geneticin or paromomycin. Inoculation
was performed with 1μl preculture and incubated for 16 h at 30°C. The relative concentration
factors (RCF) of PaT and zymocin were determined based on the concentration obtained by

Table 1. Strains used in this study.

Strain Genotype Reference

Kluyveromyces lactis AWJ137 MATa leu2 trp1 [pGKL1+, pGKL2+] [29]

Pichia acaciae NRRL Y-18665 wild type [pPac1-1+, pPac1-2+] [11]

Saccharomyces cerevisiae CEN.
PK2-1c

MATa leu2-3,112 ura3-52 trp1-289 his3Δ1 MAL2-8c

SUC2
[30]

S. cerevisiae CEN.PK2-1c apn1 as CEN.PK2-1c, but apn1::HIS3 [33]

S. cerevisiae CEN.PK2-1c apn2 as CEN.PK2-1c, but apn2::hisG [33]

S. cerevisiae CEN.PK2-1c apn1
apn2

as CEN.PK2-1c, but apn1::HIS3 apn2::hisG [33]

S. cerevisiae CEN.PK2-1c apn1
apn2 mag1

as CEN.PK2-1c, but apn1::HIS3 apn2::hisG mag1::
KlURA3

[21]

S. cerevisiae CEN.PK2-1c apn1
apn2 ung1

as CEN.PK2-1c, but apn1::HIS3 apn2::hisG ung1::
KlLEU2

[21]

S. cerevisiae CEN.PK2-1c apn1
rad1

as CEN.PK2-1c, but apn1::HIS3 rad1::kanMX4 [21]

S. cerevisiae CEN.PK2-1c apn1
rad1 ntg1 ntg2

as CEN.PK2-1c, but apn1::HIS3 apn2::hisG ntg1::
KlURA3 ntg2::KlLEU2

[21]

S. cerevisiae CEN.PK2-1c apn1
apn2 rev3

as CEN.PK2-1c, but apn1::HIS3 apn2::hisG rev3::
kanMX4

This work

S. cerevisiae CEN.PK2-1c apn1
apn2 rev3 rad30

as CEN.PK2-1c, but apn1::HIS3 apn2:.hisG rev3::
kanMX4 rad30::KlURA3

This work

S. cerevisiae CEN.PK2-1cmag1 as CEN.PK2-1c, butmag1::hisG [34]

S. cerevisiae CEN.PK2-1c ntg1 as CEN.PK2-1c, but ntg1::KlURA3 [21]

S. cerevisiae CEN.PK2-1c ntg2 as CEN.PK2-1c, but ntg2::KlLEU2 [21]

S. cerevisiae CEN.PK2-1c ntg1
ntg2

as CEN.PK2-1c, but ntg1::KlURA3 ntg2::KlLEU2 [21]

S. cerevisiae CEN.PK2-1c ogg1 as CEN.PK2-1c, but ogg1::KlURA3 [21]

S. cerevisiae CEN.PK2-1c rad1 as CEN.PK2-1c, but rad1::kanMX4 [21]

S. cerevisiae CEN.PK2-1c rad5 as CEN.PK2-1c, but rad5::KlURA3 [33]

S. cerevisiae CEN.PK2-1c rad6 as CEN.PK2-1c, but rad6::KlURA3 [34]

S. cerevisiae CEN.PK2-1c rad18 as CEN.PK2-1c, but rad18::HIS3MX6 [33]

S. cerevisiae CEN.PK2-1c rad30 as CEN.PK2-1c, but rad30::KlURA3 This work

S. cerevisiae CEN.PK2-1c rad51 as CEN.PK2-1c, but rad51::KlLEU2 [33]

S. cerevisiae CEN.PK2-1c rad52 as CEN.PK2-1c, but rad52::SpHIS5 This work

S. cerevisiae CEN.PK2-1c rad55 as CEN.PK2-1c, but rad52::KlLEU2 [33]

S. cerevisiae CEN.PK2-1c rad59 as CEN.PK2-1c, but rad55::KlURA3 [22]

S. cerevisiae CEN.PK2-1c rev3 as CEN.PK2-1c, but rev3::kanMX4 [34]

S. cerevisiae CEN.PK2-1c rev3
rad30

as CEN.PK2-1c, but rev3::kanMX4 rad30::KlURA3 This work

S. cerevisiae CEN.PK2-1c srs2 as CEN.PK2-1c, but srs2::KlURA3 [21]

S. cerevisiae CEN.PK2-1c ung1 as CEN.PK2-1c, but ung1::KlLEU2 [21]

S. cerevisiae CEN.PK2-1c yku80 as CEN.PK2-1c, but yku80::SpHIS5 This work

S. cerevisiaeGA-180 MATa ade2-1 trp1-1 his3-11,15 ura3-1 leu2-3,112 can1-
100

[31]

S. cerevisiaeGA-1230 MATa rad53-11 ade2-1 trp1-1 his3-11,15 ura3-1 leu2-
3,112 can1-100 bar1::hisG ssd1-d2

[31]

S. cerevisiae KY117 MATa ura3-52 trp1-Δ1 lys2-801am ade2-101 his3-Δ200 [32]

doi:10.1371/journal.pone.0157611.t001
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ultrafiltration. An RCF of 1 corresponds to the toxin concentration in non-concentrated super-
natants of stationary phase cultures [35]. Relative growth was monitored photometrically at
620 nm (Multiscan FC, Thermo Fisher Scientific Oy, Vantaa, Finland) and refers to the OD620

value of strains incubated in toxin-free medium. The data are based on three biological repli-
cates with two technical replicates for each value. For drop dilution assays, YPD plates were
supplemented with different concentrations of PaT or HygB. A series of 10-fold dilutions of
yeast cells, primarily adjusted to identical OD values, were dropped onto plates and incubated
for 2–3 days at 30°C.

Determination of mutation rates
For determining the mutation frequency at the CAN1 locus following toxin exposure, the cana-
vanine mutation assay was applied as previously described [23]. S. cerevisiae CEN.PK2-1c cells
were incubated in YPD or in medium containing PaT (RCF 1), zymocin (RCF 1) or HygB (50
mM). After cultivation for 4 h at 30°C, cells were washed twice with sterile water. Aliquots of

Table 2. Primer used in this study.

Primer Sequence (5’-3’)

RAD30-koF GGAGTTGATTCAGCTTGGTTCCCCCAGTAAAGCATACGAGTCCTCCAGCTGAAGCTTCGTACGC

RAD30-koR TGTTTTTGGAAGATGTAACTTGTTTCTTCTGAGGTGTGGCAGTATGCATAGGCCACTAGTGGATCTG

RAD30-outF CCTGCCGATCATAGGATACC

RAD30-outR GGCGCCCGTGAATCATTTAG

RAD52-koF ATGGCGTTTTTAAGCTATTTTGCCACTGAGAATCAACAAATGCAACAGCTGAAGCTTCGTACGC

RAD52-koR ATAATGATGCAAATTTTTTATTTGTTTCGGCCAGGAAGCGTTTCCGCATAGGCCACTAGTGGATCTG

RAD52-outF TCTGCTCTTCCCGTTAGTG

RAD52-outR TTTGTTTCGGCCAGGAAGC

REV3-koF ATGTCGAGGGAGTCGAACGACACAATACAGAGCGATACGGTTAGACAGCTGAAGCTTCGTACGC

REV3-koR ATTACCAATCATTTAGAGATATTAATGCTTCTTCCCTTTGAACAGGCATAGGCCACTAGTGGATCTG

REV3-outF TCGCTCCTTTGTTCCATTCC

REV3-outR CCACTCTTAGAGGATACG

YKU80-koF TATCTCACACCATAATAATGTCAAGTGAGTCAACAACTTTCATCCAGCTGAAGCTTCGTACGC

YKU80-koR AGATGGTCACGGGAATGTATGACGATCCAGACTGGTCATCTTCACGCATAGGCCACTAGTGGATCTG

YKU80-outF CCGTCAGGGCATTTGTTGTC

YKU80-outR CACCATAACGGTATGCCTTC

HIS5-up GCCATGCGCGCGGCTAC

HIS5-down GTAGCCGCGCGCATGGC

LEU2-up GGCGTATAGACCCAATTCC

LEU2-down GGAATTGGGTCTATACGCC

KanMX-up GATGACGAGCGTAATGGCT

KanMX-down AGCCATTACGCTCGTCATC

URA3-up GACGCTGGCGTACTGGC

URA3-down GCCAGTACGCCAGCGTC

doi:10.1371/journal.pone.0157611.t002

Table 3. Plasmids used in this study.

Plasmid Genotype Reference

pUG27 loxP-SpHIS5-loxP, AmpR, E. coli ori [28]

pUG72 loxP-KlURA3-loxP, AmpR, E. coli ori [28]

pUG6 loxP-kanMX-loxP, AmpR, E. coli ori [28]

doi:10.1371/journal.pone.0157611.t003

Hygromycin B Induced DNA Damage

PLOSONE | DOI:10.1371/journal.pone.0157611 July 29, 2016 4 / 18



serial dilutions were subsequently plated on YPD medium to determine the number of viable
cells, or on YNB lacking L-arginine but containing 5 μg ml-1 L-canavanine to determine the
number of canavanine resistant cells. Following incubation for 2 days at 30°C, colony forming
units were counted and the mutation frequency was expressed as the number of canavanine
resistant cells per 106 viable cells. The assay was repeated at least sevenfold.

Determination of the budding index
Early log-phase cells of S. cerevisiae KY117 were synchronized in G1 using YPD supplemented
with 5 μg ml-1 α-factor [24]. Release from G1-arrest was checked by monitoring the budding
index [23]. Following incubation with the α-pheromone for 2 h at 30°C, cells were washed
twice with sterile water and released to YPD only or YPD containing PaT (RCF 35) or HygB
(100 mM). Over a period of 240 min, samples were taken at timely intervals and cells were
immediately fixed in 70% ethanol for 2 h at room temperature. Following rehydration in phos-
phate buffered saline, a minimum of 300 cells per sample were used to determine the budding
index that is expressed as the number of budded cells per total cell count. The assay was
repeated threefold.

Detection of histone H2A phosphorylation
S. cerevisiae KY117 cells were synchronized in G1 using 5 μg ml-1 α-pheromone (Sigma-
Aldrich, Steinheim, Germany) and the release from G1-arrest was monitored by determining
budding indices [23]. Samples were taken immediately at the G1-arrest. After washing twice
with sterile water, cells were released to YPD only or to medium containing either HygB (0.1
mM), methyl methanesulfonate (MMS, 0.2%) or PaT (RCF 35). Samples were collected after
30 min (MMS) and after 5, 60, 120 and 180 min (YPD, HygB and PaT). Equal amounts of total
protein fractions were separated in 15% polyacrylamide gels and blotted onto polyvinylidene
difluoride (PVDF) membranes or stained with coomassie brilliant blue [21]. Detection of phos-
phorylated histone H2A at serine 129 was accomplished using an anti-histone H2A (phospho
S129) antibody (ab15083; Abcam, Cambridge, UK).

Results and Discussion

DNA repair confers resistance to ribosomal inhibitors
Specific tRNA offence (tRNAGln) by ACNase action does not only impair translation but also
affects genome integrity of target cells as DNA repair was found to significantly contribute to
cell survival after exposure to the ACNases [10, 21, 22]. For checking effects of other transla-
tional inhibitors, DNA repair mutants defective in homologous recombination (HR, rad52),
non-homologous end-joining (NHEJ, yku80), post replication repair (PRR, rad18), and base
excision repair (BER, apn1 apn2) were analyzed with respect to their response to ribosomal
inhibitors, among them HygB (Fig 1) but also paromomycin, neomycin, geneticin and cyclo-
heximide (S1 Fig). Obtained sensitivity profiles were compared to both ACNase toxins (Fig 1).
For phenotypic verification, the generated mutants were checked with respect to their reported
UV, MMS and hydroxyurea (HU) sensitivity (S2 Fig).

Hypersensitivity of the mutant defective in Apn1 and Apn2 revealed a HygB protective
effect of AP endonucleases involved in BER (Fig 1). Results obtained with both of the ACNase
toxins agree with previous findings [10, 21]. The rad18mutant, defective in initiating PRR, dis-
played hypersensitivity to HygB. A similar outcome, i.e. hypersensitivity, was obtained with the
rad52mutant defective in recombinational DSB repair as previously shown and confirmed
here for the ACNases [10, 22]. Inactivation of Yku80 involved in NHEJ, a competing but error-
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prone DSB repair pathway that involves direct ligation of broken ends without relying on
homologous templates, caused partial resistance to the yeast ACNase toxins (Fig 1). This effect
was previously demonstrated to be specific to the loss of Yku80 but not NHEJ per se [10, 22].
Since Yku80 competes with Rad52 for binding DSB ends, its loss channels such ends towards
the error-free HR pathway, thereby enhancing toxin tolerance. For HygB, at least a minor pro-
tective effect of the NHEJ-mutant (yku80) became evident (Fig 1).

DNA repair protected against other ribosomal inhibitors as well, even though to a lesser
degree (S1 Fig). Geneticin, in particular, provoked a reaction of repair mutants quite similar,
though not identical, to ACNases and HygB. Inactivation of Apn1/2, Rad18 and Rad52
increased geneticin toxicity, whereas deletion of YKU80, however, did not detectably alter sen-
sitivity. Unlike geneticin, a great disparity was observed in the mutants’ responses to neomycin,
paromomycin and cycloheximide (S1 Fig). Mutations in APN1/2 and YKU80 did not impact
neo- and paromomycin toxicity, whereas Rad18 appeared to be dispensable for cycloheximide
survival (S1 Fig). Accordingly, distinct DNA repair mechanisms affect resistance of the drugs
used, though in a different manner. Thus, translational inhibitors probably exert effects on the
genome stability, but cells cope differently with the concomitantly occurring DNA damage. As
HygB triggered the most pronounced reaction, similar to those induced by the yeast ACNases
PaT and zymocin, we focused on the hitherto unknown (and unanticipated) HygB-mediated
impact on genome integrity.

Fig 1. DNA repair mechanisms contribute to resistance against translational inhibitors.Microtiter
assays were performed with S. cerevisiae strains deficient in homologous recombination (rad52), non-
homologous end-joining (yku80), base excision repair (apn1 apn2) or post replication repair (rad18). Relative
growth was determined photometrically at 620 nm and corresponds to the OD620 value of strains cultivated in
toxin-free medium. Error bars are standard deviations of three biological replicates with two technical
replicates each.

doi:10.1371/journal.pone.0157611.g001
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Mutagenesis induced by translational inhibitors
As mutation frequencies increased upon PaT exposure [23], we checked whether zymocin and
HygB promote mutagenesis as well (Fig 2). Random and toxin induced mutation rates at the
CAN1 locus of S. cerevisiae were read. Indeed, cells challenged with either HygB, zymocin or–
as a positive control PaT—yielded a higher number of mutants than the negative (mock) con-
trol. Results obtained for both, HygB and zymocin, revealed not only mutagenic effects of a
tRNA-endonuclease other than PaT, but also the differently acting translational inhibitor
HygB is mutagenic, which agrees with DNA repair pathways being generally involved in con-
ferring resistance to inhibitors of protein biosynthesis (Fig 1).

Hygromycin B provokes a cell cycle arrest in the S-phase
As a cellular response to DNA damage and replication stress the intra S-phase DNA damage
checkpoint is activated. The respective key regulator is the effector-kinase Rad53, which—
among others—regulates firing of late replication origins, stabilization of stalled replication
forks, cell cycle progression, and transcription of genes instrumental in the DNA damage
response [36–39]. Replication fork stalling by PaT involves an S-phase arrest by activating the
Rad53 checkpoint kinase [22–24]. For checking the involvement of Rad53 in the cell’s reaction
to HygB, its effect on growth of a S. cerevisiaemutant carrying the checkpoint deficient allele
rad53-11 was monitored in a drop dilution assay. The increased sensitivity of the mutant indi-
cates that a functional Rad53 checkpoint kinase is indeed vital for HygB survival, as for the
ACNase PaT (Fig 3A).

The budding indices of synchronized HygB treated cells were determined and compared to
PaT and mock samples. Synchronization of cell division was performed by arresting the cells in
G1 with the alpha pheromone. Subsequent release to cell cycle progression was done either in
toxin-free (mock) or in medium containing HygB or PaT (Fig 3B). Cells immediately started
budding, indicating their transition into the S-phase; the budding index increased from 0% to
50% (mock) and rapidly decreased upon progression into the next cell cycle phase (Fig 3B). Cells
exposed to either HygB or PaT exhibited a rather small budding fraction (30%) that remained
constant over time, indicating that the release from G1 is not affected but completion of the S-
phase is prevented by HygB and as previously demonstrated [24] and confirmed here by PaT.

Fig 2. CAN1mutations induced by translational inhibitors. The mutation frequencies at theCAN1 locus
were monitored in S. cerevisiae cells exposed to hygromycin B (HygB, 50 mM), zymocin or PaT (RCF 1). A
relative concentration factor of 1 (RCF 1) equals the toxin concentration in the supernatant of a stationary
phase culture of P. acaciae or K. lactis. The mutation frequencies were determined as the number of
canavanine resistant cells (CanR) per 106 viable cells. Standard deviations are depicted as error bars.

doi:10.1371/journal.pone.0157611.g002
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Consistently, the rad53-11mutation increased toxicity of the drug (Fig 3A), which additionally
agrees with the finding that HygB, as for PaT [24], is likely to provoke an S-phase arrest.

HygB lesions are repaired by DSB repair
Prolonged stalling of replication forks can cause fork collapse and formation of DSB intermedi-
ates which are recognized by the HR machinery but not by NHEJ [40–42], which agrees with
the opposite responses obtained with HR (rad52) and NHEJ (yku80) deficient mutants, see Fig
1 and Klassen et al. [10]. As Rad52 inactivation is similarly detrimental for HygB survival (Fig
1), we suspected other members of the RAD52 epistasis group to confer related phenotypes.
Responses of S. cerevisiae cells defective in RAD51, RAD52, RAD55 and RAD59 to HygB was
monitored by drop dilution assays (Fig 4). Inactivation of the eukaryotic RecA homolog Rad51
as well as the recombination mediators Rad52, Rad55 and Rad59 significantly aggravated
HygB toxicity, supporting the conclusion that HygB may induce DSBs as a consequence of
stalled replication forks, again a finding that is rather similar to PaT action [22].

A rather rapid cellular signal for DSB formation is the Mec1-dependent histone H2A phosphor-
ylation on serine 129 [43]. As previously demonstrated for PaT [22], we also detected a prolonged
phosphorylation level in HygB treated cells when compared to control cells (S3 Fig). The lasting
phosphorylation status of histone H2A in response to HygB (and PaT) (120 min post G1-release)
corroborates with the assumption that HygB causes secondary DSB formation as a consequence of
replication fork stalling, although such effect appears to be more pronounced for PaT.

The role of the BER in hygromycin B resistance
The HygB hypersensitivity of the BER mutant apn1 apn2 defective in AP-site processing (Fig
1) suggests accumulation of abasic sites as for the ACNases [21]. AP-sites are highly toxic and

Fig 3. S-phase arrest induced by hygromycin B. (A) Relevance of the Rad53 checkpoint kinase for
Hygromycin B action. S. cerevisiaeGA-180 (wild type) and isogenic S. cerevisiaeGA-1230 (rad53-11) cells
were analyzed by drop dilution assays using YPD plates supplemented with PaT (RCF 0.1) or HygB (2 mM)
B. (B) Budding kinetics of cells exposed to PaT or HygB. S. cerevisiae KY117 cells were synchronized in G1
with the α-factor and released to YPD (mock) or medium containing PaT (RCF 35) or HygB (0.1 mM). The
relative budding index [%] was determined as the number of budded cells per total cell counts. Error bars
indicate standard deviations of three biological replicates.

doi:10.1371/journal.pone.0157611.g003
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mutagenic as they block DNA replication, induce misincorporations and provoke DSBs [44,
45]. The major pathway for processing such sites depends on Apn1 and Apn2 [46, 47], how-
ever, Rad1, an endonuclease instrumental in nucleotide excision repair (NER), can–as a backup
activity—contribute to handling abasic sites as well [48, 49]. The role of Apn1/2 for HygB
action was analyzed in drop dilution assays which were performed with the mutants (single
and double); both ACNases PaT and zymocin were included for the purpose of comparison
(Fig 5A). While loss of Apn1 clearly enhanced toxicity, inactivation of APN2 or RAD1 alone
had no detectable effect, suggesting Apn1 to be the major AP endonuclease for providing pro-
tection, for PaT see also [21]. In the apn1 background, however, mutations in APN2 and RAD1
displayed an additive sensitizing effect, suggesting that both endonucleases contribute to cell
survival when Apn1 is disabled (Fig 5A).

AP-sites naturally arise either by spontaneous base hydrolysis or as intermediates during
BER, in which specific DNA glycosylases recognize and remove aberrant bases [48]. Five DNA
glycosylases with different substrate specificities are known in S. cerevisiae: Mag1 catalyzes the
excision of alkylated purines from DNA [50], Ogg1 removes 8-oxoguanine [51, 52], while a
variety of defective (predominantly oxidized) pyrimidines are repaired by Ntg1 and Ntg2 [53];
excision of uracil involves the DNA glycosylase Ung1 [54]. For checking whether DNA base
damage is causative for AP-site formation, cells defective in DNA glycosylase activity and/or
AP-site repair were tested against HygB (Fig 5B and S4 Fig). The sensitivity profiles of the
mutants were compared to those obtained with zymocin and PaT (Fig 5B and 5C) [21]. Inacti-
vation of the DNA glycosylases involved in the repair of oxidative damages (ogg1, ntg1, ntg2
and ntg1 ntg2) had no detectable effect with respect to HygB toxicity (S4 Fig), again as for
zymocin and PaT [21]. In contrast to both ACNase toxins, deletion ofMAG1 enhanced HygB
sensitivity (Fig 5B). This result indicates a role of Mag1 in the repair of endogenous alkylation
damage caused by HygB, which agrees with findings demonstrating genome wide DNA hyper-
methylation upon HygB treatment in Nicotiana tabacum [55]. The increased sensitivity of
apn1 apn2 compared tomag1 suggests that unprocessed AP lesions are more toxic than alkyl-
ated bases. However, disabling Mag1 did not significantly influence the apn1 apn2 associated
sensitivity, contrary to MMS [56]. If HygB induced AP-site formation was exclusively via exci-
sion of alkylated bases by Mag1, a strong rescue of HygB sensitivity would be expected in the
apn1 apn2 mag1 background. The absence of such phenotypic rescue may point to other mech-
anisms for AP-site formation in HygB treated cells. Indeed, similar to PaT [21], deletion of
UNG1 partially suppressed the HygB and zymocin sensitivity in the apn1 apn2mutant (Fig
5B) adverting to uridine excision by Ung1 as the likely source of AP-site formation. In the
DNA, uridine may occur either by cytosine deamination or, more likely, by misincorporation
of dUMP [48]. The latter may be—due to translational inhibition—a consequence of reduced

Fig 4. Relevance of DSB repair for hygromycin B action. S. cerevisiae strains defective in the RAD52-
epistasis group (rad52, rad55, rad57 and rad59) were tested by drop dilution assays against HygB.

doi:10.1371/journal.pone.0157611.g004
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Dut1 (dUTPase) levels. Since Dut1 catalyzes the conversion of dUTP to dUMP, the precursor
for dTTP-synthesis, HygB/ACNase treatment may interfere with Dut1 formation or activity,
thereby—by blocking dTTP-synthesis—promoting incorporation of dUTP into DNA [57].
Since replicative DNA polymerases do not distinguish uridine from thymidine [58], replication
across uridine is not obstructed, which agrees with the observed slightly enhanced tolerance of
the ung1mutant (Fig 5B). Abasic DNA lesions are far more toxic than incorporated uracil
bases [59, 60] reasoning the reduced toxicity of the translational inhibitors when UNG1 is
deleted in the apn1 apn2 background (Fig 5B) and [21]. These genetic lines of evidence suggest
that in response to HygB treatment, Ung1 creates products that become toxic in the absence of
AP-site repair.

Fig 5. The role of BER for protection against hygromycin B. (A) Single or double mutants of S. cerevisiae
defective in endonucleases processing AP-sites (apn1, apn2 or rad1) were tested by drop dilution assays
against HygB (2 mM), PaT (RCF 0.01) and zymocin (RCF 0.01), (B) cells defective in DNA glycosylases
(mag1, ung1) and/or AP-site processing endonucleases (apn1 apn2) were tested by microtiter assays.

doi:10.1371/journal.pone.0157611.g005
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Post replication repair contributes to hygromycin B resistance
Post replication repair (PRR) is critical for genome stability, as it provides a mechanism to
bypass unrepaired DNA lesions that would otherwise hamper replication fork progression [61,
62]. The PRR pathway consists of three branches alternatively followed depending on the
degree of modification of the proliferating cell nuclear antigen (PCNA) [63, 64]. Mono-ubiqui-
tination of PCNA by Rad6-Rad18 stimulates translesion synthesis (mutagenic or error-free)
via the DNA polymerases z (Rev3/Rev7) or η (Rad30) [65–67], whereas multi-ubiquitination
by Rad5-Ubc13-Mms2 promotes error-free damage avoidance via template switching [68, 69].
In its sumoylated form, PCNA serves to channel lesion repair into the PRR pathway, recruiting
helicase Srs2 to the replication forks, where it blocks objectionable recombination events by
disrupting Rad51-filaments [70, 71].

As PRR was previously shown to be important for handling stalled replication forks induced
by the ACNase PaT [21], we analyzed its relevance for HygB and zymocin action (Fig 6). Muta-
tions in RAD6, RAD18, RAD5 and SRS2 similarly, as for PaT, increased sensitivity to zymocin,
implicating that PRR is equally vital for zymocin cell survival, possibly by preventing replica-
tion fork collapse into DSBs [21]. Compared to the ACNase toxins, there is a different strategy
to tolerate HygB. Sensitivity of rad6 is increased with respect to rad18, while rad5 appears to be
minor affected (Fig 6). As Rad6 is required for a variety of other cellular functions than DNA
repair [72], presumably a different Rad6-involving mechanism, besides PRR, contributes to
HygB survival. Interestingly, inactivation of the anti-recombinase Srs2 increased sensitivity to

Fig 6. Inactivation of PRR genes enhances toxicity of translational inhibitors. The sensitivity of S.
cerevisiae strains defective in Rad5, Rad6, Rad18 or Srs2 were checked with HygB, PaT and zymocin in
microtiter assays.

doi:10.1371/journal.pone.0157611.g006
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all of the three inhibitors, see Fig 6 and [21]. Srs2 is proposed to function as a switch for PRR
and HR [73]; when PRR is disabled (rad6), Srs2 deters HR from repair of collapsed replication
forks, thereby aggravating ACNase and HygB toxicity (Fig 6). Simultaneous deletion of SRS2,
however, nullifies the block to recombination (when HR is active), which consequently resulted
in a suppressed rad6 phenotype towards PaT and UV light, as previously demonstrated [21].
Thus, a functional PRR, in addition to HR and BER, is pivotal for genome stability and cell via-
bility, likely by suppressing fork collapse and DSB formation in response to ACNase or HygB
treatment.

Polymerase ζ contributes to mutagenesis and toxicity
The role of TLS, which is again controlled by the PRR pathway [74], was studied by recording
HygB and ACNase sensitivity of rev3 and rad30mutants, defective in the error-prone polymer-
ase (Pol) z or the error-free Pol η, respectively (Fig 7A–7C). While deletion of RAD30 had no
effect, inactivation of Pol z by deleting its catalytic subunit (REV3) increased resistance of the
wild type as well as the rad30 genetic background, which suggests Pol z to be responsible for
the mutagenic effects observed with all of the three inhibitors, see Fig 2 and Klassen and Mein-
hardt [23]. To check such assumption, mutation rates were determined at the CAN1 locus in
PaT treated and untreated cells lacking REV3 and compared to those in the likewise treated
wild type cells (Fig 7D). As anticipated from previous findings, PaT treatment increased

Fig 7. Polymerase ζ contributes to toxicity of translational inhibitors. The sensitivity of S. cerevisiae strains defective in error-
prone polymerase ζ (rev3), error-free polymerase η (rad30) and/or AP endonucleases (apn1 apn2) was tested against HygB (A),
zymocin (B) and PaT (C) by microtiter assays. (D) Mutation rates at theCAN1 locus were exemplarily determined for PaT in wild type,
apn1 apn2 and rev3 cells, when exposed to PaT. Standard deviations are depicted as error bars.

doi:10.1371/journal.pone.0157611.g007
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mutation frequencies in the wild type [23] but, most strikingly, loss of REV3 entirely prevented
mutagenicity, evidencing that Pol z is responsible for PaT’s mutagenic effects. Consistently,
rev3mutations increased resistance, not only to PaT but also to zymocin and HygB (Fig 7A–
7C), thereby indicating that mutations brought about by Pol z contribute to the toxic potential
of the three translational inhibitors.

Unlike Pol η, which is not relevant for toxin action, as judged from the wild type like toxin
response of the rad30mutant to all of the three agents (Fig 7A–7C), Pol z can mediate replica-
tion past a large variety of lesions, including AP-sites [74, 75]. To determine, whether the
mutagenic effect results from error-prone TLS across AP-sites, the influence of AP-site repair
on PaT-induced mutations was checked by monitoring the mutation rates in a strain lacking
Apn1 and Apn2 (Fig 7D). Interestingly, loss of AP endonucleases significantly increased the
number of random as well as toxin induced mutations, suggesting that in the absence of AP-
site repair, bypass of toxin-mediated lesions occurs through Pol z, similar to the Polz-mediated
bypass of MMS-induced DNA damages [46]. Elimination of the error-prone (rev3) or the com-
plete TLS pathway (rev3 rad30) in apn1 apn2 did no longer reveal a protective effect to any of
the three inhibitors (Fig 7A–7C), thereby disclosing two compensating effects of error-prone
TLS: (i) DNA damage manifestation by mutation induction at AP-sites and (ii) conferring the
capability to continue replication in the presence of fork stalling AP-sites. Evidently, unre-
paired AP-sites and the thereby imposed replication block are extremely toxic. It should, how-
ever, taken into consideration that the observed effect of Pol zmay be due to its backup activity
in DNA replication seen under replication fork stalling conditions in HU-treated cells [76].

Hygromycin B exerts its effect on translation by interfering with the ribosomal translocation
and mRNA-decoding process [7], whereas both ACNase toxins target translation at the step of
tRNA supply [9, 10]. Despite different modes of action, sensitivity analyses of DNA repair
mutants revealed a similar destabilizing effect on genome integrity. Based on these genetic evi-
dences, we suggest that translational hindrance by HygB elicits loss of DNA integrity accompa-
nied by an increase in mutagenesis, which presumably involves replication fork stalling and
collapse into DSBs as for PaT [10, 21–25]. Consistently, an S-phase arrest is induced upon acti-
vation of the DNA damage checkpoint. The protective effects of DNA repair mechanisms,
such as BER and HR, as well as PRR as a bypass mechanism, underline the importance of han-
dling stalled forks upon HygB exposure. It remains to be determined, however, whether the
mutagenic effect of Pol z is attributed via error-prone TLS (across AP-sites) or is simply due to
the backup function in DNA replication.

Our results with neomycin, geneticin and cycloheximide (S1 Fig) may suggest that DNA
damaging effects are not limited to the ACNases and HygB. Hence, translational stress proba-
bly impacts genome integrity in general. Since the DNA repair mutants do not react uniformly
to the drugs (Fig 1 and S1 Fig), additional analyses of the way they impact genome stability are
necessary. Only rather recently, we demonstrated that the ACNase PaT induced DNA damage
as a consequence of ribonucleotide reductase (RNR) depletion [25]. Paromomycin, known to
cause amino acid misincorporations and translational frameshifting by disturbing the ribo-
somal decoding center [77], was seen to reduce RNR levels as well; it was assumed [26] that the
exerted translational stress activates protein stress response pathways which ultimately leads to
RNR degradation. Thus, two translational inhibitors (paromomycin and PaT ACNase) target-
ing different aspects of the translation process directly interfere with replication fork progres-
sion by reducing dNTP supply. Our results suggest that this might be a more generalized
phenomenon occurring with additional translational inhibitors as well and indicate that inhibi-
tion of dTTP formation may also contribute to DNA damage arising under translational stress.

The genetic analyses outlined in this contribution furnish evidence that translational antibi-
otics such as HygB–against expectation–can be mutagenic. These novel findings may have a
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direct impact on the use of such drugs for therapeutic purposes as generation of resistance phe-
notypes by concomitantly elicited mutations can not a priori be ruled out.

Supporting Information
S1 Fig. Relevance of DNA repair mechanisms for the protection against ribosomal inhibi-
tors.Microtiter assays were performed with S. cerevisiae strains deficient in homologous
recombination (rad52), non-homologous end-joining (yku80), base excision repair (apn1
apn2) or post replication repair (rad18). Relative growth was determined photometrically at
620 nm and corresponds to the OD value of strains cultivated in medium without antibiotics.
Standard deviations of three biological replicates (with two technical replicates for each) are
represented by the error bars.
(TIF)

S2 Fig. Sensitivity of DNA repair mutants to UV irradiation, MMS and hydroxyurea (HU)
treatment. S. cerevisiae strains deficient in homologous recombination (rad52), non-homolo-
gous end-joining (yku80), base excision repair (apn1 apn2) or post replication repair (rad18)
were spotted as serial dilutions onto YPD plates and exposed to 180 J/m2 UV irradiation or
spotted on medium containing 0.4% MMS or 100 mMHU.
(TIF)

S3 Fig. Histone H2A phosphorylation in cells exposed to HygB or PaT. Alpha-factor
arrested S. cerevisiae KY117 cells were released to toxin-free or medium supplemented either
with HygB, MMS or PaT. Samples were taken at the α-factor mediated G1-arrest, after 30 min
of MMS exposure and at indicated intervals post G1-release. The phosphorylation status of his-
tone H2A was monitored by Western blot analysis applying a polyclonal antibody raised
against the serine 129 phosphorylated protein. The coomassie-stained protein fraction is
shown as the loading control. DSBs routinely occur during replication, and thus accumulate
during the S-phase of the cell cycle. Consistently, in the G1-arrested cells only a small amount
of phosphorylated histone H2A could be detected. Mock cells released to the S-phase (YPD)
exhibited—as to be expected—a strong increase of the phosphorylation level that rapidly
decreased after 60 min post G1-release upon progression into the next phase of the cell cycle.
HygB exposed cells (as for the mutagenic MMS and PaT) increased the phosphorylation level
of histone H2A. The phosphorylation status is maintained for a longer period of time than for
mock cells; an increase is seen even after 120 min post G1-arrest followed by a slight reduction
after 180 min. Agreeing with a previous study [22] PaT treated cells displayed a constantly
high phosphorylation level during the entire monitored period.
(TIF)

S4 Fig. Role of DNA glycosylases involved in the repair of oxidative DNA damage. S. cerevi-
siae strains defective in DNA glycosylases (Ogg1, Ntg1 and/or Ntg2) and/or AP-site processing
endonucleases (Apn1 and Rad1) were tested against hygromycin B (HygB), PaT and zymocin
by microtiter assays. A relative concentration factor of 1 (RCF 1) equals the toxin concentra-
tion in the supernatant of a stationary phase culture of P. acaciae or K. lactis.
(TIF)
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