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Abstract: Alignment algorithms are powerful tools for searching for homologous proteins in databases, providing a score for each 
sequence present in the database. It has been well known for 20 years that the shape of the score distribution looks like an extreme value 
distribution. The extremely large number of times biologists face this class of distributions raises the question of the evolutionary origin 
of this probability law.
We investigated the possibility of deriving the main properties of sequence alignment score distributions from a basic evolutionary 
process: a duplication-divergence protein evolution process in a sequence space. Firstly, the distribution of sequences in this space was 
defined with respect to the genetic distance between sequences. Secondly, we derived a basic relation between the genetic distance and 
the alignment score. We obtained a novel score probability distribution which is qualitatively very similar to that of Karlin-Altschul but 
performing better than all other previous model.
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Introduction
Comparison of biological macromolecules by the 
means of sequence alignments has become an every-
day task for biologists, for extremely diverse purposes 
such as genomic sequencing, structural modelling, 
functional inference, phylogenetic reconstruction, 
etc. Comparison methods rely on a fundamental pos-
tulate that one can simply state as: “the closer in evo-
lution, the more alike and conversely, the more alike, 
probably the closer in evolution”. Alignment of two 
sequences is typically done by maximizing a given 
quantity, called the score, which reflects the shared 
features of the two biological entities.1–3 Scoring 
matrices are used to maximize the summed scores of 
compared residues and find optimal local alignments, 
computed with a dynamic programming procedure.1–3 
Scoring matrices have been found4–6 to be similarity 
matrices which can be derived from previously known 
alignments, and to be of the form s(i, j) ∝ log2(qij/pi  pj) 
where i and j are aligned amino acids, qij the frequency 
of the observation: “i is aligned with j”, (the target 
frequency), pi and pj are respectively the frequency of 
i and j, ie, the background frequency. From an infor-
mation theory point of view, scores between residues 
can be considered as estimations of the mutual infor-
mation between the elementary events called “amino 
acids”.7 The average value H of the substitution 
matrix, H = ∑

i,j
 qij log2(qij/pi  pj), is the Kullback-Leibler 

distance between the observed joint distribution of 
the amino acids i in a sequence a and the amino acids 
j in a homologous sequence b. H is also the mutual 
information between the random variable A: “draw-
ing an amino acids i from the sequence a at a given 
position x” and the random variable B: “drawing an 
amino acids j from the homologous sequence b at the 
homologous position to x”. H is called the relative 
entropy of the substitution matrix.8 It is a measure of 
the dependence between the two random variables 
A and B in the homologous sequences which have 
served to construct the substitution matrix.

Confidence in pairwise alignments of biologi-
cal sequences, obtained by various methods such as 
Blast1,2 or Smith-Waterman,3 is critical for  automatic 
analyses of genomic data. Since the degree of simi-
larity is usually assessed by the sequence align-
ment score, it is necessary to know if a score is 
high enough to indicate a biologically interesting 
 alignment.9 In the asymptotic limit of long sequences, 

the  Karlin-Altschul model10 computes a P-value 
assuming that the number of high scoring matching 
regions above a threshold is Poisson distributed. This 
model expresses the probability of having a random 
sequence with a score (called the random score) S less 
or equal to the observed score as:

 P(S # s) = exp(−kmn exp(−λs)) (1)

where m and n are the length of the two compared 
sequences and k and λ are two parameters depending 
of the sequence compositions which must be 
adjusted to the data.11,12 The P-value, which is a 
measure of the statistical significance of the score, 
is obtained from this equation by considering that 
P-value = 1−P(S # s) = P(S . s). It is the probability 
of having a random sequence with a score S larger 
than the observed score s. This particular distribu-
tion (1) is known as the extreme values distribution 
of type I, or Gumbel distribution, and characterises 
the distribution of extreme events like rogue waves 
colliding on a sea wall, large wildfires and, among 
others, maximal sequence scores. Karlin and Altshul 
derived this distribution by considering a random 
sequence alignment score as an addition of ran-
dom residue pairs’ scores taken from a substitution 
matrix4–7,10 (see  Fig. 1A) and studied the behaviour 
of such scores when using an alignment algorithm 
(which often belongs to the dynamic programming 
algorithm class1–3). This extremely important result 
is well established for ungapped pairwise sequence 
alignments and is strongly suspected to be appli-
cable not only for a large class of gapped pairwise 
alignments,12 (depending on the penalty for gap 
opening and extension)9 but also for a large class of 
alignments such as hmm profiles.13,14 This last point 
suggests that this distribution (or qualitatively sim-
ilar distributions) seems to play a key role in com-
putational biology.12–16 Comet et al17 showed that the 
distribution of scores coming from the comparison 
of one sequence versus a database display the same 
qualitative distribution (a  Gumbel-like distribution) 
as the comparison of random sequences with a bio-
logical sequence. From a theoretical evolutionary 
biology point of view, the link between the distribu-
tion of scores between homologous proteins and the 
processes which have led to these proteins is not clear. 
Indeed, as mentioned in the following paragraph, 
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scores between proteins are a measure of the informa-
tion that each of them possess regarding the others. 
As a consequence, it should be possible to construct 
a model reflecting the fact that the observed distri-
bution of scores is a consequence of the process of 
protein evolution. Unfortunately, the Karlin-Altshul 
model is not an evolutionary one, as it can be seen 
in Figure 1A. This is due to the fact that homologous 
proteins did not evolve by adding residues pairs to 
aligned sequences.

Recently, it has been demonstrated that the 
 Karlin-Altshul model can be derived with no reference 
to the extreme events theory, using a simple approach 
combined with recent results in reliability theory.18,19 
Sequences were considered as systems in which com-
ponents are amino acids. As a consequence, these sys-
tems have a high redundancy of information reflected 
by their alignment scores. Evolution of the informa-
tion shared between aligned components determines 
the Shared Amount of Information (SAI) between 
sequences, ie, the score. Then, the Gumbel distribu-
tion parameters λ and k of aligned sequence scores 
finds a theoretical rationale. The first, λ, is the Hazard 
Rate of the distribution of scores between residues19 

and the second, k, is the probability that two aligned 
residues do not lose bits of information (ie, conserve 
an initial pairing score) when a mutation occurs.18 This 
result also suggests that alignment score distributions 
could result from a purely evolutionary  process. The 
question remains why this particular class of distribu-
tion seems to be widely spread in nature, especially in 
biological sequence comparisons.

Here, we are making the hypothesis that the over-
representation of this class of probability distributions 
when comparing biological sequences is a conse-
quence of both the nature of the process by which all 
these sequences arose, the speciation-divergence pro-
cess, and of the nature of the measure used to compare 
these sequences, ie, the SAI, an information theory 
mathematical object. In order to test this hypothesis, 
we will consider the SAI as a global measure between 
sequences lying in a sequence space (see Fig. 1B). 
Starting from a unique sequence, we will consider the 
distribution of all sequences present in this space after 
having applied a basic duplication-divergence evolu-
tionary process and after a sufficiently long time.

If the SAI is global measure between sequences 
during the evolution process, it is clear that the 

∑
n
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1 1 2 1 2 3 4
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n−1 n

S(a,b) = S(a1,b1)
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Figure 1. A) in classical alignment score statistical inference, random scores are computed by adding random pairs of aligned residues and then,  summing 
all along the random alignment. B) in the new model, all sequences present in the sequence space diverge from one another. The score is a global 
 measure of the shared amount of information between pairs of sequences which decreases with time.

http://www.la-press.com


Ortet and Bastien

162 Evolutionary Bioinformatics 2010:6

following model should apply to score providing by 
local alignment. Indeed, local alignments focus on 
segment pairs that maximize alignment score.1–3 Part 
of the homologous sequences which are aligned in 
the local alignment are often viewed as homologous 
segments, whereas the rest of the sequences can have 
been obtained by adding different biological units 
called domains. For example, local alignments are 
used to derive amino acids substitution matrices.5,6

Results
Duplication-divergence  
protein in sequence space
If one considers a sequence space, like the CSHP7 
(the Configuration Space of Homologous Proteins 
is a sequence space where all proteins are identified 
relative to a particular one) with a sequence aref as 
reference, all other sequences b can be placed in this 
space and their evolution can be studied by means of 
their genetic distance x (evolutionary time) from the 
sequence aref or by the mean of their mutual informa-
tion (ie, the score s(aref  ,b)) with aref . Let us begin by 
considering evolution with respect to genetic distance. 
This distance lies between 0 and 1 (for example, x can 
be the percentage of different residues between two 
aligned sequences).20

Now, consider the simple evolutionary process 
where there is just one sequence aref at the beginning 
of the process. Per unit time, all existing sequences 
can produce other sequences at a constant rate τ (this 
construction is close to the so-called molecular clock 
hypothesis). We can consider that τ takes into account 
the rate of loss of sequences if this is also a constant. 
In the model, τ plays the role of speciation, or dupli-
cation, rate. In addition to the duplication rate, all 
sequences produced in the CSHP diverge from oth-
ers as time goes on. In particular, they diverge from 
aref  . This fact is largely a consequence that in a high 
dimensional space (a protein of length n can be con-
sidered as an n-dimensional object in which each vec-
tor components can take 20 values), the probability 
to return to the initial state tends to 0 as n tends to 
infinity. This observation may be related to the study 
of random walks on Zd (the Euclidian product of the 
set of relative integers d times) and on the seminal 
work of Polya on the relation between the probabil-
ity to return in an initial state and the dimension of 
the space.21,22 From the point of view of the genetic 

distance x, this process can be viewed as a diffusion 
process along the interval [0,1], and we can make as a 
first approximation an analogy with the first Fick law 
of diffusion.23 We can write the diffusion flux (which 
is a flux of molecules from the point x = 0 to the point 
x = 1) to be proportional to the sequence concentration 
gradient, that is to say j = −D n/x, where n is the 
concentration of sequences, x is the genetic distance 
and D the diffusion coefficient in the sequence space 
(dimension x²t −1). Applying the law of conservation of 
the number of sequences in addition to the production 
of them, we arrive to the final classical equation

 

² .
²

n nD n
t x

τ∂ ∂= +
∂ ∂

 (2)

where τ has a dimension t −1 and where n has to be 
determined on the [0,1] interval of the x axis. Indeed, 
solutions outside this interval will have no biological 
meaning even if these solutions could be determined 
under some conditions.

Stationary solutions
Considering that there seems to exist a general prob-
ability distribution class for sequence comparisons 
scores9–19 and that it seems (not the distribution param-
eters but only the qualitative shape, ie, the class of the 
distribution) to be independent of the sequences, and 
hence from the time since their divergence, it is natural 
to search a time independent solution to the  equation 
(2) with the natural boundary conditions {n(0) = 0, 
n(M) = 0 where M is the maximum of the genetic 
distance (here M = 1), and to verify with data if this 
solution can be applied to our problem. Remembering 
that solutions outside this interval will have no bio-
logical meaning,  there is no need to impose n(x) = 0 
for x ∉[0,1]. As a   consequence, there is no need to 
impose the conditions {n/x(0) = 0, n/x(M) = 0. 
These remarks and the  equation (2) lead to the time 
independent equation to solve

 

² . 0, (0) 0, ( ) 0
²
nD n n n M

x
τ∂ + = = =

∂
 (3)

This classical problem in partial differen-
tial equation theory is known as the Regular 
Sturm-Liouville problem24,25 and the general solu-
tion of the stationary equation is known to be 
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n x A Dx B Dx( ) cos ( ) sin ( )= +τ τ  which becomes, 

after considering boundary conditions

 
n x B l

M
x( ) sin= 





π
 (4)

with l ∈ Z, the set of relative integers.
Now, considering that we are searching a probability 

distribution ρ(x) and that M is the maximum of the 
genetic distance and that it is equal to 1, it is easy to 
see that ρ(x) can be derived from n(x) by setting l (in 
order to having no negative value for the distribution) 
to 1 and by computing B so that the probability distri-
bution will be normalized. As a result, the distribution 
becomes:

 
ρ π π( ) sin( )x x=

2
 (5)

And the probability of having a sequence with a 
genetic distance less or equal to x is given by the inte-
gration of (5):

 
P X x x( ) [ cos( )]≤ = −1

2
1 π  (6)

From genetic distance to sequence 
similarity
Unfortunately, we don’t know the genetic distance 
between proteins (which is a difficult phylogenetic 
problem20) but only the estimation of the Shared 
Amount of Information (SAI) between them. Usu-
ally, the SAI is given by a score which has been 
demonstrated to be an estimate of the mutual infor-
mation I between the two biological sequence7 taken 
as events in a probability space and not as a random 
variable as in the theory of Shannon; In the discrete 
case, mutual information between random variables 
will be the average of mutual information between 
elementary events. To summarise, the SAI is the bio-
logical information shared by two proteins we want 
to access, the score is the mean to measure the SAI 
and the mutual information is the theoretical frame-
work where the measure called “score” is a quantity 
properly defined. Finding a relationship between 
the genetic distance x and the mutual information 
I which conserves the essential properties can be 

achieved by using an extremely simple model. First, 
we consider the  variation of the genetic distance x 
with respect to the variation of I with the general 
model dx/dI = f (x, I ).

The variation of the genetic distance is clearly 
opposite to the variation of the mutual informa-
tion between two sequences. The simplest model 
we could try is the model where the variation of the 
genetic distance is proportional to the variation of the 
mutual information and to the product of the genetic 
distance and the mutual information between the 
two   biological sequences. With k a proportionality 
 constant, we have:

 dx = −kxIdI (7)

which, after integration 
dx
x

udu
x

I

I

1 1∫ ∫= −κ
( )

, lead to 

the following solution:

 x(I ) = exp(−α (I 2 − ξ 2), I ∈[ζ, + ∞] (8)

where α = κ /2 and ξ = I(1).

A new pairwise alignment  
score distribution
Applying the conservation of probability to the prob-
ability density given by equation (5), that is to say 

ρ(x)dx = ρ(I )dI and so ρ ( ) ( )I dI P S ss

+∞

∫ = ≥ , we have

ρ ρ( ) ( )u du I dI
x

s0∫ ∫=
+∞

 which lead to the pairwise 

alignment score distribution, after replacing I by its 
estimate s:

 

ρ απ α ζ π α ζ

ζ

( ) exp( ( ))sin ( exp( ( ))),

[ , ]

s s s s

s

= − − − −

∈ +∞
2

2 2 2 2

 (9)

which is strictly positive. Finally, we get the survival 
function P (S  s) = 1/2[1 − cos (π exp (−α(s2 − ζ  2)))] 
and so the repartition function

P S s s s( ) [ cos ( exp( ( )))], [ , ],≤ = + − − ∈ + ∞
1
2

1 2 2π α ζ ζ

 
(10)

which is a measure of probability since, with 
F(s) = P(S # s), we have F(ζ) = 0 and F(+∞) = 1.
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comparisons between the new model 
and previous models
From the model (9) and (10), we can derive a more 
general family of density and probability distribution 
to be fitted to the data:

ρ αηπ α ζ π α ζ

ζ

η η η η η( ) exp( ( ))sin ( exp( ( ))),

[ , ]

s s s s

s

= − − − −

∈ +∞

−

2
1

 (11)

 P S s s s( ) [ cos ( exp( ( )))], [ , ]≤ = + − − ∈ +∞1
2

1 π α ζ ζη η  (12)

To investigate the accuracy of this new model, 
we used two homologous Response Regulator NtrC 
family proteins in Pseudomonas fluorescens Pf-5 
and in Pseudomonas fluorescens Pf0-1 (Acces-
sion numbers in the swissprot/UniProt database26 
PFL_0091 and Pfl01_0046). For a given number 
N of randomizations (here N = 1000), the second 
sequence Pfl01_0046 is uniformly shuffled (each 
sequence residue is permutated one time27) and then 
aligned with the first sequence using the SIM algo-
rithm28 and the BLOSUM62 matrix5 with the NCBI 
Blast1 default parameters (gap open penalty = 11, 
gap extension penalty = 1). This algorithm generates 
N random scores which will constitute the random 
score distribution to be compared with our model. 
Using uniform randomization is justified by the fact 
that adding neighbour constraints or using real data-
base sequences (N database sequences chosen at 
random) leads generally to very similar results.9,27 
We used three distributions to fit the random scores 
 distribution: the classical  Gumbel model p(s) = 1/β 
exp(−(s − θ )/β) . exp(−exp(−(s − θ )/β )) (which is 
equivalent to the model (1)), the gamma distribu-
tion model p(s) = sδ−1 . exp(−s/ω ) . (Γ(δ ) . ωδ )−1 and 
our new model (11) with and with no preset for η. 
Indeed, the model (9) assigned a value of 2 for this 
parameter. As a consequence, we hope that the 
value of η optimizing from the data will be close 
to 2.  Optimisation of the parameters θ and β for 
the  Gumbel model (1); δ and ω for the gamma dis-
tribution model; α, ζ and η for the our model was 
achieved using maximum likelihood statistical 
inference and was implemented in the R statistical 
language.29 The maximum likelihood approach has 

been chosen because it can be  easily written and 
implemented.30 All optimisation was done using 
the nlm package available with the R statistical 
 software.29 For this work, an R library, called basto.r, 
has been developed. It includes an implementation 
of the Heaviside function and a set of functions for 
the density, the cumulative function, the generator 
of random values and the log-likelihood for the 
new model (the R library corresponding to the new 
model (11) is available in the supplementary materi-
als and is part of the basto.r package’s bastog family 
functions). As it can be seen in Figure 2, the new 
model qualitatively outperforms the Gumbel model. 
This can be verifying in Figure 3 by using a qq-plot 
representation. In addition, the new model is the only 
one which fits data in the twilight zone, which is the 
zone of low protein alignment scores. The model 
(11) has three parameters whereas the Gumbel model 
(1) and the gamma model have both two parameters. 
 Classically, it isn’t surprising that the model (11) 
could have a better fit with the data while possess-
ing a greater number of parameters than the other 
models. However, we can observe that the optimized 

PFL_0091 versus Pfl01_0046 with 1000 randomisations
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Figure 2. histogram of the distribution of random scores between the 
Response Regulator NtrC family proteins in Pseudomonas fluorescens 
Pf-5 and homologous proteins in Pseudomonas fluorescens Pf0-1 
(Accession numbers PFL_0091 and Pfl01_0046). Only the second 
sequence was shuffled 1000 times. Red curve: Gumbel distribution with 
parameters θ = 33.27876 and β = 6.523116. Blue curve: gamma distri-
bution with parameters δ = 53.04861 and ω = 0.6983029. Purple curve: 
our model with parameters α = 0.001281424, ζ = 27.500000245 and 
η = 1.999992822.
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qqplot for Gamma vs Theoretical Quantiles

qqplot for Bastien & Ortet vs Theoretical Quantiles qqplot for Bastien & Ortet vs Gumbel

Figure 3. Quantile-quantile plot of (top-left) the gumbel theoretical quantile versus the data quantile. (top-right) the gamma theoretical quantile versus 
the data quantile. (down-left) our model theoretical quantile versus the data quantile. (top-left) our model theoretical quantile versus the gumbel theoreti-
cal quantile.

value of η = 1.999992822 is very close from that of 
the model (9). As a consequence, the two parameter 
model (9) seems also to be a better model than the 
Gumbel and the gamma model. This assumption is 
confirmed by the results of parameter optimizations 
(supplementary materials, p. 6) with the constraint 
η = 2 (basto.r package’s basto2 family functions).

A very interesting feature of this new model is 
that it combines the advantages of both the Gumbel 
law and the gamma law. Indeed, The Karlin-Altschul 
domain of validity is precisely the domain of 
sufficiently high score (and/or long length sequences 
as can be seen in equation(1)).10,17 In fact, the Gum-
bel model is less efficient than the gamma or the 
normal distribution in the low score domain15 for 
global alignment scores but it is more efficient in the 
high score domain.10,12,17 The new proposed model 
seems to have properties to reflect the distribution of 
random scores both in the low score region (the so-
called twilight zone) and in the high score region, the 

common regions of interest. Three more examples 
are given by the pairwise alignments of three proteins 
in Pseudomonas fluorescens Pf-5 and in Pseudomo-
nas fluorescens Pf0-1: a two-component system pro-
tein from the NarL family (Fig. 4) (η = 2.053335), 
the rod shape-determining protein MreB (Fig. 5) 
(η = 1.908571) and a  hypothetical protein chosen 
because it possesses a particularly high score with its 
homologue (Fig. 6) (η = 2.5). However, this conclu-
sion applies to all existing pairwise alignments score 
distributions.

Discussion
This model provides the first link between protein 
sequence comparison results and the evolutionary pro-
cesses which have led to those proteins. Starting from a 
simple evolutionary process, we obtained a score prob-
ability distribution (9) and its generalized version (11). 
This new model seems more accurate than other previ-
ously tested models. However, the determination of the 

http://www.la-press.com


Ortet and Bastien

166 Evolutionary Bioinformatics 2010:6

parameters of the Gumbel  distribution is a computation-
ally expensive task9,17,31,32 although several efforts have 
reduced this expense by algorithm improvements,31–33 
or new sample statistical procedures.34 The statistical 
estimation of the distribution also varies with the 
chosen substitution matrix and the chosen alignment 
algorithm.5,6,35–37 As a consequence, further work on the 
new models (9) and (11) should include the influence 
of the substitution matrices and the construction of an 
efficient algorithm to determine the models’ parame-
ters. Indeed, the application to a database search using 
maximum likelihood methods is unrealistic because of 
the extensive time required.

In order to state the domain of validity of this 
new model, it will be important to investigate the 
influence of allowing τ to vary over time in the 
divergence-duplication model. Indeed, the evo-
lutionary model used in this work is a branching 
process which has to be related with both graph 
theory and graphical, often tree, representation of 
evolution. As a consequence, we hope that sus-
pending the hypothesis that τ is constant will lead 
to a more realistic and accurate model. A second 
point which should be studying in depth is the influ-
ence of the sequence alignment parameter-settings. 
 Nevertheless, preliminary studies tend to show 

PFL_4451 vs Pfl01_4222
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Figure 4. (Top Left) histogram of the distribution of random scores between the two-component system, narL family, sensor histidine kinase in Pseudomo-
nas fluorescens Pf-5 and homologous proteins in Pseudomonas fluorescens Pf0-1 (Accession numbers PFL_4451 and Pfl01_4222). Only the second 
sequence was shuffled 1000 times. Red curve: Gumbel distribution with parameters θ = 41.79989 and β = 7.047815. Blue curve: gamma distribution with 
parameters δ = 69.67213 and ω = 0.6583407. Purple curve: our model with parameters α = 0.0006687308, ζ = 33.99296 and η = 2.053335. (top-right) 
Quantile-quantile plot of the gumbel theoretical quantile versus the data quantile. (down-left) the gamma theoretical quantile versus the data quantile. 
(down-right) our model theoretical quantile versus the data quantile.
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that the above conclusions hold for comparisons 
of sequences of various lengths and also for differ-
ent parameters-setting (supplementary materials, 
p. 11). It will also be interesting to test different 
relations between mutual information and genetic 
distance (equation 7)38 to evaluate the robustness 
of the model. In this work, we tried to retrieve the 
Gumbel distribution shape from a purely evolu-
tionary process and we obtained a new score prob-
ability distribution which exhibits great statistical 
accuracy. However, many bioinformatics applica-
tions are also interesting in separating related pairs 

of sequences from unrelated ones, like in a data-
base search. A retrieval accuracy study should also 
be undertaken in future work. An investigation of 
the possible extension of this distribution to global 
alignments should also be undertaken.
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Figure 5. (Top Left) Histogram of the distribution of random scores between the rod shape-determining protein MreB in Pseudomonas fluorescens Pf-5 
and the homologous protein in Pseudomonas fluorescens Pf0-1 (Accession numbers PFL_0896 and Pfl01_0838). Only the second sequence was shuffled 
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#basto library
#Author: Dr Olivier Bastien
#email: olivier.bastien@cea.fr
#date: 25 April 2010
#
#must be copying in a file named basto.r (ascii format)
#heaviside function
#x: function support
#y: function values
#cutoff: the heaviside value of the function vanishes below this cutoff
heaviside<-function(x,y,cutoff = 0)
{
Z<-0;
sizeX<-length(x);
for(i in 1:sizeX)
{
if(x[i]< cutoff)
{
Z[i]<-0;
}
else
{
Z[i]<-y[i];
}
}
Z
}

#basto distribution
#Density, distribution function, quantile function and random generation
#for the basto distribution
#x, q: vector of quantiles
#p: vector of probabilities
#n: number of observations
#alpha: vector of alpha
#xmin: vector of xmin
dbasto<-function(x,alpha = 0.2,xmin = 0)
{
heaviside(x,(alpha*pi/2)*exp(-alpha*(x-xmin))*sin(pi*exp(-alpha* 
(x-xmin))),xmin)
}
pbasto<- function(q,alpha = 0.2,xmin = 0)
{
heaviside(q,(1/2)*(1+cos(pi*exp(-alpha*(q-xmin)))),0)
}
qbasto<-function(p,alpha = 0.2,xmin = 0)
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{
}
rbasto<-function(n,alpha = 0.2,xmin = 0)
{
Z<-runif(n,min = 0,max = 1);
-(1/alpha)*log((1/pi)*acos((2*Z)-1))+xmin
}
#log maximum likehood for the basto distribution
# vector of parameters which is c(alpha,xmin)
mlbasto<-function(para,TT)
{
alpha<-para[1];
xmin<-para[2];
LL<-length(TT);
-sum(log(dbasto(TT,alpha,xmin)))
}

#generalized basto distribution
#Density, distribution function, quantile function and random generation
#for the generalized basto distribution
#x, q: vector of quantiles
#p: vector of probabilities
#n: number of observations
#alpha: vector of alpha
#xmin: vector of xmin
dbastog<-function(x,alpha = 0.2,xmin = 0,beta = 1)
{
#heaviside(x,(alpha*pi/2)*exp(-alpha*(x-xmin))*sin(pi*exp(-alpha* 
(x-xmin))),xmin)
heaviside(x,(beta*alpha*pi/2)*(x^(beta-1))*exp(-alpha*(x^(beta)-
xmin^(beta)))*sin(pi*exp(-alpha*(x^(beta)-xmin^(beta)))),xmin)
}
rbastog<- function(n,alpha = 0.2,xmin = 0,beta = 1)
{
Z<-runif(n,min = 0,max = 1);
(-(1/alpha)*log((1/pi)*acos((2*Z)-1))+xmin^(beta))^(1/beta)
}
#log maximum likehood for the generalized basto distribution
#vector of parameters which is c(alpha,xmin)
mlbastog<-function(para,TT)
{
alpha<-para[1];
xmin<-para[2];
beta<-para[3];
LL<-length(TT);
-sum(log(dbastog(TT,alpha,xmin,beta)))
}
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#basto2 distribution
#Density, distribution function, quantile function and random generation
#for the generalized basto distribution
#x, q: vector of quantiles
#p: vector of probabilities
#n: number of observations
#alpha: vector of alpha
#xmin: vector of xmin
dbasto2<-function(x,alpha = 0.2,xmin = 0)
{
#heaviside(x,(alpha*pi/2)*exp(-alpha*(x-xmin))*sin(pi*exp(-alpha* 
(x-xmin))),xmin)
heaviside(x,(2*alpha*pi/2)*(x^(2–1))*exp(-alpha*(x^(2)-
xmin^(2)))*sin(pi*exp(-alpha*(x^(2)-xmin^(2)))),xmin)
}
rbasto2<-function(n,alpha = 0.2,xmin = 0)
{
Z<-runif(n,min = 0,max = 1);
(-(1/alpha)*log((1/pi)*acos((2*Z)-1))+xmin^(2))^(1/2)
}
#log maximum likehood for the generalized basto distribution
#vector of parameters which is c(alpha,xmin)
mlbasto2<-function(para,TT)
{
alpha<-para[1];
xmin<-para[2];
LL<-length(TT);
-sum(log(dbasto2(TT,alpha,xmin)))
}

http://www.la-press.com


Ortet and Bastien

174 Evolutionary Bioinformatics 2010:6

Example of the basto.r usage (page 5)
1. Copy the example source code (below) in a file named test_basto.r (ascii format).
2. Verify that the two files test_basto.r and the basto r library, are in the same repertory.
3.  Just after, launch the R software and write the command line: >source (“test_basti.r”)

source("basto.r")
XX<-rbastog(1000,0.002,20,2)
hist(XX,nclass = 50,,xlim = c(0,100),freq = FALSE);
test.optim<-nlm(mlbastog,c(0.0001,min(XX)-1,2),XX,print.level = 2);
X<-seq(from = 0,to = 80,by = 0.01);
funcTest<-dbastog(X,test.optim$estimate[1],test.optim$estimate[2],test.
optim$estimate[3]);
lines(X,funcTest,type = "l",col = "blue")
X11()
YY<-rbastog(100, test.optim$estimate[1],test.optim$estimate[2],test.
optim$estimate[3]);
minG<-min(c(XX,YY));
maxG<-max(c(XX,YY));
qqplot(XX,YY,xlab = "Theoretical Quantiles", ylab = "Sample Quantiles", 
xlim = c(minG,maxG),ylim = c(minG,maxG))
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Figure s2. Quantile-quantile plot of (top-left) the gumbel theoretical quantile versus the data quantile. (top-right) the gamma theoretical quantile versus 
the data quantile. (down-left) our model theoretical quantile versus the data quantile. (top-left) our model theoretical quantile versus the gumbel theoreti-
cal quantile.
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PFL_0091 versus Pfl01_0046 with 1000 randomisations
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Figure s1. Histogram of the distribution of random scores between the Response Regulator NtrC family proteins in Pseudomonas fluorescens Pf-5 and 
homologous proteins in Pseudomonas fluorescens Pf0-1 (Accession numbers PFL_0091 and Pfl01_0046). Only the second sequence was shuffled 1000 
times. red curve: gumbel distribution with parameters θ = 33.27876 and β = 6.523116. Blue curve: gamma distribution with parameters δ = 53.04861 and 
ω = 0.6983029. Purple curve: our model with parameters α = 0.001281286, ζ = 27.500000244 and η = 2.

parameters Optimizations with  η = 2
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Figure s3. (Top Left) histogram of the distribution of random scores between the two-component system, narL family, sensor histidine kinase in Pseudomo-
nas fluorescens Pf-5 and homologous proteins in Pseudomonas fluorescens Pf0-1 (Accession numbers PFL_4451 and Pfl01_4222). Only the second 
sequence was shuffled 1000 times. Red curve: Gumbel distribution with parameters θ = 41.79989 and β = 7.047815. Blue curve: gamma  stribution with 
parameters δ = 69.67213 and ω = 0.6583407. Purple curve: our model with parameters α = 8.094621e-04, ζ = 33.5 and η = 2. (top-right)  Quantile-quantile 
plot of the gumbel theoretical quantile versus the data quantile. (down-left) the gamma theoretical quantile versus the data quantile. (down-right) our 
model theoretical quantile versus the data quantile.
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PFL_0896 vs Pfl01_0838

Scores

D
en

si
ty

Gumbel vs Theoretical Quantiles

Gumbel Theoretical Quantiles

S
am

p
le

 Q
u

an
ti

le
s

Gamma vs Theoretical Quantiles

Gamma Theoretical Quantiles

S
am

p
le

 Q
u

an
ti

le
s

Bastien & Ortet vs Theoretical Quantiles

Bastien & Ortet Theoretical Quantiles

S
am

p
le

 Q
u

an
ti

le
s

0

0.
00

0.
02

0.
04

0.
06

0.
08

20 40 60 80 4020 60 10080

40
20

60
80

10
0

4020 60 10080

40
20

60
80

10
0

4020 60 10080

40
20

60
80

10
0

Figure s4. (Top Left) Histogram of the distribution of random scores between the rod shape-determining protein MreB in Pseudomonas fluorescens Pf-5 
and the homologous protein in Pseudomonas fluorescens Pf0-1 (Accession numbers PFL_0896 and Pfl01_0838). Only the second sequence was shuffled 
1000 times. red curve: gumbel distribution with parameters θ = 33.20788 and β = 7.1206. Blue curve: gamma distribution with parameters δ = 45.1806 
and ω = 0.825974. Purple curve: our model with parameters α = 0.001140583, ζ = 26.5 and η = 2. (top-right) Quantile-quantile plot of the gumbel theo-
retical quantile versus the data quantile. (down-left) the gamma theoretical quantile versus the data quantile. (down-right) our model theoretical quantile 
versus the data quantile.
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PFL_5654 vs Pfl01_5140
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Figure s5. (Top Left) Histogram of the distribution of random scores between a hypothetical protein in Pseudomonas fluorescens Pf-5 and the homolo-
gous protein of Pseudomonas fluorescens Pf0-1 (Accession numbers PFL_5654 and Pfl01_5140). Only the second sequence was shuffled 1000 times. 
red curve: gumbel distribution with parameters θ = 32.25266 and β = 5.941174. Blue curve: gamma distribution with parameters δ = 59.33383 and 
ω = 0.601377. Purple curve: our model with parameters α = 0.001270900, ζ = 25.5 and η = 2. (top-right) Quantile-quantile plot of the gumbel theoretical 
quantile versus the data quantile. (down-left) the gamma theoretical quantile versus the data quantile. (down-right) our model theoretical quantile versus 
the data quantile.
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Alignment Parameter Influence Study
Comparion of a Pseudomonas fluorescens Pf-5 protein with four others Pseudomonas fluorescens Pf0-1 proteins

1. Liste of proteins

Pseudomonas fluorescens Pf-5 PFL_0091   448 aa

Vs  Pseudomonas fluorescens Pf0-1 Pfl01_0046 448 aa
 Pseudomonas fluorescens Pf0-1 Pfl01_4222 922 aa
 Pseudomonas fluorescens Pf0-1 Pfl01_0838 345 aa
 Pseudomonas fluorescens Pf0-1 Pfl01_5140 423 aa

2. List of substitution matrices and alignment parameters (Gapo: gap open penalty, Gape: gap extension penaty)

 substitution matrices  First choice of parameters  second choice of parameters
 Blosum 62  gapo: 11; gape: 1  gapo: 9; gape: 2
 Pam 70  gapo: 10; gape: 1  gapo: 8; gape: 2

3. Results

Title of figures: ID QUERY_ID SUBJET_ MATRICE_GAPO_GAPE
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