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Advances in neural interfaces have demonstrated remarkable results in the direction of replacing and restoring lost sensorimotor
function in human patients. Noninvasive brain-computer interfaces (BCIs) are popular due to considerable advantages including
simplicity, safety, and low cost, while recent advances aim at improving past technological and neurophysiological limitations.
Taking into account the neurophysiological alterations of disabled individuals, investigating brain connectivity features for
implementation of BCI control holds special importance. Off-the-shelf BCI systems are based on fast, reproducible detection
of mental activity and can be implemented in neurorobotic applications. Moreover, social Human-Robot Interaction (HRI) is
increasingly important in rehabilitation robotics development. In this paper, we present our progress and goals towards developing
off-the-shelf BCI-controlled anthropomorphic robotic arms for assistive technologies and rehabilitation applications. We account
for robotics development, BCI implementation, and qualitative assessment of HRI characteristics of the system. Furthermore, we
present two illustrative experimental applications of the BCI-controlled arms, a study of motor imagery modalities on healthy
individuals’ BCI performance, and a pilot investigation on spinal cord injured patients’ BCI control and brain connectivity. We
discuss strengths and limitations of our design and propose further steps on development and neurophysiological study, including
implementation of connectivity features as BCI modality.

1. Introduction

Advances in neural interfaces including implantable neu-
ral prosthetics and brain-computer interfaces (BCIs) have
recently demonstrated remarkable results in the direction of
replacing [1, 2] or even restoring [3, 4] long-lost sensorimotor
function in human patients. Pathological conditions like
spinal cord injury (SCI), amyotrophic lateral sclerosis, and
stroke, among others, compromise an individual’s physical
and psychological well-being and result in social seclusion
due to the severance between volition and the ability to

act [5]. SCI in particular results in disconnection of afferent
and efferent neural pathways and can cause permanent
sensorimotor disability, often without any cognitive alter-
ation, which negatively impacts the lives of the victims and
their families [6]. BCIs aim to bridge this disconnection by
detecting and decoding brain activity, thus allowing patients
to control external devices, robotics, and exoskeletons [1–5].
Nonetheless, chronic SCI has been demonstrated to induce
neurophysiological changes in brain structure [7] and func-
tion, both at resting state [8] and during sensorimotor process
[9].These neurophysiological changes could negatively affect
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the design and development of robust and durable BCIs for
motor restoration [4, 10]; hence they should be systematically
investigated further [11].

Despite recent technological breakthroughs in BCI
research, in terms of reliability, accuracy, and speed, the best
results in robotics and neural prosthesis control have been
demonstrated by invasive technology (neural implants) [1, 2,
12, 13]. Noninvasive BCIs, on the other hand, are far more
widespread and hold many relative advantages, including
simplicity, safety, lower cost, and range of applications [14, 15].
Moreover, novel paradigms and recent advances in noninva-
sive BCI protocols also aim at progressively improving past
technological and neurophysiological limitations to levels
comparable to invasive BCIs [16, 17]. Such a paradigm, taking
into consideration the aforementioned neurophysiological
alterations that disabled individuals demonstrate compared
to healthy users [11], lies with investigating brain connectivity
features for implementation of BCI control [17–19]. Commer-
cial electroencephalography (EEG) BCI systems, as another
approach, are based on fast, reproducible detection of a low
number of mental states and have taken the spotlight in con-
sumer applications. They are even increasingly considered
for robotics control [20, 21], often employing the detection
of motor imagery (MI) states. The mental execution of an
action, MI, displays similarities in brain activation [22, 23]
with physical execution and as such has also been deployed
in rehabilitation andBCI applications for disabled individuals
[5, 14]. MI consists of a visual and a kinesthetic component,
corresponding to two task-dependent and distinct neural
contributing systems [24–26]. Visual motor imagery (VMI)
implies that a representation of the motor task is provided
(e.g., video or avatar), while kinestheticmotor imagery (KMI)
is based on internal simulation or rehearsal of the task.
While networks formed during VMI and KMI both involve
motor related cortical areas, VMI also involves the occipital
and superior parietal cortical areas while KMI involves the
inferior parietal cortex [24, 26].

Even past the challenges and limitations of BCI sys-
tems, the design of a robotic arm for medical engineering
applications, such as rehabilitation and assistive technologies
for disabled individuals, constitutes a challenge on multiple
fronts, including engineering problems, design requirements,
and budget cost issues [27]. Designing a custom-made
robotic arm allows for greater flexibility and negates the need
to purchase expensive research-level robotics. It also raises
several issues: reduced accessibility to directly comparable
experimental findings by other research groups [28], lack
of standardization, harder validation of experimental results,
and increased difficulty in assessing suitability to nonspecific
applications [29] compared to similar commercially available
robotic products.

While programmable automation design can be traced
back to Ancient Greece [30], modern transistor-based elec-
tronics during the latter half of the 20th century have allowed
for complex electromechanical devices (mechatronics) of
unprecedented programmability, precision, speed, strength,
and durability. Subsequent integration of sensors and pow-
erful digital microprocessors has increased the versatility of

modern robots and medical applications (surgical applica-
tions, mechatronic prosthesis, and rehabilitation) are devel-
oping fast. Currently robotic systems are constantly under
direct human control, but semiautonomous algorithms are
also under development [31]. Constant advances in artificial
intelligence algorithms mean that robots with medical deci-
sion support capabilities may be a likely next technological
step [32]; however careful planning and public debate are
required to ensure a human operator remains in the loop at
all times to assume legal and ethical responsibility [33].

To that end, social robotics and Human-Robot Inter-
action (HRI) are considered important—yet sometimes
overlooked—aspects of robotics development [34, 35]. User
perception, satisfaction, and overall experience are of equal
importance to hardware/software performance and quality
standards [36]. Especially in fields such as rehabilitation that
depends on human psychology, the success of a robot cannot
be meaningfully assessed using technological performance
and industrial integration criteria alone [36]. The accommo-
dation of registering an external machine as a part of one’s
own body schema, which significantly affects the rehabili-
tation process, should also be taken into account [37]. HRI
psychological and social characteristics can be investigated
with questionnaires, carefully correlating psychological per-
ception measurements with the characteristics of the robotic
system used [34, 37]. The Godspeed questionnaire was
selected for our purposes due to providing reproducible and
comparable subjective measurements and sufficient coverage
of HRI-related psychological states [36]. Such tools can prove
invaluable in developing improved medical robotics particu-
larly for prosthesis and rehabilitation applications [38].

In our previous work we have already presented the
conceptual design and development of the Mercury robotic
arm for biomedical applications and dealt with construction
standards and validation tests [21]. We implemented a Body-
Machine Interface (BMI) control module and conducted a
pilot end-user assessment experimental study [39], focusing
on both the technical characteristics and performance, as
well as on HRI [36]. Our research team has since further
improved the robotic arms in terms of anthropomorphism
and allowing for movement alongmore Degrees-of-Freedom
(DoFs) through the addition of a gripper resembling a human
hand. We also improved the electronics and integrated a
second symmetric Mercury arm into the system [40].

In the remainder of this paper we present our progress
and goals towards developing off-the-shelf BCI-controlled
robotic arms for assistive technologies and rehabilitation
applications. In Materials and Methods, we first account for
further development of the robotic arms and electronics,
including a qualitative assessment study of the BMI module.
We subsequently report on the implementation of the BCI
control module using an off-the-shelf EEG-BCI system and
the development of BCI-robotics communication; then we
present two illustrative experimental applications of the BCI-
controlled robotic arms. The first experiment is a study on
healthy individuals to compare MI modalities for optimal
BCI performance. The second experiment regards a compar-
ative pilot investigation on SCI patients and healthy individ-
uals for noninvasive control of multiple robotic arm motions
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and functional connectivity [41]. In Results and Discussion
we first report the results of these two illustrative experiments
regarding training, performance, and qualitative assessment,
as well as briefly presenting pilot findings regarding brain
networks. We then discuss the strengths and limitations of
our experimental design and propose further steps on robotic
development and neurophysiological study.

2. Materials and Methods

2.1. Mercury: Short Account on Development
Milestones of the Robotics

2.1.1. The Robotic Arms Platform. The Mercury robotic arm
system has been developed as a customized design by our
team for two technological generations so far [39, 40]. Design
requirements focused on biomedical engineering applica-
tions, specifically intuitive remote robotic control, HRI
research, and medical robotics for rehabilitation. Emphasis
was placed primarily on fluid, anthropomorphic motion, fast
response times to control triggers, and low fabrication cost.
At a lower priority we regarded precision of movement and
heavy lifting capability. Since the development of the robotic
system has been presented elsewhere [39, 40], hereby we
briefly report the technological characteristics of the system
used in our current experimentation.

The Mercury robotic platform comprises a robotic arm
currently capable of movement along 8DoFs (at shoulder,
elbow, wrist, hand gripper, and thumb joints), as well as
a choice between two control modules [42]: (a) a custom-
designed BMI capable of sensing the movement of a human
operator’s arm and (b) a commercially available BCI (EPOC,
Emotiv, USA) which was integrated into the system. The
system uses commercially available DC motors to provide
movement: (a) along Cartesian vectors for the robotic shoul-
der joint (2DoFs: “right-left” and “up-down”), the elbow
joint (1 DoF: “up-down”), and the wrist joint (1 DoF: “up-
down”) and (b) 2DoFs along rotation axis between the
“shoulder/elbow” and “elbow/wrist” parts. Two servomotors
complement the robotic arm’s movement capabilities, allow-
ing for gripping small objects with a 3D printed, anthropo-
morphic gripper: 1 DoF is used for the thumb and 1DoF for
the rest of the fingers (Figure 1).

2.1.2. The Body-Machine Interface. The BMI control module
for the Mercury robotic arm has been described in previous
work in terms of design, construction, cost, and features [39].
In the current section we provide a synopsis of the BMI
module simply to facilitate comprehension of the techno-
logical evolution of our overall experimental robotic setup.
The Mercury BMI comprises an exoskeletal position sensing
harness (EPSN), which is worn by the user around their arm.
It uses analogue resistance sensors to capture the movements
of the shoulder, elbow, and wrist, as well as the gripping
movement of the human hand. Movement is captured along
6DoFs, a subset of the actual capabilities of the real human
arm but enough to provide a realistic reproduction of the
movement of the aforementioned joints.

(a)

(b)

(c)

(1)

(2)

(3)

(4)

(5)

(6)
(7)

(8)

Figure 1: Current generation ofMercury robotic arm: (a) the robotic
arm in position during an illustrative experiment, (b) the 3D-
printed gripper (in focus circle), and (c) schematic of the 8DoFs
of the robotic arm. Mercury arms are house-built, of low cost, and
anthropomorphic.

During the design process of the EPSN, emphasis was
placed on rapid capture and transfer of control signals to the
Mercury robotic arm, allowing it to replicate the movement
of the human operator’s arm in a fluid, anthropomorphic
fashion. For this purpose analogue classical automation con-
trol circuits were used to calculate analogue control signals
subsequently fed to an Atmel ATmega2560 microprocessor.
The microprocessor handled digitization, interface to a PC,
and generation of the control signals for the Mercury robotic
arm. Initial experiments using the EPSN focused on HRI,
specifically the time required for first-time human operators
to develop the skills to control the Mercury robotic arm
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Figure 2: Schematic of Brain-Computer Interface loop: using off-the-shelf EEG-BCI for control of house-built robotic arms.

and perform basic tasks such as knocking, gripping, lifting,
and placing small objects [39]. Those initial experiments also
gathered perceived psychometric characteristics from pilot
testers, classified by age, sex, level of education, and famil-
iarization with electronics and robotics technology [43, 44].
These comparisons revealed not only a tendency of female
pilot testers and those unfamiliar with robotics to perceive
the Mercury robotic arm as being more humanlike, but also
a disillusionment effect being induced to all participants after
the pilot testing.

2.2. Brain-Computer Interface Module Development

2.2.1. Off-the-Shelf Brain-Computer Interface. Advances in
both hardware and software technologies rendered real-time
EEG processing a possibility, including detection and identi-
fication of brain activity features for use in BCIs. Currently
there are several BCI systems available commercially, one
of which is the Emotiv EPOC (USA), sold around $300,
which is significantly lower than most medical EEG devices.
It is a portable, wireless EEG recording device that has 14
dry electrodes arranged according to the international 10–20
System and can be easily mounted to the user’s head. The
device operates at an internal sampling rate of 2048Hz and
the data are transmittedwirelessly at 2.4GHz to aUSB dongle
with a sampling rate of 128Hz. The BCI capabilities of the
device are accessed by the Cognitiv suite and rely on Event
Related Desynchronization (ERD). The user initially needs
to record a resting state EEG after which he is able to train
up to four mental commands, using a machine-learning
pipeline to teach the BCI how he visualizes. The pipeline
operates along the stages of preprocessing, feature extraction,
reduction of dimensionality, and classifier training. Following
the training, the suite will continually attempt to identify the
trained commands by analyzing the user’s EEG. During this

process, the suite presents a floating box that will execute
any mental command that it identifies, and the action power,
corresponding to the level of confidence of each classification.

2.2.2. Communication between BCI and Robotics. In order to
achieve online communication between the commercial BCI
application and the robotic arms, the trained BCI classes are
mapped in real-time to computer controls, using a combina-
tion of the BCI’s native Emokey application (Emotiv, USA)
and an in-house script, developed in Matlab environment
(Mathworks,USA). In our implementation, the BCI is trained
in only three classes: one for resting state and two for general
“left” or “right” directions, using either visual or kinesthetic
motor imagery. Each BCI class is linked to a specific key
button, which is enabled when the detected mental state
corresponds to that class. Then the script accepts the corre-
sponding command as input and transmits it through a serial
port, with Baud Rate 9600, to the on-board microcontroller
unit for eachMercury robotic arm (Figure 2).The arms’ units
translate that input to specific positional coordinates for each
of the 8DoFs’ motor. Using this approach, we achieve a move
reaction time of the system that approximates 0.2 seconds.

2.3. Current Experimental Setup. The Bioethics & Ethics
Committee of Faculty of Medicine, Aristotle University
of Thessaloniki, approved the experimental protocol. All
experiments were conducted after the participants provid-
ing informed consent and no remuneration was given. To
facilitate the integration of the robotic arms (or the limb
presentation during EEG recording) into the participants’
own body schema, their arms and body were covered with
a black curtain [37] during all experimental procedures.
Wherever visual cues were used (video of arms or legs
moving) the presented limbs were always matched with
regard to the participant’s sex. Furthermore, none of the
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Figure 3: Overview of the experimental setup in the Thess-AHALL Living Lab. The figure is modified with authors’ permission [46].

participants in any experiment reported prior experience
with MI practices or BCI experiments (characterized as BCI-
naı̈ve [45]). Finally, the participants reported on their user
experience, rating the HRI characteristics of the system by
answering the Godspeed questionnaire [36], translated in the
Greek language [44].

All experimental parts that involved the use of the robotic
arms were conducted in theThessaloniki Active and Healthy
Ageing Living Lab technology showcase room (Thess-
AHALL, member of ENoLL, http://www.aha-livinglabs.com,
http://medphys.med.auth.gr) [46, 47] that is equipped with
accelerometers for fall detection and observation cameras
[48]. Participants comfortably sat on a chair, while disabled
individuals sat on a wheelchair, docked between the two
robotic arms and facing a 42 TV/computer monitor located
a meter away (Figure 3). EEG recordings were taken from
an Emotiv EPOC headset with a sampling rate of 128Hz
and wirelessly transmitted to the BCI-dedicated laptop that
was mounted on the frame and operated by the investigator,
situated behind the participant.

The experimental parts that involved the use of high-
resolution EEG recording were conducted in a specially
designed magnetic shielded room for recordings with pre-
sentation capabilities and audiovisual monitoring. The par-
ticipants sat on an inclined armchair inside the room, while
facing a 21 computer monitor located a meter away. Record-
ings were obtained using the 10-5 international electrode

system for high-resolution EEG [49] with a sampling rate
of 1000Hz and impedance threshold set at 10 kOhm. An
active electrodes cap was used (Brain Products, Germany)
connected to a 128-channel EEG (Nihon-Kohden, Japan).

2.4. Qualitative Assessment Experiment: Comparison of MI
Modalities. The first of the two illustrative experimental
applications was a qualitative assessment study, comparing
MI modalities for control of the BCI-controlled robotic
arms by healthy individuals with regard to BCI training and
optimal performance [50]. The participants were trained to
use visual and kinesthetic cues to control simple motor tasks
of the two robotic arms and we assessed their skill training
and success rates.

2.4.1. Subjects and Training Procedure. In total thirty healthy
participants were included in the study, 18 male (60%) and
12 female (40%), ranging from 19 to 46 years (median age
24 years). All 12 female and 14 of the male participants
declared that they were right-handed. From the rest of the
male participants, 2 declared being left-handed and 2 being
ambidextrous.

Kinesthetic motor imagery (KMI) modality was trained
first. The participants were asked to relax and resting state
EEG with eyes-open was first trained as the neutral BCI
class. All participants were then asked to strongly imagine
a commonly performed (daily routine) movement for each

http://www.aha-livinglabs.com
http://medphys.med.auth.gr
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Figure 4: The training procedure of the qualitative assessment experiment.

hand (left and right) without actually moving their limbs. A
“left” and “right” BCI class was trained accordingly, 20 times
each. Always the “left” class was trained first and training
was conducted in blocks of five training cycles. Each cycle
consisted of 8 seconds of continuous recording of the mental
state (“training”) and 2 seconds of rest (Figure 4), while the
achieved training skill percentage and the action power of
each cycle were recorded (action power threshold was set at
50%). When the KMI training was concluded (Figure 4), the
participants rested for 2 minutes before attempting to control
the robotic arms (control trials are described in Section 2.4.2).

The participants rested for 10 minutes after the KMI
control trials and then the VMI modality was trained. The
training procedure was the same but instead of imagining a
movement, during the “training” cycle, a video played on the
TVmonitor (left or right forearmpronation). Againwhen the
VMI trainingwas concluded, 2-minute rest intervened before
the participants attempted to control the robotic arms.

2.4.2. Robotic Arm Control Trials and Success Rates. The
participants attempted to control the “elbow/wrist” rotational
DoF of each robotic arm. First they attempted to move
the right robotic arm 10 times with the “right” BCI class
and then the left robotic arm 10 times with the “left” BCI
class. Each trial cycle lasted 10 seconds with a 2-second
rest between them and a successful trial was marked by
any detection of the correct BCI class during the 10-second
period.When the correct class was detected the relevant DoF
moved (corresponding to pronation), while it remained idle
otherwise.

For the control trials using KMI, only a command was
given to the participants to attempt to control the robotic
during the trial cycle. For the control trials usingVMI, during
the trial cycle, on the TV monitor the same video that the
participants were trained to played and no command was
given (Figure 5). Success rate was recorded for each robotic
arm and imagerymodality (successful trials in 10 consecutive
trial cycles of right or left robotic arm control in either KMI
or VMI). Success rates for each imagery modality were also
calculated (successful trials in 20 trial cycles of both robotic
arms control).

2.4.3. Statistical Analysis

(1) Demographics. Six participants who did not succeed in
passing action power threshold during skill training (50%)
were excluded from further analysis. All further comparisons
regarding demographics (as well as skill training, success
scores, and Godspeed questionnaire, as presented in next
sections) were made on the remaining participants (𝑛 =
24). Planned comparisons explored the age differences across
the remaining participants using as grouping factor the
gender/sex (female, male). The age was tested for normality
following Shapiro-Wilk Test [51, 52] after controlling for
sex. However, age did not meet the normality assumption
when controlled for sex. Therefore, age differences between
sexes were explored using Mann–Whitney (𝑈) Test. We
did not control for hand dominance as grouping factor
because the majority of the remaining participants were
right-handed. Significant age differences between female and
male participants were not found (𝑈 = 68; 𝑝 = 0.816).

(2) Kinesthetic against Visual Motor Imagery Skill Training.
KMI skill training scores were compared against VMI skill
training scores (a) for all remaining participants and (b) for
participants grouped by gender. For all participants, scores
were compared for both hands (left and right hand separately)
and also across training blocks after those being tested for
normality assumption. The differences between Kinesthetic
and Visual Skill scores were normally distributed across
training blocks for both hands. Therefore, Paired 𝑡-tests were
planned for each training block and for both hands separately.
After grouping by gender, we compared again KMI and VMI
skill training scores across training blocks and for both hands
separately. For the aforementioned statistical analyses Paired
𝑡-tests were used since differences (Kinesthetic-Visual Skill
scores) were still normally distributed after controlling for
sex.

(3) Kinesthetic against Visual Motor Imagery Success Scores
in Robotic Arm Control. Planned comparisons regarding the
KMI and VMI success scores of BCI robotic arms (both right
and left) control were performed. The number of successful
trials in ten consecutive trials was defined as success scores.
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Figure 5: Overview of robotic arm control trials during the qualitative assessment experiment.

Statistical analysis was performed using Wilcoxon Signed
Ranks test as KMI and VMI success scores were obtained by
the same participant.

(4) Godspeed. Godspeed scores of each key concept (Anthro-
pomorphism, Animosity, Likeability, Perceived Intelligence,
and total Godspeed) score were analyzed as interval vari-
ables (for more information see Section 2.6.). Therefore, we
tested for normality assumption grouping by sex (female,
male) and used Shapiro-Wilk Test. Likeability, Perceived
Intelligence, Perceived Safety, and total Godspeed score were
found to be normally distributed and 𝑡-tests were performed
between female and male participants. Anthropomorphism
and Animosity were analyzed between two groups following
Mann–Whitney (𝑈) test.

2.5. Pilot Patient Investigation: BCI Control and Functional
Brain Connectivity. The second of the two illustrative exper-
imental applications is an ongoing pilot study that involves
SCI patients and healthy individuals controlling multiple
DoFs of the robotic arms, as well as an investigation of their
brain connectivity [53]. The participants are trained with
visual cues of various arm movements or walking and then
use kinesthetic cues for BCI control of the robotic arms.Apart
from assessing their performance, we moreover perform a
pilot analysis of the functional brain networks formed for
each different movement.

Three SCI patients were already recruited for participa-
tion in the pilot study, one female (28 years old) and two
male (52 and 47 years old), as well as three age and sex
matched healthy individuals as control group. The patients’
neurological level of injury was C4, C4, and T7, respectively
and their Asia Impairment Scale classification was D, C
(incomplete injuries), and A (complete injury), respectively.
The protocol involves a full neurological examination using
the International Standards for Classification of Spinal Cord
Injury [54] and assessment of their functional status using the

Spinal Cord IndependenceMeasure III [55] in the Greek lan-
guage (g-SCIM-III) [56].Moreover, the protocol also involves
healthy and patient participants both answering Vividness
of Visual Imagery Questionnaire (VVIQ) [57], Beck Depres-
sion Inventory (BDI) [58, 59], and Rosenberg Self-esteem
Questionnaire (RSQ) [60, 61]. Since the investigation is
ongoing and more patients are expected to be recruited,
our focus hereby will be on presenting an overview of the
methodological aspects of the study, as well as provisional
results regarding functional connectivity from one subject
and healthy control.

2.5.1. High-Resolution EEG Recording during Multiple Move-
ments. While under high-resolution EEG recording (as
described in Section 2.3) the participants watched random
video recordings of upper limbs performing movements of
all DoFs or lower limbs walking. The participants attempted
to register these movements as being their own [37], without
moving their own limbs (VMI) (Figure 6). The presenta-
tion followed an oddball paradigm, displaying randomly 9
repetitions of 34 videos, divided into 3 sets with 10-minute
rest between them. For each of 8 possible DoFs of the arms,
both directions ofmovement were displayed, for both left and
right arm, totaling 32 videos of upper limbs. The remaining
2 videos were walking (from walker’s perspective) and an
oddball wildlife video. All videos had duration of 5 seconds,
followed by 4 seconds of black screen.

2.5.2. BCI Control of Robotic Arms. In the second part of the
experiment, the participants used the commercial EEG-BCI
to control the robotic arms. Three BCI classes were trained:
resting state, left, and right. The participants were asked to
visualize the videos they were presented during the previous
part during the training of left and right. Each direction was
trained 20 times, each cycle lasting 8 seconds, followed by 2
seconds of rest.
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Figure 6: 28-year-old female SCI patient participating in the pilot investigation: (a) 1st part of the experiment, 128-channel EEG recording
during oddball presentation of multiple limb movements (visual imagery); (b) 2nd part of the experiment, control of robotic arms using a
commercial EEG-BCI headset, employing mental rehearsal of movements (kinesthetic imagery).

After the system’s training to each participant’s brain-
waves, they were asked to follow presented instructions,
corresponding to specific DoFs of the robotic arms and to
specific direction of movement. The participants attempted
to visualize the same movements to achieve control (KMI),
without moving their limbs, while the BCI detected one of
the three aforementioned classes. The presentation followed
a pseudorandom routine that included an instruction to
perform each of 32 possible arm movements once. Each
instruction lasted 30 seconds, followed by 5 seconds of rest
period.The participants’ performance in eachmovement was
rated on a 0–5 scale and an overall percentage score was
calculated to denote overall BCI performance.

2.5.3. Signal Analysis and Brain Networks

(1) Preprocessing. The acquired high-resolution raw EEG
signals were band-pass filtered between 2 and 50Hz using
a zero-phase finite impulse response filter, downsampled at
100Hz, and rereferenced to the common average reference
(CAR) [62]. Triggers were set at the onset of each visual
stimulus, using the signal from an optic diode, and epochs
were extracted from −2000msec prestimulus to 4000 post-
stimulus. Epochs were visually inspected and the heavily
artifactual contaminated ones (due to subject movements,
spasticity, and electrode disconnection) were rejected. The
remaining epochs were averaged according to the event type
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Figure 7: Regions of interest (ROIs) for connectivity analysis at the cortical level: (a) midline surface, left hemisphere, (b) top view, both
hemispheres, and (c) lateral view, right hemisphere. (1): SAC, (2): S1F, (3): S1H, (4): S2, (5): CMA, (6): M1F, (7): M1H, (8): M1L, (9): SMA, (10):
pSMA, (11): PMd, and (12): PMv.

(motor imagery of different movements), resulting in 34
average epochs per subject.

(2) Cortical Current Density Estimation. In order to improve
spatial resolution of the data and counter smearing caused
by the volume conduction effect we deployed cortical cur-
rent density estimation (CCD) [62] using the Brainstorm
[63] toolbox for Matlab. CCD essentially maps the sensor
potentials to dipole current distribution that are assumed in
fixed positions over the cortex. Dipoles also are referred to as
sources, model electrical activity of neuronal groups that fire
synchronously [64]. CCD requires first a model of the head
conveying information about the electrical properties and
geometry of different parts of the head (e.g., scalp, skull, and
cortex), electrode position, and source space dipole positions
[65]. The Montreal Neurological Institute (MNI) COLIN 27
MRI [66, 67] was used as default subject anatomy to compute
a three-shell (scalp, skull, and cortex) head model with
boundary elementmethod (BEM) usingOpenMEEG [68] via
Brainstorm. The cortical surface is assumed as source space.
Having the headmodel and sensor data, CCD estimation was
performed using standardized LORETA (sLORETA)method
[69] with dipole orientation (5023) constrained normally to
the cortex [70]. Noise covariance matrix was estimated on
resting state data that take place at the start of each session
and was regularized.

(3) Functional Connectivity. After solving the inverse problem
of the average trials functional connectivity was performed
on the source domain, analyzing the connectivity between
24 cortical regions of interest (ROIs), 12 in each hemi-
sphere (Figure 7): Somatosensory Association Cortex (SAC),
Primary Foot Somatosensory Area (S1F), Primary Hand
Somatosensory Area (S1H), Secondary Somatosensory Area

(S2), Cingulate Motor Area (CMA), Primary Foot Motor
Area (M1F), Primary Hand Motor Area (M1H), Primary Lip
Motor Area (M1L), Supplementary Motor Area (SMA), pre-
Supplementary Motor Area (pSMA), Dorsal Premotor Cor-
tex (PMd), and Ventral Premotor Cortex (PMv). Scouts were
defined as ROIs, in the samemanner as in our previous study
based on neuroanatomical landmarks and Brodmann areas
[71], locating scouts on the MNI cortical surface. Connectiv-
ity between those areas was calculated for the time period of
−1000msec prestimulus to 2000msec poststimulus on each
of the 34 averaged epochs, using Granger causality [72], for
each subject. Networks were calculated for delta (1–4Hz),
theta (4–7Hz), alpha (8–13Hz), and beta (13–30Hz) brain-
wave bands. Then the functional networks were compara-
tively assessed, displaying connections with power of at least
60% of the connection with highest power for each network.

2.6. Godspeed Questionnaire Translation and Statistical
Manipulation. The Godspeed questionnaire consists of five
semantic differential scales, equippedwith Likert type scaling
evaluating the attitude towards robots in the subcategories of
Anthropomorphism, Animacy, Likeability, Perceived Intel-
ligence, and Perceived Safety [36]. Our team performed a
double-blind forward and backward translation and adapta-
tion to the Greek language [44]. Accuracy of the procedure
was evaluated by a third independent researcher and concepts
that needed further resolutionwere pinpointed and put to the
same procedure again, in order to produce an accurate adap-
tation. The Greek version of the questionnaire (Godspeed-
g) was used both in the BMI validation study [43] and the
current experimental applications and has also been made
available through the original questionnaire’s official webpage
[73]. Despite the criticism that the original questionnaire
has attracted in terms of redundancy and suitability [74],
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it remains the most widely applied tool in studying user
perception of robots [75].

As with the original one, in the translated version, each
semantic differential scale represents a key concept enclosing
a short questionnaire. Each short questionnaire results in
a score adding the ratings of the respondent. However,
in the last two questions of Perceived Safety subcategory
reversed rating was used, to associate the lower scores to the
negative assessment, as is the case with the other items of the
questionnaire [76]. Finally, a total Godspeed score could be
calculated adding the scores of each key concept. Semantic
differential data can be analyzed as any other rating data, as
both Likert scales and semantic differential scales are rating
scales and the distributions of the responses are not forced
[77]. The analysis of Godspeed data was performed using the
guidelines of H. N. J. Boone and D. A. Boone (2012) [78].

3. Results and Discussion

3.1. Qualitative Assessment Experiment

3.1.1. Kinesthetic against Visual Motor Imagery Skill Training.
Participants achieved highermedian skill training percentage
using KMI. That for the left arm was 26.5% (1st training
block), 56.5% (2nd), 75.5% (3rd), and 72.5% (4th) for KMI
and 20,5%, 54.5%, 71.5%, and 73%, respectively, for VMI. For
the right arm it was 14.5%, 26%, 36%, and 24.5% for KMI
and 8.5%, 17%, 17,5%, and 14.5% for VMI.There was a fatigue
effect, median skill training percentage dropping from 3rd
training block to 4th in all settings but left arm VMI.

Statistical testing resulted in significant difference
between KMI and VMI skill training score only for the right
hand extracted by training block 1 (𝑡(23) = 2.151; 𝑝 = 0.042)
and block 2 (𝑡(23) = 2.181; 𝑝 = 0.040) indicating that KMI
skill training scores are higher than those of VMI in training
blocks 1 and 2. Statistically significant findings were found
neither at training blocks 3 and 4 nor for the left hand across
any training block. When discriminating participants by sex,
marginally significant difference between KMI and VMI skill
scores was found for female participants in training block
2 (𝑡(11) = 2.136; 𝑝 = 0.056) favoring KMI training against
VMI. Male participants’ scores between KMI and VMI
training did not reach significance across training blocks.
Following the same analysis for the left hand did not yield
any significant outcome.

3.1.2. Success Scores in Robotic Arm Control and Godspeed
Questionnaire. Median success score was 7 for both left and
right armVMI, 5.5 for left armKMI, and 5 for right armKMI
(Figure 8). Comparing success scores between KMI and VMI
for right and left hand separately, the differences were not
found statistically significant (right hand: 𝑍 = −0.945; 𝑝 =
0.344; left hand:𝑍 = −1.476; 𝑝 = 0.140). Differences between
female and male respondents to Godspeed questionnaire did
not reach statistical significance (Anthropomorphism: 𝑈 =
64, 𝑝 = 0.643; Animosity: 𝑈 = 70.5, 𝑝 = 0.931; Likeability:
𝑡(16.226) = 0.483, 𝑝 = 0.636; Perceived Intelligence: 𝑡(22) =
0.121,𝑝 = 0.905; Perceived Safety: 𝑡(22) = −0.861,𝑝 = 0.399)
and total Godspeed score (𝑡(22) = −0.085, 𝑝 = 0.933).

3.1.3. Discussion. While participants appeared to perform
better using VMI rather than KMI as an imagery modality
for BCI control, our analysis did not prove a statistically
significant correlation [50]. Individual differences could play
a role, since some participants performed better with KMI; it
is worthwhile to explore this difference, as BCI control should
be tailored to the needs of each individual [50]. Perception of
the robot did not correlate to either performance or the sex
of the operator. This qualitative assessment experiment pro-
vided us with important field insight on the operation of the
robotic arms and the BCI control modality. Further compar-
isons, using this design, could include different users groups
to perform either imagery type, in order to determine specific
characteristics for each. Studying disabled users could also
provide answers on the effect of neurological disability on
imagery capacity and an ability to perform with BCI.

3.2. Pilot Patient Investigation

3.2.1. Results and Discussion. Our experimental paradigm
allows control of multiple DoFs of two robotic arms using a
3-class BCI implementation along with VMI training and the
use of AI algorithms. As we have also shown in the proof-
of-concept [53], disabled and healthy operators (Figure 9(a))
can achieve comparable, above-chance, performance levels
in BCI control of the robotic arms (56.88%, 43.13%, and
55.00% by healthy participants and 52.00%, 46.25%, and
19.38% by SCI patients). While, after only a training session,
for some movements only minimal control is achieved,
further training sessions are suggested in order to improve
performance. Nonetheless, in certain movements excellent
performance was achieved (arms were moving towards the
desired direction for the most part) and this finding was not
correlated to intrinsic difficulty of any movement [53].

As this is an ongoing investigation and subject recruit-
ment continues, we hereby only provisionally present results
from connectivity analysis, while a comprehensive assess-
ment of performance, psychometric evaluation, and func-
tional connectivity will be performed with the conclusion of
the study. Healthy participants scored 77, 75, and 56 (out of
max 80) in theVVIQquestionnaire, while SCI patients scored
54, 69, and 72 (Figure 9(b)). Moreover, healthy participants
evaluated the robotic arms with 77, 87, and 68 (out of max
120) in total Godspeed score and SCI patients gave 88, 76, and
96 (Figure 9(c)). The Godspeed subcategories whose scoring
by healthy and SCI participants seems to differ are Perceived
Safety and Perceived Intelligence (Figure 9(d)), although that
is a trend that needs to be tested for statistical significance
in data from more participants. In the categories of Anthro-
pomorphism, Animacy, and Likeability, both groups gave
almost identical answers (Figure 9(d)).

In Figure 10, functional connectivity networks over the
ROIs that we defined at the cortical level (seen in Figure 7)
are presented for differentmotor tasks, performed by a female
SCI patient and a healthy control.

Functional connectivity holds promise in classifying
imagery of multiple classes (multiple different movements)
or complexmotions, based on imagerymodalities. A possible
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Figure 8: KMI against VMI success scores for 24 participants above action power threshold. Most participants performed better with VMI
but the difference was not statistically significant.

automated approach would be to identify significant connec-
tions for each task using Network-Based Statistics (NBS). In
our opinion, semiautonomous algorithms and AI should be
part of a strategy to control multiple DoFs of robotic arms.
Our BCI approach uses a 3-class implementation to achieve
control of many (32 possible) DoFs but currently relies
on research intervention. The low-class approach employed
could be feasible both for BCI training and neurophysio-
logical investigation. While training and functional connec-
tivity study is performed using high-resolution EEG, it is
highly impractical to use such systems for everyday BCI
applications. Therefore, we aim to downscale the findings
from high-resolution EEG regarding functional connectivity
to control features for commercial low-resolution EEG-
BCI headset. Moreover, other investigations could include
trauma-induced brain reorganizationwith a focus onpossible
rehabilitation opportunities.

3.3. Future Steps
3.3.1. Further Robotics Development. A natural milestone for
future development is the integration of the BCI and robotic
arms system into the operator’s perceived body mental
image [37]. From the user’s point of view, this requires rapid,

fluid, accurate, and predictable system performance. Fur-
thermore, this necessity consequently corresponds to rapid
processing of analogue BCI input: filtering and extraction
of relevant brainwave information into the relevant robotic
control signals in near-real-time (<100ms).Maintaining time
lag to a minimum is particularly important in order to
avoid confusing the human brain’s natural visual and tactile
feedback loops. Determining the upper limit in response time
lag is likely to depend onboth the task and the user; we believe
it will be meaningful to investigate this limit and the gradual
deterioration of user control past it, across different types
of tasks. Furthermore, we plan to investigate the operator’s
perception (from the HRI perspective) as response time lag
varies across the aforementioned time limit.

Another important aspect of perceived body mental
image that needs to be taken into account in further devel-
opment is anthropomorphism. In our current technological
generation, user perception of the robotic arm, as measured
by Godspeed, did not correlate with performance [50]. As
further robotics development would also focus on improving
anthropomorphic characteristics of the system, as well as the
users’ perception, it would be interesting to identify possible
correlations between advancements in that direction and
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Figure 9: Performance in BCI control of patient and healthy participants in comparison to (a) their g-SCIM-III total score, (b) VVIQ score,
and (c) Godspeed total score. Also (d) evaluation of the robotic arms in each separate Godspeed subcategory by participant.

performance, as well as to identify possible “uncanny valley”-
like phenomena [74]. An important question, also with
regard to real-time response of BCI-robotics systems, would
be to investigate whether operators would expect more natu-
ral and fluid response from a near humanlike robotics system
than from a more mechanical-looking one, and whether not
meeting such expectations would affect either user percep-
tion or performance. Furthermore, as subject recruitment
progresses through the ongoing study [53], we also aim to

investigate correlations between operators’ emotional state,
perception of the robotics, and performance. Finally, further
robotics development and associated experiments should
focus on naturalistic scenarios and real-life applications,
designed for both disabled and healthy end-users.

3.3.2. Further Neurophysiological Investigation. There are sev-
eral paradigms for sensorimotor BCI implementation that
vary frommachine learning to signal processing perspective.
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Figure 10: Functional connectivity networks formed in alpha brainwave band during different visual motor imagery tasks performed by an
SCI patient and a sex and age matched healthy control participant (connections > 60% max power displayed).

Current BCIs are capable of easily recognizing two classes,
which translates to control of 1 DoF but usually fails to work
with more classes. One of the biggest challenges of noninva-
sive motor imagery BCIs is the low spatial resolution of EEG,
due to volume conduction effect [79]; hence spatial features
extracted directly from EEG are poorly discriminative.

Cortical current density estimation methods can be
deployed to compensate for the low spatial resolution of EEG,
by reconstructing activation of cortical sources using EEG
data and realistic head model, so essentially transforming
sensor data to a higher dimension space, where spatial
resolution is higher. Several studies concluded that features
extracted from source space are superior over sensor based
[70], and a recent published study has achieved sufficient
discrimination of complex movements of the same limb,
utilizing source imaging techniques [70].

One of the strongest requirements of Mercury BCI
algorithm is natural control of a multi-DoF robotic arm,
corresponding to multiclass in terms of decoding. Decoding
brain activity is still an open challenge especiallywhen it turns
to multiple classes [80], although implementation of func-
tional connectivity features for BCI class classification [71] is
expected to provide applicable solutions [17]. A foreseeable
future direction of BCI algorithms is to extract almost solely
features from source space. Data driven ROI specification
for each subject based on ICA could be used, instead of
static ROIs for all subjects. Features extraction scheme will be
based on a combination of spectral, spatial, and connectivity
features to improve robustness. For classification, hierarchical
approach seems appealing for the multiclass problem.

Such a processing pipeline is highly computational
demanding, and at this stage of its development we work
with offline analysis until the results are encouraging to pro-
ceed to real-time implementation. Recent advancements in
Graphic Processing Units (GPUs) and Field-Programmable
Gate Arrays (FPGAs), which have proven to be effective in
rendering computationally demanding applications in real-
time, could be employed for an online implementation of our
paradigm.

High-resolution EEG data and its analysis for functional
connectivity from multiple motor imageries are expected to
provide insight in brain network adaptive and maladaptive
reorganization that occurs after SCI [11]. Most published
studies have focused on resting state connectivity and those
that have used MI have not yet discriminated between dif-
ferent motor tasks. On the other hand, low-density EEG data
recorded through KMI-BCI operation can be further studied
for functional connectivity networks and compared to data
gathered from high-resolution EEG recordings during VMI.
Such an approach could possibly facilitate the downscaling
of a network-based BCI in the future for multiple DoFs and
control of complex movement sequences. This should also
point towards whether this network classification is possible
with affordable, off-the-shelf, noninvasive BCI devices and
low-resolution EEG.

3.3.3. Limitations. In the context of our design and exper-
iments, we encountered several limitations. First of all,
although demands for portability, ease of use, low cost, and
availability made the selection of a commercial dry electrode
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EEG headset necessary, the accompanying commercial (and
undisclosed) BCI algorithm did not meet the needs of our
neurophysiological experimentation [21, 81]. Current BCI
technology has not demonstrated autonomous control of
multiple classes and this constitutes a challenging implemen-
tation that necessitates BCI algorithms tailored to the need
of the specific task (multi-DoF control). Possible solutions
could lie in the source space and connectivity-based BCIs
[17]. The group’s next steps include developing own, true
online, algorithms to be tested for the control of the 8DoFs
of the robotic arms, making use of AI to support classifi-
cation. Nonetheless, combining a commercial EEG headset
with elaborate homemade BCI and real-time computational
approaches to the source space is also a challenge to meet.

4. Conclusions

Advances in BCIs have demonstrated remarkable results in
the direction of replacing and restoring lost sensorimotor
function in human patients. Novel paradigms and recent
advances in noninvasive BCI protocols aim at progressively
improving past technological and neurophysiological lim-
itations. Neurophysiological changes in the brain network
level, induced by SCI, could prove critical in designing and
developing robust and durable noninvasive BCIs for motor
restoration and rehabilitation. Moreover, successful rehabil-
itation strategies should take into account user perception,
satisfaction, and overall experience, alongside performance.
We presented our implementation of BCI-controlled 8-DoF
anthropomorphic robotic arms, using noninvasive off-the-
shelf BCI technology. Moreover we presented two illustrative
experimental applications on healthy individuals and SCI
patients. Current, state-of-the-art, BCI technology is unable
to control multiple DoFs but semiautonomous AI algorithms
and connectivity-based BCIs could provide solutions towards
that direction. Individual differences appear to play a role
in motor imagery based BCIs and multiple training sessions
are always encouraged in order to improve performance in
robotic arm control. Functional connectivity holds promise
in classifying imagery of multiple classes (multiple different
movements) or complex motions, based on imagery modal-
ities. Future development aims at facilitating the integration
of BCI and robotic arm system into the operator’s perceived
body mental image, thus requiring rapid, fluid, accurate,
predictable system performance and improved anthropo-
morphism. Online implementation of connectivity-based
classifiers, although currently too computationally demand-
ing, is expected to be soon feasible. High-resolution EEG
data and its analysis for functional connectivity frommultiple
motor imageries are expected to provide insight in brain
network adaptive andmaladaptive reorganization that occurs
after SCI and, subsequently, into promoting or preventing it
accordingly [11].
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[81] M. Spüler, “A high-speed brain-computer interface (BCI) using
dry EEG electrodes,” PLOS One, 2017.

http://www.bartneck.de/2013/04/17/greek-version-of-the-godspeed-questionnaire-series-available
http://www.bartneck.de/2013/04/17/greek-version-of-the-godspeed-questionnaire-series-available
https://arxiv.org/abs/1703.02929

