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Current strategies for improving protective response to influenza vaccines during
immunosenescence do not adequately protect individuals over 65 years of age. Here,
we used an aged mouse model to investigate the potential of co-delivery of influenza
vaccine with the recently identified combination of a saponin adjuvant Quil-A and an
activator of the STING pathway, 2’3 cyclic guanosine monophosphate–adenosine
monophosphate (cGAMP) via dissolving microneedle patches (MNPs) applied to skin.
We demonstrate that synergy between the two adjuvant components is observed after
their incorporation with H1N1 vaccine into MNPs as revealed by analysis of the immune
responses in adult mice. Aged 21-month-old mice were found to be completely protected
against live influenza challenge after vaccination with the MNPs adjuvanted with the Quil-
A/cGAMP combination (5 µg each) and demonstrated significantly reduced morbidity
compared to the observed responses in these mice vaccinated with unadjuvanted MNPs.
Analysis of the lung lysates of the surviving aged mice post challenge revealed the lowest
level of residual inflammation in the adjuvanted groups. We conclude that combining
influenza vaccine with a STING pathway activator and saponin-based adjuvant in MNPs is
a novel option for skin vaccination of the immunosenescent population, which is at high
risk for influenza.

Keywords: microneedle vaccination, aged mice, Quil-A, cGAMP, combination adjuvant
INTRODUCTION

The Global Influenza Mortality project estimated on average 389,000 influenza-associated
respiratory deaths annually, of which 67% were among people 65 years and older (1). In the
United States, the yearly vaccination rate of the population over 65 years old is estimated to be
between 60% and 70%; however nearly 90% of influenza-related deaths occur in this age group (2).
These numbers clearly demonstrate an inadequate protective immunity elicited by current influenza
vaccines in immunosenescent individuals, and underscore the importance of research aimed at
org February 2021 | Volume 11 | Article 5832511
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improving vaccines specifically designed for aged individuals.
Recently, using an aged mouse model, we demonstrated that a
novel combination adjuvant consisting of saponin Quil-A and a
STING pathway activator cGAMP is more effective than the
current methods in improving the reduced immune response in
immunosenescence (3). In the present study we investigate the
potential of delivering this adjuvanted formulation to the skin by
means of dissolving microneedle patches (MNPs) (4).

Skin vaccination against influenza using MNPs (5, 6) has
advanced to the stage of clinical trials (7–9). The MNPs used in
this study are skin patches that contain an array of 100 solid, conical
microneedles measuring hundreds of microns in length, and are
made of water-soluble materials that encapsulate the vaccine and
adjuvant(s). Upon application to skin, the microneedles painlessly
penetrate the skin’s upper layers where they dissolve within
minutes, thereby delivering the vaccine and candidate adjuvant(s).
By targeting the skin, vaccination byMNPshas been shown tohave
a number of immunological advantages in comparison to
traditional intramuscular administration in adult and young
mouse models including dose sparing, stronger humoral and
cellular immune responses, greater duration of immunity and
broader cross-protection against heterologous virus strains (10–
17). In addition, MNPs as a delivery system are generally preferred
bypatients (18–20) includingolderpeople (21).Wehavepreviously
reported that MNP vaccination decreased the age—dependent
decline of the functional antibodies compared to intramuscular
injection.However, the “physical adjuvancy” effect producedby the
mechanical placement ofMNPs into the skinwas diminished in the
middle-aged and especially aged animals in which the antibody
response was similar after MNP and IM vaccination (22). Thus,
similar to systemic formulations MNPs need to be adjuvanted for
successful use in the aged. Thermostability, an absence of sharps
waste, as well as the possibility of self-administration represent
some logistical advantages of MNPs. The adjuvanted MNPs are
attractive as a way to avoid systemic reactogenicity often associated
with the administration of adjuvants.

An agonist of the intracellular stimulator of interferon genes
(STING) pathway, cGAMP, has been proposed as a skin adjuvant
(23). Until recently it was unclear how efficiently charged
dinucleotides such as cGAMP traverse the cell membrane to
interact with intracellular STING, but a folate-organic phosphate
antiporter SLC19A1 has now been identified as the major
transporter of cyclic di-nucleotides in humans (24). We proposed
that availability of charged compound cGAMP for an intracellular
STINGadaptor is increasedby the additionof themembrane-active
saponin to the vaccine formulation (3). In the present study, we co-
incorporated cGAMP, the saponin adjuvant Quil-A, and a subunit
influenza vaccine into dissolving MNPs, and assessed their
immunogenicity and protective efficacy in live virus challenge
experiments in the mouse model.
MATERIALS AND METHODS

Ethics Statement
All institutional and national guidelines for the care and use of
laboratory animals were followed in accordance with and
Frontiers in Immunology | www.frontiersin.org 2
approved by the Institutional Animal Care and Use
Committees (IACUC) at Emory University and Georgia
Institute of Technology.

Animals
BALB/cAnNCrl female mice (Charles River Labs, Wilmington,
MA) were housed in microisolators with filter tops in a
biocontainment level BSL-1 animal facility and subjected to a
12/12-h light/dark cycle and temperature between 20 and 22◦C.
Mice were moved to a BSL-2 facility operating under the same
light and temperature conditions for challenge study. Young
adult mice were 10 weeks old and aged mice were 21 months old
by the time of immunization. Mice were randomly assigned to
the groups and no animals were excluded from the study.
Blinding was not possible due to small number of investigators.

Viruses
H1N1 influenza A/California/07/09 virus obtained from the
Centers for Disease Control and Prevention (CDC, Atlanta,
GA), and H1N1 influenza A/Christchurch/16/10 virus NIB74
obtained from the National Institute for Biological Standards and
Control (NIBSC, Potters Bar, UK) were expanded and titrated in
MDCK cells (ATCC CCL 34 Manassas, VA) (22). Mouse-
adapted A/California/07/09 H1N1 virus (25) was used in
challenge experiments. The LD50 dose was determined in adult
female BALB/c mice using the Reed-Muench calculation
method (26).

Vaccines
Influenza A (H1N1) 2009 monovalent A/California/07/09 H1N1
vaccine from BEI resources (NR-20347, Manassas, VA) and A/
Christchurch/16/2010 NIB-74 (H1N1) vaccine monobulk
generously provided by Seqirus (formerly NVS Influenza
Vaccines, Cambridge, MA) were concentrated by ultrafiltration
using Amicon Ultracel 30,000 MWCO spin filters and
supplemented with 50 mM K-phosphate buffer, pH 7.4. A/
Christchurch H1N1/16/10 was concentrated 11 x from 0.359
mg/ml HA to 4 mg/ml HA and A/California 07/09 H1N1 was
concentrated 12–19 x from 0.03 mg/ml HA to 0.368 mg/ml HA
or 0.574 mg/ml HA, respectively, and the stocks were combined
and HA content was determined by SRID assay as previously
described (27, 28) using strain-specific reagents from the Center
for Biologics Evaluation and Research (Kensington, MD). These
vaccines are pandemic-type 2009 strains protective against
challenge with A/California/07/09 H1N1 virus.

Adjuvants
Quil-A and 2’3’-cGAMP (cyclic [G(2’,5’)pA(3’,5’)p]), were
purchased from InvivoGen (San Diego, CA). The stock
solutions of adjuvants were prepared in 50 mM potassium
phosphate buffer, pH 7.4.

MNP Fabrication and Vaccine
Delivery Efficiency
Dissolving MNPs were made in a two-step micromolding
method as previously described (22). Adjuvanted or
unadjuvanted MNPs had different formulations only in the
February 2021 | Volume 11 | Article 583251
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first step. Briefly, a vaccine-loaded solution was casted on
polydimethylsiloxane (PDMS) molds under vacuum. This
casting solution consisted of vaccine (0.38 mg/ml A/
Christchurch/16/10, or 0.29 mg/ml A/California/07/09), 1% w/v
polyvinyl alcohol (PVA) and 10% w/v sucrose. When making
adjuvanted MNPs, this solution contained additionally 0.48 mg/
ml Quil-A and/or 0.34–3.4 mg/ml cGAMP for A/Christchurch
MNPs, or 1.4 mg/ml Quil-A and/or 0.7–1.4 mg/ml cGAMP for A/
California MNPs. The first step took 30 min under vacuum. In the
second step, a polymer solution consisting of 18% w/w PVA and
18%w/w sucrose was cast on the mold to form the backing layer of
MNPs. The filled molds were kept under vacuum for 3 h and on a
40°C hot plate overnight to completely dry the MNPs. Each MNP
consisted of a 10 × 10 array of MNs within a square with around
7 mm sides (i.e., ~0.5 cm2). Each conical MN base diameter ≈
200 µm, height ≈ 600 µm) was mounted atop an expanding
pedestal (base diameter ≈ 600 µm, height ≈ 400 µm)
(Supplemental Figure 1). All MNPs were stored with desiccant
in individual sealed pouches until use. Vaccine content in the
unadjuvanted MNPs was measured by ELISA using anti-HA A/
California/07/09 antibodies (H1-Ab-1304 from the Center for
Biologics Evaluation and Research (Kensington, MD) and SRID-
measured vaccine stock as a standard, as previously described (22).
When both saponin and cGAMP were present, the amount of the
vaccine measured in MNPs was significantly lower than the
unadjuvanted samples (Supplemental Figure 2) indicating that
these adjuvants interfered with the quantification. Since all MNPs
were prepared with the same volume of vaccines in one batch
fabrication the amounts of Quil-A and cGAMP was calculated
from the added stocks. Vaccine delivery efficiency determined by
comparing vaccine content in unused vs. used unadjuvanted
MNP was 70 ± 19% (mean ± SD, n=6) for A/Christchurch/16/
2010-loaded MNPs used to vaccinate mature adult mice and
63 ± 12% for A/California07/09-loaded MNPs used to vaccinate
the aged mice (Supplemental Figure 1).

Vaccination Protocol
Mice were immunized once either intramuscularly (IM) in the
upper quadrant of the hind leg or via MNPs applied to the
depilated dorsal skin as described previously (27). The patches
were applied to the skin of anesthetized mice using manual
pressure for 1 minute and left on skin for total 20 minutes. The
delivered vaccine dose was 1.3 ± 0.4 µg hemagglutinin (HA;
mean, s.d., n=6) for A/ Christchurch/16/10 (H1N1) MNPs and
0.9 ± 0.2 µg HA (mean, s.d., n=11) for A/California/07/09
(H1N1) MNPs. IM vaccination with A/ Christchurch/16/10
(H1N1) vaccine was performed by intramuscular injection of
1.2 µg of vaccine antigen in a total volume of 0.05 ml.

Challenge Study
Mice were challenged with mouse-adapted A/Ca07/09 (H1N1)
virus (25) by intranasal installation of 30 µl of the virus stock
under brief isoflurane anesthesia and monitored for the signs of
infection as previously described (27) at 7 (young adult mice) or
6 (aged mice) weeks after single vaccination. The humane
endpoint used for euthanasia was 25% loss of the initial
body weight.
Frontiers in Immunology | www.frontiersin.org 3
Cytokine Assay in the Lungs
Lungs were collected from the aged mice that survived viral
challenge and pushed through 40 µm cell strainers (VWR,
Radnor, PA) in 1 ml of RPMI 1640 media (Mediatech,
Manassas, VA). Lung lysates were clarified by centrifugation at
10,000 x g for 10 min and cytokines were measured using Bio-
Plex Pro mouse cytokine group 1 23-plex panel (Bio-Rad
Laboratories, Hercules, CA) according to the manufacturer’s
instructions. Cytokine concentrations were normalized per
total protein measured using bicinchoninic acid (BCA) assay
with bovine serum albumin as the standard (Thermo,
Massachusetts, USA).

Quantification of Humoral Response
Blood samples were collected by submandibular bleeding and
analyzed as described previously (22). Briefly, vaccine-specific
antibody isotypes were determined by ELISA using Nunc
MaxiSorp 96-well plates (ThermoFisher Scientific, Waltham,
MA) coated with 100 ng HA of the same vaccine as used for
immunization. Isotype standards and detection antibodies were
from Southern Biotech, Birmingham, AL (capture goat anti-
mouse antibodies #1010-01, isotype standards IgG # 010701,
IgG1 #0102-01, IgG2a #0103-01, IgM #0101-01; HPR-
conjugated goat anti-mouse secondary antibodies anti-IgG,
#1030-05, anti-IgG1 #1070-05, anti-IgG2a #1080-05, anti-IgM
#1020-05). Hemagglutination inhibition (HAI) titers were
assessed based on the WHO protocol (29) using turkey red
blood cells (Lampire biological laboratories, Pipersville, PA). The
samples below the lowest level of detection (HAI = 10) were
assigned a titer of 5 for calculations.

Statistics
The statistical significance was calculated by one-way analysis of
variance (ANOVA) with Tukey’s posttest using GraphPad Prism
8 software and p ≤ 0.05 was considered significant. HAI titers
were converted to log2 for statistical analysis. We used software
Statistica 7.0 (StatSoft, USA) to calculate the required sample size
per group for a=0.05 and power goal 0.8 based on the parameters
of immune response from our previous study (3). For adult mice
we used means and SD of HAI titers at day 28 postvaccination
for 1-way 7-group (1 non-adjuvanted and 6 adjuvanted)
ANOVA analysis and for the aged mice we used means and
SD of vaccine-specific IgG levels at day 28 postvaccination for 1-
way 4-group (1 non-adjuvanted and 3 adjuvanted) ANOVA. The
sample size of 4 for the adult mice and 7 for the aged mice was
sufficient to observe significant differences in these parameters.
RESULTS

Adjuvant Effect of cGAMP/Quil-A
Combination Is Preserved in MNP-
Vaccinated Young Adult
10-Week-Old Mice
We prepared MNPs by mixing concentrated A/Christchurch
H1N1/16/10 (H1N1) vaccine with adjuvant stocks followed by
February 2021 | Volume 11 | Article 583251
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micromold fabrication as described in theMaterials and Methods
section. Groups of 10-week-old BALB/c mice were vaccinated
with MNPs that delivered 1.3 µg of an HA vaccine alone or in
combination with low (1.2 µg) or high (12 µg) doses of cGAMP
or with 1.7 µg Quil-A. A control group that received
intramuscular (IM) injection of unadjuvanted vaccine (1.2 µg
of HA) did not develop HAI titers, but most mice in the group
that received unadjuvanted vaccine via MNPs developed HAI
titers at or above the detection level of 10 by week 2
postvaccination which further increased to a geometric mean
HAI titer (GMT HAI) of 24 by day 28 postvaccination
(Figure 1A and Supplemental Table 2). Thus, in adult mice
MNP delivery significantly improved antibody response to
unadjuvanted vaccine, which was much greater than after
vaccination by IM injection (GMT HAI 5 vs. 24, respectively,
p = 0.0035 at day 28 postvaccination). Use of MNPs that
contained vaccine and 1.7 µg of Quil-A as adjuvant did not
change the dynamics of HAI titers compared to unadjuvanted
MNPs (Figure 1A). cGAMP-loaded MNPs elicited HAI titers as
Frontiers in Immunology | www.frontiersin.org 4
soon as at day 7 postvaccination. However, in the absence of
Quil-A, the low and the high doses of cGAMP elicited similar
HAI titers (Figure 1B), potentially indicating a hindrance for the
access of cGAMP to its intracellular receptor in the
immunocompetent cells. Remarkably, the response to cGAMP
was found to be dose-dependent upon addition of Quil-A. In the
low dose cGAMP/Quil-A MNP group the titers did not differ
from an unadjuvanted vaccine, but in the high dose cGAMP/
Quil-A MNP group they were significantly higher than in the
unadjuvanted MNP group at days 7 and 28 postvaccination
(Figure 1C). A single application of MNPs containing 12 µg
cGAMP + 1.7 µg Quil-A yielded the highest HAI GMT of 105.6,
which was 4-fold higher by day 28 than that observed in the
unadjuvanted MNP group (p = 0.008). The titers in Quil-A
-supplemented high-dose cGAMP group demonstrated higher
trend compared to the high-dose cGAMP only group (GMTHAI
was 30.3 vs. 10, p = 0.057, at day 14 and 105.5 vs. 34.8, p = 0.14, at
day 28 postvaccination, respectively). Thus the analysis of the
dynamics of HAI titers revealed that in the adult mice, each
A B

D E

C

FIGURE 1 | Effect of MNP vaccination in young adult 10-week-old mice (n=5 in all groups except the unadjuvanted MNP group, where n = 7). Mice were
immunized once with A/Christchurch H1N1/16/10 (H1N1) vaccine alone or in combination with adjuvants by the IM route (1.2 µg HA, group V, IM) or through skin
with MNP (1.3 ± 0.4 µg HA, all other groups). HAI titers were measured against A/Christchurch H1N1/16/10 (H1N1) virus. (A) HAI titers in mice immunized with
unadjuvanted vaccine either IM or by MNPs or with MNPs which co-incorporated 1.2 µg of Quil-A with the vaccine; (B) HAI titers in mice MNP-vaccinated with either
unadjuvanted vaccine or with vaccine combined with high (12 µg) or low (1.2 µg) doses of cGAMP; (C) HAI titers in mice MNP-vaccinated with either unadjuvanted
vaccine or adjuvanted with a combination of cGAMP and Quil-A. The statistical significance between unadjuvanted and adjuvanted groups calculated by one-way
ANOVA with Tukey’s posttest at the same time points postvaccination is represented by stars (*p < 0.05, **p < 0.01) (D) Survival of vaccinated mice challenged with
a 47xLD50 dose of mouse-adapted A/California 07/09 H1N1virus. All mice were immunized with MNPs except for one group vaccinated with the unadjuvanted
vaccine intramuscularly (V, IM). (E) Changes in body weight of vaccinated mice after challenge. Note that all unvaccinated mice succumbed to infection while all MNP-
vaccinated mice survived. In the inadjuvanted IM group one mouse reached 25 % weight loss threshold at day 6 post challenge and was humanely euthanized.
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adjuvant by itself induced lower HAI titers than in a
combination. Levels of vaccine-specific immunoglobulins were
the lowest in the systemically vaccinated mice and the highest in
the combination MNP group. In the absence of Quil-A they were
similar in the low and the high-dose cGAMP groups while
addition of Quil-A significantly increased the level of total
antibodies, especially IgG2a isotype (Supplemental Figure 3).

Mice were challenged with A/California07/09 H1N1 virus 1.5
months after single immunization. All non-vaccinated animals
and one out of five mice vaccinated by the IM delivery route
succumbed to infection (Figure 1D), while all groups of MNPs-
vaccinated mice were completely protected. At day 6
postchallenge the animals in the IM group demonstrated the
largest 18% drop in body weight and all MNP vaccinated animals
exhibited a lower ~ 2%–5% weight drop (Figure 1E) confirming
our previous findings of improved immunogenicity of MNP-
delivered vaccine as compared to IM injection (25, 27).
Altogether, the data obtained with young adult mice indicate
that cGAMP and Quil-A were successfully incorporated into
MNPs to generate strong immune responses to the HA antigen,
which is consistent with previous works in which each adjuvant
retained activity when used in MNP format (30, 31).

Effect of Immunization of Aged Mice With
Quil-A Alone-Adjuvanted or cGAMP/Quil-
A-Adjuvanted Vaccine Using MNPs
Next, we tested whether cGAMP/Quil-A-adjuvanted MNPs will
enhance protective immunity in aged mice. We immunized
groups of 21-month-old mice with MNPs formulated with 0.9
µg A/California/07/09 (H1N1) vaccine alone or with 5 µg Quil-A
as adjuvant alone, or in combination with 2.5 or 5 µg cGAMP
and challenged them with 16 plaque forming units (pfu) of the
Frontiers in Immunology | www.frontiersin.org 5
homologous H1N1 virus 6 weeks after single immunization. We
did not include a vaccine/cGAMP group because we previously
demonstrated that cGAMP in 5 µg dose without addition of
Quil-A did not improve survival of immunized aged mice
compared to the unadjuvanted vaccine (3).

In the naïve group, three out of six (50%) mice survived the
challenge. In the unadjuvanted group, six out of seven mice
survived (Figure 2A) but exhibited a maximal average weight
loss of 16% on day 8 postinfection (Figure 2B), indicating
modest improvement in protective efficacy in the absence of
adjuvant(s). Similar survival was observed in the groups that
received Quil-A (5 µg) or Quil-A (5 µg)/cGAMP (2.5 µg)—
adjuvanted MNPs, but the average weight loss was not
significantly different from the unadjuvanted group (Figures
2A, B). Remarkably, the Quil-A/cGAMP combination group (5
µg each) was completely protected from mortality (Figure 2A)
and demonstrated decreased morbidity as evidenced by only 3%
maximal weight loss, that was 13% lower than in the non-
adjuvanted group (p = 0.0125) (Figures 2A, B). Analysis of the
immune responses to vaccination revealed that low HAI titers,
characteristic of the aged mice (32, 33), did not correlate with
protection (Figure 2A and Supplemental Table 2) or
significantly differ between groups (Figure 3A). Compared to
the nonadjuvanted MNPs, all adjuvanted MNPs demonstrated a
trend of approximately 4-fold higher IgG2a/IgG1 ratio at day 7
postvaccination (Figure 3B), possibly indicating more efficient
induction of a Th-1 based response in these groups. The ratio
dropped from day 7 to days 14 and 28 but remained higher in the
adjuvanted groups. It was 14 fold higher in Quil-A (5 µg)/
cGAMP (2.5 µg) group by day 14 (p=0.003) and 5 fold higher
in 5 µg Quil-A group by day 28 (p=0.033) compared to the non-
adjuvanted MNP group. Quil-A (5 µg) and Quil-A /cGAMP (5
A B

FIGURE 2 | Effect of adjuvant composition of MNPs on protection of vaccinated aged mice against challenge. Aged 21-month-old animals received a single dose
(0.9 ± 0.2 µg HA) of adjuvanted or non – adjuvanted A/California 07/09 H1N1 vaccine followed by challenge with 16 pfu of the mouse-adapted influenza A/California
07/09 H1N1virus 6 weeks postvaccination (n=7 in all groups except in the 5 µg Quil-A / 2.5 µg cGAMP group where one mouse expired, and in nonvaccinated
group n = 6). (A) Survival, (B) Body weight of surviving mice. The statistical significance between unadjuvanted and adjuvanted MNP groups was calculated by one-
way ANOVA with Tukey’s posttest (*p < 0.05 for Quil-A/cGAMP combination group (5 µg each).
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µg each) improved the isotype switch, as was indicated by ~3-
fold higher IgG/IgM ratio by day 28 postvaccination (Figure
3C). The total levels of vaccine-specific IgG and its isotypes were
higher in the adjuvanted groups vs. a non-adjuvanted group,
with statistically significant differences in groups adjuvanted with
5 µg Quil-A alone and 5 µg Quil-A/2.5 µg cGAMP—
combination (Figures 3D–F). Overall, the analysis of humoral
immune responses revealed increased antibody production and
class switch in all adjuvanted MNP groups compared to the non-
adjuvanted group.

The surviving mice were sacrificed 2 weeks after challenge, and
the lung lysates were analyzed for differences in the levels of
cytokines and chemokines. Significant differences were observed
in the levels of two interleukins: Il-4 was 2.2-fold lower in the 5 µg
Quil-A/5 µg cGAMP combination group than in the
unadjuvanted group (p = 0.0139) (Figure 4A), and compared
to the naïve group Il-12 (p40) was 5-fold lower in 5/5 combination
group (p = 0.0014) and ~3-fold lower in the Quil-A only (p =
0.0068) and 2.5/5 combination (p = 0.015) groups, with no
significant differences between survivors in unadjuvanted and
naïve groups (Figure 4B). The absence of significant changes in
other tested cytokines (Figure 4) are most probably due to two
factors: first, the lungs were analyzed at the resolving phase of
infection in the surviving mice and second, the small number of
survived naive animals, since 50% of them succumbed to infection.
Nevertheless, there was a clear trend of the lowest levels of THFa,
Frontiers in Immunology | www.frontiersin.org 6
IFN-g, MCP-1, MIP-1a, and KC in the cGAMP/Quil-A group, 5
ug each (red circles in Figure 4), in comparison to other MNP
groups and the non-vaccinated group. We expected to observe
markers of inflammation at the completion of challenge because it
was previously reported that they lingered for longer time in the
lungs of influenza-infected aged C57BL/6 mice compared to the
young ones in which some inflammatory cytokines peaked at 6
days post-infection and then returned to baseline by day 12 as the
infection was resolving but remained significantly higher on days 9
and 12 in aged 19–22-month-old mice (34). The reduced levels of
these Th2 and Th1 cytokines in the lungs of recovered animals at
the resolution of infection was consistent with the reduced
morbidity estimated from the decrease in weight loss achieved
with the adjuvanted MNPs, especially in the 5 µg Quil-A/5 µg
cGAMP group. In summary, compared to the unadjuvantedMNP
formulation, MNP delivery of the Quil-A/cGAMP (5 µg each)—
adjuvanted vaccine not only completely protected aged mice from
a physiologically relevant ~1xLD50 challenge dose but also reduced
inflammation in the lungs postchallenge.
DISCUSSION

The aim of this study was to investigate the possibility of using
cGAMP/Quil-A as a combination adjuvant with influenza vaccine
inMNP format to enhance immune responses in agedmice. MNPs
A B

D E F

C

FIGURE 3 | Effect of MNP immunization on the vaccine-specific humoral response in aged mice. Aged 21-month-old animals received a single dose (0.9 ± 0.2 µg
HA) of adjuvanted or non–adjuvanted A/California 07/09 H1N1 vaccine. (n=7 in all groups except in the 5 µg Quil-A / 2.5 µg cGAMP group where 1 mouse expired
n = 6). (A) Individual HAI titers at day 28 postvaccination. (B) Ratio of vaccine-specific IgG2a to IgG1. (C) Individual ratios of IgG to IgM on days 7 and 28
postvaccination; (D) Vaccine-specific IgG, (E) Vaccine-specific IgG1, (F) Vaccine-specific IgG2a. Stars indicate significance levels of the differences between
adjuvanted and non-adjuvanted group at the same time postvaccination calculated by one-way ANOVA with Tukey’s posttest (*p < 0.05, **p < 0.01).
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possess the unique property of “physical adjuvancy” which arises
from the physical puncture of skin by microneedles during
application of MNPs, which in turn induces limited (and
painless) cell damage leading to inflammation at the site of
application (35). Physical adjuvantation may also come from
formulation of the MNPs using a water-soluble polymer that
forms a gel upon contact with interstitial fluid in the skin. As the
gel dissolves and the antigen and adjuvant(s) slowly diffuse away
from the site of MNP application, the antigen and adjuvant(s) have
a more extended presentation to the immune system, which can
lead to improved immune responses (36). Other factors, such as
the presence of skin-resident antigen-presenting cells, for example
Langerhans cells and dermal dendritic cells, as well as lymphatics
draining from the skin may also contribute to the efficacy of skin
vaccination by MNPs (37, 38). As we confirmed in this work,
simply changing the influenza vaccine delivery route from systemic
vaccination to skin vaccination by MNPs increased vaccine efficacy
in young adult mice (27). Experiments with the 10-week-old mice
were performed to determine whether the adjuvant properties were
preserved in MNPs. A direct comparison between adult and aged
mice vaccinated with cGAMP/Quil-A combination was described
previously (3) but it was not the goal of this current work. We did
not include IM group in the aged mice study because we previously
compared IM and MNP delivery methods and demonstrated that
MNPs did not significantly improve vaccine immunogenicity in
mice over 14 months old (22). Here we show that MNPs can be
successfully used to co-incorporate a cGAMP/Quil-A adjuvant
combination with influenza vaccine. This finding is consistent with
published studies in which each adjuvant retained activity when
used alone in MNP format (30, 31). We previously demonstrated
that availability of cGAMP for an intracellular STING adaptor is
increased by the addition of the membrane-active saponin to the
vaccine formulation (3). The delivery of STING ligands inside cells
can also be achieved using particle- and liposome-based delivery
systems (39) many of which require special preparation procedures
and are not compatible with microneedle format. A practical
advantage of cGAMP/Quil-A combination is that it can be easily
added to both liquid formulations and incorporated in the MNPs.

Mice between 18–24 month of age roughly correspond to 56–
69-year-old humans age-wise (40). In our previous study the
animals were 19-month-old at vaccination and 20-month-old by
the time of challenge and in the current study they were 21-
month-old at vaccination and 22.5-month-old by challenge.
Because of more advanced age the immune response
postvaccination was expectedly lower in these animals, but they
were completely protected from a low dose challenge after a single
vaccination withMNPs adjuvanted with the same Quil-A/cGAMP
combination (5 mg each). The amount of HA antigen in our
experiments was chosen on the basis of our previous data.
Previously, 1 mg of non-adjuvanted H1N1 vaccine was not
protective against high challenge dose (300 pfu), yet the addition
of the combination adjuvant increased protection to 100% (3).
Here, we used a lower challenge dose of 16 pfu at which 86% of
vaccinated aged mice survived but exhibited high weight loss
which was prevented by using cGAMP/Quil-A—adjuvanted
MNPs for skin vaccination. Use of low infection dose ~ 1xLD50
Frontiers in Immunology | www.frontiersin.org 8
in this study better resembled the outcome of flu infection in
humans and allowed us to analyze the residual inflammation in
the lungs of surviving mice in unadjuvanted and adjuvanted
groups. The low level of Th1 and Th2 cytokines IL-12 and Il-4
at the resolving phase of infection in the surviving mice vaccinated
with adjuvant combination indicated a lower degree of
inflammation, consistent with the lowest weight loss in this
group at the peak of infection. The HAI titers detected in all
groups of aged mice were low consistent with published data (32,
33) and did not correlate with protection. The total vaccine-
specific antibodies were generally higher in most adjuvanted
groups. The cGAMP/Quil-A group, 5 µg each, that
demonstrated complete survival and the lowest weight loss after
challenge also presented with reduced inflammation markers as
compared to other MNP groups. In elderly humans, T-cell
responses better correlate with protection than antibody titers
(41). Similarly, our data indicate possible involvement of T-cell–
mediated immunity (34) stimulated by cGAMP/Quil-A
combination that we plan to address as a future direction of
research. The main goal of this study was to determine if the
previously identified combination of cGAMP and Quil-A, 5 mg
each (vaccine/adjuvant ratio ~1:5:5, wt/wt) will remain effective in
MNPs. We previously determined that a 5 mg dose of cGAMP did
not improve the protective immunity in the aged mice but was
protective when combined with Quil-A (3). Quil-A is a mixture of
saponins and as such has inherent safety concerns. In the
preliminary screening, we observed a small scab on the skin
surface at the site of intradermal injections of vaccine
formulated with 10 mg Quil-A. Thus, we kept the amount of
Quil-A delivered with MNPs to 5 mg which is similar to 3 mg dose
recently used to adjuvant tetravalent Demge sE in Nanopatch (42).
The visual inspection of the MNP application sites did not reveal
skin irritation or scabs. QS-21 is a fractions Quil-A with lower
toxicity (43) and potent adjuvancy (44). Nanopatch adjuvanted
with 1.5 mg dose of OS-21 was effective in adult mice; increasing
the dose up to 6 ug led to decrease of flu-specific antibodies (45).
Further dose response studies involving QS-21 and other saponin
compounds (46–49) as well as new and potent STING activators
will define the optimal ratio between the active pharmaceutical
ingredients to best balance between adjuvant activity and possible
reactogenicity. Another important question to be answered in
future research is breadth of immunity in aged animals vaccinated
with adjuvanted MNPs by using heterologous challenge strains.

It is important for the skin vaccination format that human
keratinocytes respond to cGAMP treatment (50). STING pathway
activators are also effective as mucosal adjuvants, but mucosal
delivery may potentially promote allergic asthma as was recently
demonstrated in mice (51). Delivering STING agonists through
the skin via MNPs may be a better approach: metal MNPs coated
with such agonists were shown to elicit lower levels of antigen-
specific IgE than when coated with Alum adjuvant (30). In a
previous report (3) we demonstrated a combined effect of cGAMP
and saponin in the aged but not in young mice. Although there is
no clear explanation of this effect, a recent study demonstrated
that tumor immune checkpoint blockade therapy was not effective
in the aged mice without intratumoral stimulation of STING, but
February 2021 | Volume 11 | Article 583251
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in younger mice the therapy itself was effective and STING
activation did not increase the efficiency further (52).

The adjuvanted MNPs used in this study can be considered to
represent a skin vaccine delivery system that combines physical
adjuvantation with two chemical adjuvants. Given the
immunological and logistical advantages of MNPs, they hold
great promise as a modern vaccine delivery platform (6, 53, 54).
For example, dissolving microneedles were employed to deliver a
novel vaccine against COVID-19 coronavirus (55). Older people
are receptive to using MNPs as a delivery technology (21) and
our findings open a new vaccination option specific for the aged
population at high risk for influenza. To our knowledge this is
the first report that demonstrates the successful incorporation of
a novel and effective cGAMP/Quil-A combination adjuvant into
dissolving microneedle patches. This formulation improves
protective efficacy of an influenza vaccine in aged mice. This is
a significant result which indicates that the vaccination outcome
in the elderly can be improved by the immune activating effects
of this combination of adjuvants delivered together with licensed
HA-based influenza vaccine via skin microneedle patches using a
single vaccination approach which is consistent with the seasonal
flu vaccination recommendations.
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