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Background: CFTR modulators decrease some etiologies of CF airway inflammation;
however, data indicate that non-resolving airway infection and inflammation persist in
individuals with CF and chronic bacterial infections. Thus, identification of therapies that
diminish airway inflammation without allowing unrestrained bacterial growth remains a
critical research goal. Novel strategies for combatting deleterious airway inflammation in
the CFTR modulator era require better understanding of cellular contributions to chronic
CF airway disease, and how inflammatory cells change after initiation of CFTR modulator
therapy. Peripheral blood monocytes, which traffic to the CF airway, can develop both
pro-inflammatory and inflammation-resolving phenotypes, represent intriguing cellular
targets for focused therapies. This therapeutic approach, however, requires a more
detailed knowledge of CF monocyte cellular programming and phenotypes.

Material and Methods: In order to characterize the inflammatory phenotype of CF
monocytes, and how these cells change after initiation of CFTR modulator therapy, we
studied adults (n=10) with CF, chronic airway infections, and the CFTR-R117H mutations
before and 7 days after initiation of ivacaftor. Transcriptomes of freshly isolated blood
monocytes were interrogated by RNA-sequencing (RNA-seq) followed by pathway-based
analyses. Plasma concentrations of cytokines and chemokines were evaluated by
multiplex ELISA.

Results: RNAseq identified approximately 50 monocyte genes for which basal
expression was significantly changed in all 10 subjects after 7 days of ivacaftor. Of
these, the majority were increased in expression post ivacaftor, including many genes
traditionally associated with enhanced inflammation and immune responses. Pathway
analyses confirmed that transcriptional programs were overwhelmingly up-regulated in
monocytes after 7 days of ivacaftor, including biological modules associated with
immunity, cell cycle, oxidative phosphorylation, and the unfolded protein response.
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Ivacaftor increased plasma concentrations of CXCL2, a neutrophil chemokine secreted by
monocytes and macrophages, and CCL2, a monocyte chemokine.

Conclusions: Our results demonstrate that ivacaftor causes acute changes in blood
monocyte transcriptional profiles and plasma chemokines, and suggest that increased
monocyte inflammatory signals and changes in myeloid cell trafficking may contribute to
changes in airway inflammation in people taking CFTRmodulators. To our knowledge, this
is the first report investigating the transcriptomic response of circulating blood monocytes
in CF subjects treated with a CFTR modulator.
Keywords: cystic fibrosis, monocytes, ivacaftor, inflammation, transcriptome
INTRODUCTION

Although chronic airways diseases are a leading cause of
morbidity and mortality in the world, therapies that dampen
airway inflammation without inducing broad systemic
immunosuppression or exerting clinically significant side
effects are still lacking for many of these diseases. In cystic
fibrosis (CF), a disease of chronic airway infection and chronic
inflammation, NSAIDs and steroids improve lung function and
decrease symptoms (Cheng et al., 2013); however, adverse side
effects limit their use (Mogayzel, Jr. et al., 2013; Cantin et al.,
2015). Development of effective inflammation-dampening
therapies for people with CF is further complicated by the fact
that some components of the immune response are necessary for
controlling airway infections, while others may only enhance
tissue damage (Doring et al., 2014; Konstan et al., 2014), thus
therapies ideally would target specific arms of the inflammatory
response (Lin and Kazmierczak, 2017). However, the
contributions of specific cell populations and inflammatory
mediators to persistence of non-resolving inflammation remain
incompletely understood in CF, like in many chronic lung
diseases, largely due to a lack of animal models that
recapitulate chronic airway inflammation,

Research in human subjects indicates that peripheral blood
monocytes participate in inflammation in many chronic diseases
by trafficking to sites of damage and infection where they develop
into macrophages (Byers and Holtzman, 2011; Dewhurst et al.,
2017; Kapellos et al., 2019). Because macrophages are long-lived
cells that can initiate, modulate, and resolve inflammation
(Johnston et al., 2012; Wynn and Vannella, 2016; Puttur et al.,
2019), pharmacologic manipulation of monocytes and
macrophages to shift these cells toward disease-resolving
phenotypes has been suggested as a therapeutic strategy in a
number of chronic inflammatory diseases including pulmonary
fibrosis and cardiac disease (Cheng and Rong, 2018; Liu et al.,
2019). In CF, neutrophils and macrophages make up the
majority of cells in the airway lumen (Henig et al., 2001; Hisert
et al., 2019), and many CF airway macrophages appear to be
derived from blood monocytes (Wright et al., 2009; Garratt et al.,
2012), thus medications that target peripheral blood monocytes
could be an effective anti-inflammatory strategy in CF as well.

Cell-focused therapies require knowledge of both how the cell
population participates in disease pathophysiology as well as how
in.org 2
the disease state alters immune cell programming and function.
Multiple studies have shown that CF monocytes and
macrophages mount aberrant immune responses (Bruscia and
Bonfield, 2016). Monocytes from people with CF demonstrate
tolerance to LPS (del Fresno et al., 2008) and impaired adhesion
and trafficking (Sorio et al., 2015) compared to cells from healthy
donors, and some monocyte defects seen in CF can be induced in
healthy donor cells by exposure to CF plasma (Zhang et al.,
2019). In contrast, studies using cells from CFTR deficient
animals (that have not developed chronic lung infections and
inflammation) and human CF macrophages cultured in vitro
indicate that lack of CFTR activity causes macrophages to mount
overly robust inflammatory responses (Bruscia et al., 2009;
Bonfield et al., 2012). Thus, monocytes that migrate to the CF
airway and become macrophages could have abnormal immune
responses for at least two distinct, but intertwined, reasons: a
direct effect of lack of sufficient CFTR activity, and the secondary
effects of exposure to plasma containing products of non-
resolving infection and chronic disease. Understanding the in
vivo phenotypes of CF monocytes and macrophages is an
essential first step towards devising methods to manipulate the
cellular programs of these key regulatory cells to help dampen or
resolve inflammation.

As we enter the era of highly effective CFTR modulator
therapy, drivers of inflammation in CF will change for patients
receiving these medications. Inflammation resulting directly
from a lack of CFTR activity will become less pronounced, if
not eliminated, by CFTR modulators (Sorio et al., 2015; Barnaby
et al., 2018; Rosen et al., 2018). However, studies indicate that
chronic airway infection and inflammation, particularly in
subjects with advanced lung disease, will continue to cause
symptoms and progressive lung damage (Rowe et al., 2014;
Heltshe et al., 2015; Hisert et al., 2017). Based on prior studies
of CF monocytes and macrophages exposed ex vivo to CFTR
modulators, restoration of CFTR activity could either enhance or
dampen cellular responses (Barnaby et al., 2018; Zhang et al.,
2018). In order to characterize the inflammatory phenotype of in
vivo blood monocytes in people with CF, and to determine how
cellular phenotypes change in response to CFTR modulator
therapy, we have used unbiased “omics” methods to identify
changes in freshly isolated peripheral blood monocytes following
initiation of ivacaftor in people with susceptible CFTRmutations.
Previously we identified changes in the monocyte plasma-
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membrane associated proteome in subjects with CFTR-G551D
mutations that suggested that CFTR modulator therapy causes a
decrease in monocyte IFNg responses (Hisert et al., 2016), a
hypothesis that we have since confirmed (Hisert et al., 2020).
Here we describe how restoration of CFTR activity by ivacaftor
acutely changes the peripheral blood monocyte transcriptome
and plasma chemokines in a cohort of adults with CF and the
CFTR mutation R117H.
MATERIALS AND METHODS

Patient Cohort and Study Design
Ten patients (6 male and 4 female) from the Adult Cystic
Fibrosis Clinic at St. Vincent’s University Hospital in Dublin,
Ireland were enrolled in this study. Human subject recruitment
was approved by the Research Ethics Committee, and all study
participants provided written informed consent. Subjects were
excluded if they had participated in the VX-770 (ivacaftor)
Extended Access Program or had used ivacaftor within 6
Frontiers in Pharmacology | www.frontiersin.org 3
months prior to the day 0 visit, or if they had required
treatment with oral, inhaled or IV antibiotics within the 2
weeks prior to the day 0 visit. Subjects were,thus, considered at
their clinical baseline at the day 0 visit. Subjects were allowed to
continue other standard CF therapies. The day 0 visit for all
subjects occurred during a two-week period in fall of 2016, and
all subjects were started on ivacaftor treatment during the same
week. At each study visit subjects provided sputum and blood
specimens and underwent assessment of vital signs, weight,
sweat chloride, and spirometry. Ivacaftor treatment was
initiated following the day 0 study visit. Subjects were grouped
into cohorts of three to four subjects on each day, and specimens
from each cohort were processed in parallel on the same day.

Processing of Blood and Isolation
of Monocytes
Whole blood was collected into K-EDTA tubes from subjects
before (day 0) and seven days after initiation of ivacaftor
(Figure 1). One aliquot was used for separation of plasma
from blood cells. The remaining blood was separated using
FIGURE 1 | Schematic for study design. Subjects were evaluated on day 0 and day 7. Subjects initiated ivacaftor treatment following the day 0 study visit. During
each visit, subjects underwent a physical examination and sweat chloride evaluation, performed spirometry, and had blood drawn. Blood samples, acquired into K-
EDTA tubes, were brought to the laboratory on ice. One tube of blood was centrifuged to obtain plasma. The remaining blood was processed to isolate PBMCs and
then monocytes. Aliquots of PBMCs and monocytes were removed for quantification of cells and flow cytometric analysis to determine abundance of leukocyte sub-
populations and purity of isolated monocytes. Cells recovered from CD14 positive selection column were immediately lysed in RLT buffer (Qiagen) and frozen.
August 2020 | Volume 11 | Article 1219
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gradient centrifugation over Ficoll-paque (GE) to separate
peripheral blood mononuclear cells (PBMCs) from neutrophils
and red blood cells. The Miltenyi Monocyte Isolation Kit (a
positive selection kit that uses magnetic beads conjugated to
CD14 antibody) was used to isolate monocytes. Numbers of
PBMCs and cells recovered by magnetic beads were quantified
using a Neubauer hemocytometer, and values pre- and post-
ivacaftor were compared using Student’s t-test. Efficacy of
monocyte isolation was confirmed by assessing proportions of
T cells (CD3+ cells), B-cells (CD19+ cells), and monocytes
(CD14+ cells) before and after cells were subjected to the
Monocyte Isolation Kit.

Quantification of Plasma Cytokines
and Chemokines
Plasma cytokines and chemokines were measured using a
custom Human Magnetic Luminex pre-mixed multiplex assay
(R&D Systems). Plasma levels of IL-8, IL-10, G-CSF, IL-6, CCL4,
CXCL1, Il-1b, TNF, GM-CSF, and IL-12p40 were all below the
limit of detection in most subjects at both time points. For those
analytes that were detected, statistically significant differences
between day 0 and day 7 were determined by using the Wilcoxon
Signed-Rank test.

RNA Isolation
RNA was isolated from human peripheral blood monocytes using
Qiagen’s RNeasy Plus kit per manufacturer’s instructions. Briefly,
freshly isolate monocytes were homogenized in Qiagen RLT buffer,
snap frozen, and stored at −80°C until further processing via the
Qiagen kit. Purified RNA from samples was eluted in Ambion’s
RNA storage solution and stored frozen at −80°C until use.

RNA Sequencing
RNA-seq was performed by the Genomics Core at the Benaroya
Research Institute. For each sample, libraries were constructed
from 100 ng of total RNA using the TruSeq Stranded mRNA kit
(Illumina) with poly(A) selection. Libraries were pooled and
quantified using a Qubit® Fluorometer (Life Technologies).
Single-read sequencing of pooled libraries was carried out on a
HiSeq2500 sequencer (Illumina) with 58-base reads, using HiSeq
v4 Cluster and SBS kits (Illumina) with a target depth of 10
million reads per sample. Basecalls were processed to FASTQs on
BaseSpace (Illumina), and a base call quality trimming step was
applied to remove low-confidence base calls from the ends of
reads. The FASTQs were aligned to the human reference genome
(GRCh38.91), using STAR v.2.4.2a (Dobin et al., 2013) and gene
counts were generated using htseq-count (Anders et al., 2015).
QC and metrics analysis were performed using the Picard family
of tools (v1.134) (https://broadinstitute.github.io/picard/). All
RNA-seq data meeting MINSEQE (Minimum Information
About a Next-generation Sequencing Experiment) have been
deposited at Gene Expression Omnibus repository (https://www.
ncbi.nlm.nih.gov/geo/, GSE148076).

RNA-Sequencing Data Analysis
To explore the overall changes in monocyte transcriptome in
response to ivacaftor, we applied multidimensional scaling using
Frontiers in Pharmacology | www.frontiersin.org 4
Principal Components Analysis (PCA) to the entire RNA-seq
profiles. Since each subject was assessed twice (day 0, day 7), we
used a multilevel decomposition for repeated measures as
implemented by the “mixOmics” package in R statistical
environment (Rohart et al., 2017).

Differentially expressed genes between day 0 (untreated
baseline) and day 7 (after ivacaftor therapy) were identified
using paired statistical analysis for each subject (pre vs. post
treatment) with “DESeq2” package in R (Love et al., 2014).
Adjustment for multiple hypothesis testing was implemented
using Benjamini-Hochberg’s false discovery rate (FDR) analysis,
with an FDR < 0.05 designating significant differential gene
expression. Two-dimensional hierarchical clustering of log2
[Day 7/Day 0] gene expression ratios was performed using a
Euclidian distance metric.

Gene product interaction network analysis was applied to the
differentially expressed genes (FDR < 0.05) based on experimentally
verified relationships derived from Ingenuity (Calvano et al., 2005)
and STRING (v.11, https://string-db.org/) (Szklarczyk et al., 2019).

Pathway enrichment was performed using the Gene Set
Enrichment Analysis (GSEA) program (Subramanian et al., 2005),
where all unique transcripts were rank-ordered based on their
DESeq2 statistic and over 7,000 gene sets derived from canonical
pathways (Hallmark, KEGG, Reactome, Biocarta) and Gene
Ontology (GO) annotations were assessed. An FDR < 0.05 was
used to identify significant enrichment based on 1000 random gene
set permutations. Enrichment Map (Isserlin et al., 2014), an
application within the Cytoscape software platform (Cline et al.,
2007), was used to create a network-based visualization of the GSEA
results. To simplify the pathway enrichment network, only the most
significantly enriched gene sets (FDR=0) were used as nodes. Edges
were drawn between gene sets if at least 50% of their gene members
overlapped. The emerging topology of the network allowed
identification of aggregates of highly connected nodes that defined
distinct biological modules. To compare our study with the GOAL
cohort, we performed Gene Ontology enrichment analysis on
differentially up and down-regulated genes between the subset of
subjects that had clinical response to one month of ivacaftor therapy
(“responders”) vs. those that did not (“non-responders”) using
Webgestalt program (Liao et al., 2019). An enrichment FDR <
0.05 was used to designate significantly enriched processes.
RESULTS

Cohort Characteristics
All subjects were heterozygous for the R117H-CFTR gene allele
(5T Poly T tract), and seven subjects’ second mutation was
DF508; none of the subjects had 2 ivacaftor-sensitive CFTR
mutations (Table 1). Subjects were all adults with an age range
of 25 – 52 years old (median, 40.5 years), baseline sweat ranged
from 61 to 98 mM (median 79 mM), and body mass index (BMI)
ranged from 18.5 to 32.5 (median 25.1). The cohort subjects
demonstrated a wide range of baseline forced expiratory volume
in one second (FEV1), from 35% to 109% (median, 72%); 3
subjects had a baseline FEV1 > 75% predicted, 5 subjects had a
baseline FEV1 of 60% to 75% predicted, and 2 subjects had a
August 2020 | Volume 11 | Article 1219
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TABLE 1 | Subject Demographics.

Non-R117H
CFTR mutation

7: DF508
2: M156R
1: 2622+1G!A

Age 40.5 years (25 – 52)
Gender 6 male; 4 female
BMI 25.1 (18.5 – 32.5)
Baseline sweat
chloride (mM)

79 (61 – 98)

Baseline FEV1,
% predicted

72% (35 – 109%)

Clinical
laboratory
sputum
culture data

• 5 recent +S. aureus (± Haemophilus, Pseudomonas
or Acinetobacter species)

• 2 recent + P. aeruginosa
• 3 prior + P. aeruginosa
• 1 with no recent sputum production

Data presented as median (ranges) unless stated otherwise.

Hisert et al. Ivacaftor Changes CF Monocyte Transcriptomes
baseline FEV1 < 50% predicted. None of the subjects had CF-
related diabetes (CFRD); seven of the subjects were pancreatic
sufficient, and three subjects were being evaluated for pancreatic
insufficiency, but had recent normal fecal elastase values. Five
subject had recent clinical sputum cultures positive for
Staphylococcus aureus (± Haemophilus, Pseudomonas or
Acinetobacter species), two subjects had recent Pseudomonas
aeruginosa positive sputum cultures, three subjects had a history
of P. aeruginosa positive sputum cultures, and one subject had
not recently produced sputum. All subjects experienced a
pronounced decrease in sweat chloride, and the cohort also
experienced a statistically significant increase in FEV1, within
48 h of ivacaftor treatment, and both changes were maintained at
day 7 (Hisert et al., 2020).

Ivacaftor-Induced Changes in Plasma
Chemokines Suggest Inflammatory
Pathways Altered by CFTR Restoration
Differ From Pathways Involved in CF
Pulmonary Exacerbations
For this study, we chose to evaluate specimens at day 7 after
subjects started ivacaftor because we hoped to identify changes
that may be direct consequences of CFTR restoration by ivacaftor,
rather than secondary effects of improvedmucociliary clearance in
the lung and decreased airway inflammation and bacterial burden.
In our prior studies of subjects with CFTR-G551D mutations
starting ivacaftor, GSEA analysis determined that proteomic
changes that were significant at day 7 could be detected at
day 2; however, most were not significant at day 2 (Hisert et al.,
2016). Thus, although sweat chloride is changed by day 2 of
treatment (Hisert et al., 2017), we deemed this timepoint likely too
early to identify significant changes in plasma proteins and
monocyte transcriptomes.

Identification of biomarkers that reflect systemic changes in
inflammation in people with CF has been an area of intense
interest, especially changes that predict CF pulmonary
exacerbations and response to antibiotic therapy. Serum CRP
level, calprotectin concentrations, and white blood cell counts
Frontiers in Pharmacology | www.frontiersin.org 5
decline following antibiotic treatment of exacerbations, and
changes in some of these markers may predict response to
therapy (Horsley et al., 2013; Sagel et al., 2015; Waters et al.,
2015). We predicted that plasma biomarkers associated with
decreases in bacterial burden in the airway would not be changed
during the first week of ivacaftor therapy. In our prior cohort of
subjects with CFTR-G551D mutations who started ivacaftor, we
did not detect changes in plasma CRP levels or in numbers of
PBMCs or monocytes, T cells or B cells in blood following 7 days
of ivacaftor treatment (Hisert et al., 2016), consistent with our
hypothesis that ivacaftor-induced changes in the airways during
the first week of treatment likely had not yet translated to
secondary effects in the systemic circulation. In the current
cohort, we likewise observed that one week of ivacaftor
treatment did not lead to detectable differences in numbers
PBMCs and cells subsets (Figure 2A).

We then investigated whether ivacaftor changed levels of other
plasma biomarkers that have been associated with inflammation in
CF. Calprotectin, or S100A8/9, decreases in both sputum and serum
following treatment of CF pulmonary exacerbations with antibiotics
(Gray et al., 2010). In our study, we did not detect differences in
levels of plasma S100A9 following initiation of ivacaftor
(Figure 2B). We also found no changes in levels of plasma IL-
1Ra (Figure 2C), a suppressor of inflammation that decreases in CF
plasma during treatment of pulmonary exacerbations with
intravenous antibiotics, and remains at lower levels during clinical
stability as compared to during the exacerbation state (Sagel et al.,
2015). CD163, a monocyte and macrophage surface protein that is
shed when cells become activated (Davis and Zarev, 2005; Moller,
2012), has also been associated with CF disease state. Expression of
CD163 mRNA is elevated in monocytes isolated from people with
CF compared to cells from healthy controls, and was identified as
part of a peripheral blood monocyte gene expression signature
associated with successful treatment of CF pulmonary exacerbations
(Saavedra et al., 2008; Nick et al., 2013). However in our study, there
were no detectable changes in plasma levels of soluble CD163
(sCD163) at day 7 after initiation of ivacaftor (Figure 2D).

Although ivacaftor treatment did not change plasma levels of
biomarkers associated with treatment of CF pulmonary
exacerbations, we detected statistically significant increased
plasma concentrations of two myeloid chemokines that are
likely relevant to CF disease. CCL2 and CXCL2 were both
increased at day 7 as compared to both pre-ivacaftor levels
(Figures 2E, F) . CCL2, a l so known as monocyte
chemoattractant protein 1, or MCP-1, is elevated in both
sputum and plasma of people with CF as compared to healthy
controls (Brennan et al., 2009; Rao et al., 2009). CXCL2, also
known as macrophage inflammatory protein-2, or MIP-2, is a key
chemokine for activation and recruitment of neutrophils to sites of
inflammation, and is produced by monocytes, macrophages,
epithelial cells, and other cells in response to injury (Huang
et al., 2001; De Filippo et al., 2013). Free DNA content in
human CF sputum correlates with both airway levels of CXCL2
and airflow obstruction, with increased airway free DNA and
CXCL2 associating with lower FEV1, and similar findings were
demonstrated in a CF mouse model (Marcos et al., 2015).
August 2020 | Volume 11 | Article 1219
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Transcriptomic Analyses Reveal That
Ivacaftor Treatment Activates Monocytes
and Up-Regulates Inflammatory Pathways
Although there have been several published reports on gene
expression profiling of PBMCs or whole blood from people with
CF, we sought specifically to characterize the monocyte
transcriptome, and determine how restoration of CFTR activity
by initiation of ivacaftor acutely changes monocyte transcriptional
signals. We thus performed RNA-seq on monocytes isolated from
subjects before and 7 days after initiation of ivacaftor therapy. We
initially performed exploratory analysis using Principal
Components Analysis (PCA), a statistical method for reducing
high dimensional data while retaining the drivers of expression
variability, on the entire RNA-seq dataset. To capture the repeated
measure structure of the study, we applied a multi-level
implementation of PCA. We observed that most of the samples
segregated based on pre- and post-ivacaftor time points
(Figure 3), indicating that despite inter-individual variability,
ivacaftor treatment led to global transcriptional changes in
circulating monocytes.

Next, we applied a subject-specific (paired) gene-based
statistical method and identified 49 differentially expressed
genes after adjustment for multiple comparisons (FDR < 0.05)
with significant differences between pre-ivacaftor and day 7 post
A B

D E F

C

FIGURE 2 | Changes in blood cells, proposed CF biomarkers, and chemokines following 1 week of ivacaftor therapy. (A) Total numbers of PBMCs/ml blood as
determined by (i) quantitation of PBMCs using a hemocytometer and (ii) flow cytometric analysis of PBMCs (pre-selection for CD14+ cells) using antibodies for CD3
(T cells), CD19 (B cells), and CD14 (monocytes). (B–F) Plasma cytokine concentrations were determined in sample obtained before (day 0) and after (day 7) initiation
of ivacaftor treatment using multiplex ELISA. Students’ t-test was used to compare data in panel (A). Open simples with black lines are individual subjects. Red
symbols indicate the mean value. Wilcoxon signed-rank test used to generate p-values for comparison of day 0 vs day 7 in (B–F).
Frontiers in Pharmacology | www.frontiersin.org 6
FIGURE 3 | Principal components analysis (PCA) of monocyte transcriptome
data. Multivariate decomposition PCA was applied to gene expression data
from individual subjects pre-ivacaftor (day 0, green spheres) and post
ivacaftor (day 7, magenta spheres) and plotted using the first three principal
components (PC). Arrows are used to highlight the pre and post states.
Despite variability across subjects, there is separation between day 0 and day
7 indicating that ivacaftor elicits a global transcriptional signal in monocytes.
August 2020 | Volume 11 | Article 1219
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ivacaftor conditions (Figure 4, Table S1). Of these differentially
expressed genes, 42 were up-regulated following ivacaftor
treatment and 7 were down-regulated. The predominance of
up-regulated genes was surprising because monocytes are key
innate immune activators of inflammation, and ivacaftor has
been shown to reduce markers of inflammation in people with
CF (Hisert et al., 2017; Ronan et al., 2018), as well as cellular
responses and markers of inflammation (Bratcher et al., 2016;
Frontiers in Pharmacology | www.frontiersin.org 7
Barnaby et al., 2018; Zhang et al., 2018). Also remarkable were
the identities of the significantly up-regulated transcripts: many
of these genes code for canonical pro-inflammatory factors,
including cytokines (TNF, IL-1b) and chemokines (CCL4,
CXCL2). To better elucidate the relationship among these
differentially expressed genes, we performed gene product
interaction network analysis. As depicted in Figure 5 (with
additional details in Figure S1), the resulting interactome
FIGURE 4 | Two-dimensional hierarchical cluster analysis of statistically significantly differentially expressed monocyte genes in response to ivacaftor. The Heatmap
depicts differentially expressed genes with FDR < 0.05 in rows and subjects in columns. The relative expression of each gene on day 7 vs. day 0 is shown with red
indicating that the gene was increased in expression at day 7 compared to day 0, and blue indicating decreased expression at day 7 compared to day 0. Complete
list with details is provided in Supplementary Table S1.
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revealed complex relationships among the network nodes and
identified several densely connected “hubs,” such as TNF, IL1B,
CXCL3, CXCL2, ZPF36, JUN, and DUSP1 that may be
important drivers of the monocyte transcriptional response to
ivacaftor treatment. Furthermore, by adding CFTR as a network
node, we observed that several of these hubs (e.g., TNF, IL1B,
CXCL3, JUN) also interact with the functional target of ivacaftor.

Since genes do not exert their biological influence in isolation
(Hartwell et al., 1999), we applied pathway enrichment analyses
based on the entire transcriptome using GSEA to further
understand the ivacaftor-induced changes in monocyte
functional state. We found that treatment with ivacaftor
induced an overwhelming up-regulation of cellular pathways in
monocytes, with over 1,000 being enriched at FDR < 0.05 (Table
S2). In contrast, only three gene sets were down-regulated at day
7 (FDR < 0.05) (Table S3). This finding indicates that restoring
CF function elicits activation of a diverse set of transcriptional
programs in peripheral blood monocytes. To visualize the
enrichment pattern following ivacaftor therapy, we applied a
network-based method to the most significantly up-regulated
gene sets (N = 177, FDR = 0). The topology of the resultant
network revealed several clusters of highly connected pathways
defined as “modules” with distinct biological themes including
“immunity and cell cycle,” “oxidative phosphorylation,”
“transcription/translation,” “unfolded protein response,” and
“Oxidative stress” (Figure 6). The largest module was comprised
of many immune-related pathways including TNF signaling via
NF-kB, IFNg response, inflammatory response, IFNa response,
cytokine signaling, and response to bacterium. Collectively, these
results indicate that 7 days of ivacaftor treatment in CF
subjects alters the functional state of their circulating monocytes
by promoting the widespread activation of immuno-
inflammatory programs.
FIGURE 5 | Gene product interaction network analysis of differentially
expressed monocyte genes after 1 week of ivacaftor therapy. This
“interactome” was constructed based on known relationships among the
differentially expressed genes. To depict interaction of these nodes with the
target of ivacaftor, we also added CFTR as a seed to the network. Note the
presence of several highly connected nodes (or hubs), such as IL1B, TNF,
CXCL3, CXCL2, that are up-regulated (red spheres) and are key modulators
of immune signaling.
FIGURE 6 | A network-based illustration of enriched monocyte gene sets 1 week after ivacaftor treatment. Each sphere represents an up-regulated gene set and in
order to simplify the figure, only the most significantly enriched gene sets are depicted (N = 177, FDR = 0). Connectivity between the pathways is based on 50% or
greater overlap among their member genes. The topology of the network is characterized by the emergence of biological modules comprised of highly
interconnected gene sets that possess similar functional themes; notable modules include “immunity and cell cycle,” “oxidative phosphorylation and metabolism,”
“transcription and translation,” “unfolded protein response,” and “oxidative stress.” representative processes mapping to the most prominent module, “Immunity and
Cell Cycle” are shown, and a complete list of all enriched gene sets (FDR < 0.05) is included in Supplementary Table S2.
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DISCUSSION

Despite many recent advances in CF care, therapies are still needed
to dampen baseline chronic CF airway inflammation and to treat
enhanced inflammation during CF pulmonary exacerbations. An
improved understanding of the molecular and cellular basis of CF
inflammation is critical to developing focused anti-inflammatory
strategies that will not compromise host defenses or cause
significant long-term side effects. Blood monocytes are intriguing
therapeutic targets because they can traffic to the inflamed CF
airway (Wright et al., 2009; Garratt et al., 2012; Hisert et al., 2019),
and they mount aberrant responses in people with CF (del Fresno
et al., 2008; Sorio et al., 2015; Hisert et al., 2016), which may
contribute to CF disease pathology. Here we use transcriptomics to
characterize the phenotypes of peripheral blood monocytes in
people with CF before and 7 days after initiation of highly
effective modulator therapy with ivacaftor. Our data demonstrate
that ivacaftor therapy leads to an rapid change in the transcriptional
programming of bloodmonocytes, predominantly activating genes
and transcriptional modules in several broad functional categories,
although may are associated with innate immunity and
inflammation (Figure 6). Ivacaftor also rapidly increased plasma
levels of CXCL2 and CCL2, chemokines that summon neutrophils
andmonocytes respectively.Wedidnot, however, detect changes in
several plasma biomarkers that had previously been associatedwith
changes in CF airway inflammation following antibiotic treatment
of pulmonary exacerbations.

Are CFTR Modulators Pro- or
Anti-Inflammatory?
From a clinical perspective, ivacaftor appears to decrease
inflammation in people with CF: ivacaftor acutely improves
lung function and lessens symptoms (Ramsey et al., 2011;
Rowe et al., 2014; Hisert et al., 2017), and over time reduces
frequency of pulmonary exacerbations (Ramsey et al., 2011;
Rowe et al., 2014), diminishes evidence of lung pathology on
CT scans (Chassagnon et al., 2016; Hisert et al., 2017; Ronan
et al., 2018), and may decrease inflammatory biomarkers in
sputum and blood over time (Hisert et al., 2017; Ronan et al.,
2018). In addition, macrophages lacking CFTR activity mount
hyperinflammatory responses compared to cells with functional
CFTR (Bruscia et al., 2009; Bruscia and Bonfield, 2016), and
some of these overly exuberant responses are reversed by CFTR
modulators (Barnaby et al., 2018; Zhang et al., 2018). It therefore
may seem counter-intuitive for restoration of CFTR activity by
ivacaftor to enhance multiple monocyte transcriptional pathways
associated with inflammation, monocyte expression of canonical
inflammatory cytokines, such as TNF and IL-ab, and plasma levels
of chemokines for neutrophils and monocytes. However, studies
have shown that ex vivo peripheral blood immune cells isolated
from people with CF actually exist in an immune-suppressed (or
tolerant) state compared to cells from healthy donors. Blood
monocytes from people with CF have decreased responses to LPS
(del Fresno et al., 2008), and this is thought to be due to exposure of
CF monocytes to low levels of LPS that translocate form the CF
airway into the plasma (del Campo et al., 2011). Similarly, cells in
Frontiers in Pharmacology | www.frontiersin.org 9
CF whole blood exposed to multiple toll-like receptor (TLR)
agonists mounted less robust inflammatory responses than cells
from healthy donors (Kosamo et al., 2019), including decreased
secretion of TNF and other NF-kB-induced cytokines.

Is this relative immune-suppressed state of CF peripheral
immune cells adaptive and protective, or does it contribute to
CF disease pathogenesis? CF subjects with the most robust TLR
responses had the most preserved lung function (FEV1) and the
slowest decline in lung function over time (Kosamo et al.,
2019); in other words, impaired peripheral immune cell
inflammatory responses in CF are associated with worse lung
disease. One explanation for these findings is that impaired
immune cell responses in people with CF contribute to airway
pathology, and stronger immune responses protect the lung,
possibly by fighting bacterial pathogens. Another possibility is
that more advanced lung disease results in a leakier barrier
between the lungs and the bloodstream, thus exposing
peripheral immune cells to higher doses of tolerizing antigens
compared to people with less severe lung disease. In support for
this second possibility, healthy donor PMBCs cultured in CF
plasma experienced marked decreases in transcription
compared to cells cultured in healthy donor plasma, and
plasma from subjects with severe CF lung disease caused a
greater suppression of transcription than plasma from subjects
with mild disease (Ideozu et al., 2019). These observations
suggest that the in vivo plasma milieu in CF can override the
hyper-inflammatory influences of intrinsic CFTR dysfunction
on innate immune cells’ phenotypes (Murphy and Ribeiro,
2019), and that CFTR modulators therefore potentially exert
both pro- and anti-inflammatory effects on immune cells in
people with CF.

Biomarkers That Measure Changes in
Inflammation Following Restoration of
CFTR Activity May Differ From Biomarkers
That Reflect Inflammation Related to
Airway Infection
In our prior study of patients with CFTR-G551D mutations
initiating ivacaftor, we detected no difference in plasma C-
reactive protein (CRP) after 1 week of therapy (Hisert et al.,
2016). We measured CRP because it is used broadly as a clinical
marker of systemic inflammation, and has also been evaluated in a
number of studies as a biomarker to detect onset of CF pulmonary
exacerbation, efficacy of treatment of CF exacerbations, or severity
of CF lung disease (with one parameter for disease severity being
whether or not subjects have chronic P. aeruginosa infection)
(Sharma et al., 2017; Loh et al., 2018; Sagel et al., 2019). In the
current study, we evaluated other plasma mediators that have been
proposed as biomarkers of inflammation in people with CF.
However, many of the analytes tested were below the limit of
detection in our assay.Wewere able to detect high levels of S100A9,
IL-1Ra, CXCL2, CCL2, and sCD163 in subject’s plasma pre-
ivacaftor. Changes in plasma S100A9, IL-1Ra, and sCD163 have
been observed in people with CF who are being treated with
antibiotics for pulmonary exacerbations; however, as with CRP,
we detected no change in these analytes after 7 days of ivacaftor.
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These results could reflect that our small cohortwas under-powered
to detect changes. Alternately, it may be that inflammation caused
by an exacerbation/bacteria may be a different phenomenon than
inflammation resulting from insufficient CFTR activity. The CF
community may need different biomarkers to assess efficacy of
CFTR modulators than what are used for measuring onset of
exacerbation or efficacy of antibiotics to treat exacerbations.

CXCL2 and CCL2 were both elevated in people with CF
compared to healthy controls, and thus the increase in plasma
levels of both of these myeloid chemokines after ivacaftor
treatment was unexpected. These increases, though, are
consistent with our transcriptomic data indicating activation of
immuno-inflammatory programs and chemokines in circulating
monocytes. Future longitudinal studies of plasma mediators will
be important to understand whether there are immediate and
delayed changes in plasma inflammatory mediators following
restoration of CFTR, and the roles CXCL2 and CCL2 may play in
modulating CF airway inflammation.

Comparisons With Prior CF Immune Cell
Transcriptomics Studies
A number of previous studies have characterized the
transcriptomes of CF immune cells, and a few have evaluated
changes in gene expression following CFTR modulator therapy.
To our knowledge, our study is the first report to focus specifically
on the transcriptomes of CF monocytes. The most comparable
previous study was performed by Sun et al., who characterized the
transcriptome of PBMCs collected from subjects enrolled in the
GOAL study, a multi-center, prospective characterization of
ivacaftor-induced changes in people with CFTR-G551D
mutations in the USA (Sun et al., 2019). They identified 239
differentially expressed genes (DEGs) when comparing PBMCs
pre-ivacaftor and 1 month post-ivacaftor, using a false discovery
rate < 0.1; the majority of these genes were decreased in expression
after 1 month of ivacaftor treatment. There were no DEGs in
common between the GOAL cohort data set, and our data from
monocytes isolated pre- and post-ivacaftor. It should be noted that
thereweremanydifferences betweenour study and that bySunet al.
In addition to differences in the cell types (PBMCs vs. monocytes)
and time points analyzed (1 month vs. 1 week post-ivacaftor), Sun
et al. applied a different statistical analysis to their data. We
performed a paired analysis, in which all subjects that provided a
pre-ivacaftor specimen also provided a post-ivacaftor specimen.
Sun et al. included 56 subjects, of which 37 provided both pre- and
post-ivacaftor samples, and 19 provided only one sample.

Additionally, the cohort used in the Sunet al. paperdiffered from
our cohort in several important ways. Their cohort (a subset of the
total GOALcohort) (1) had a lowermedian age than our cohort, (2)
was made up of people withCFTR-G551Dmutations (whereas our
cohort all hadCFTR-R117Hmutations), and (3) did not experience
a statistically significant increase in FEV1 by one month after
ivacaftor treatment, when their post-ivacaftor samples were
collected. In our cohort, we detected a statistically significant
improvement in FEV1 by 2 days post ivacaftor that was
maintained at day 7, when our post-ivacaftor specimens were
collected. The difference in clinical response to ivacaftor may be
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the key distinction between the two studies. Although the total
cohort in the Sun et al. study did not demonstrate a statistically
significant improvement in FEV1 following ivacaftor treatment, a
subset of subjects did experience a clinical response to ivacaftor. Sun
et al. distinguished subjects as either “responders” or “non-
responders” to ivacaftor based on FEV1, body mass index (BMI),
and Cystic Fibrosis Questionnaire-Revised (CFQR) respiratory
scores (Sun et al., 2019). When we performed functional
enrichment analysis on the DEGs with increased expression in
the subset of subjects who were “responders” relative to “non-
responders” in the Sunet al. cohort, we identifiedmultiplepathways
associated with immune function that were significantly up-
regulated (Table S4). This result suggests that, consistent with
our CF cohort findings, peripheral blood immune/inflammatory
program activation following initiation of ivacaftor therapy is
associated with significant clinical improvements in the
GOAL study.

Kopp et al. also characterized immune cell transcriptomes in
subjects starting CFTR modulator therapy, and performed both
a paired comparison of subjects pre- and post-modulator, and
also compared both datasets to transcriptomes from cells from
non-CF control subject. Their study examined whole blood
from a cohort of delta F508 homozygous subjects, starting
lumacaftor/ivacaftor, and they examined a later time point
(comparison of pre- and 6 months post-lumacaftor/ivacaftor)
(Kopp et al., 2019). In addition to this difference in study
design, the clinical response of subjects in this study to
lumacaftor/ivacaftor was not as robust, based on change in
FEV1, as that seen in subjects from studies in which the subjects
had ivacaftor-sensitive mutations. Overall, these authors found
that blood cells from people with CF both before and after
modulator therapy had higher expression of inflammation and
apoptosis related genes than cells from healthy donors, and
lumacaftor/ivacaftor modestly decreased expression of some
inflammatory genes.

In both the studies by Kopp et al. and Sun et al., CFTR
modulator treatment was associated with a general dampening of
peripheral immune cell inflammatory phenotypes, whereas we
found up-regulation of immune and inflammatory transcripts
and pathways in blood monocytes one week after initiation of
ivacaftor. This difference in trend could be due to the differences
in cell populations studied or demographics of the study
populations. The choice of time point for assessing changes
post initiation of modulator therapy might also be the critical
distinction between these studies, indicating that there may be
phases of responses to CFTR modulators. CFTR modulators may
initially enhance immune cells transcriptional pathways, and
then later, when there are decreased airway bacteria and mucous
plugging (Hisert et al., 2017), and different or less stimuli in the
blood, peripheral blood cell phenotypes may reflect a less
inflamed state. As with plasma biomarkers, there are likely
both acute and direct effects, as well as the secondary and later
effects , of CFTR modulators on immune cel ls and
thus inflammation.

Interpretation of transcriptomics data, particularly when
determining whether changes are pro- or anti-inflammatory, is
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also complicated by the fact that some genes with increased
expression may be inhibitors of inflammatory pathways. In fact,
several of the most significantly up-regulated genes following
ivacaftor treatment in our study are known inhibitors of
inflammation. OTUD1 (Ovarian Tumor Family Deubiquitinase
1, FDR = 3.74 × 10−13) can inhibit nuclear translocation and
transcriptional activity of the IFNg-activated transcription factor
IRF3 (Lu et al., 2018), and loss of function of OTUD1 is
associated with auto-immune diseases mediated by interferons
(Lu et al., 2018). DUSP2 (Dual Specificity Protein Phosphatase 2,
FDR = 1.07 × 10−10) belongs to a family of phosphatases that can
de-phosphorylate STAT proteins (involved in interferon
signaling, in addition to other intracellular signaling cascades),
and ERK proteins (involved in toll-like receptor intracellular
signaling (Lang et al., 2006; Lu et al., 2015). ATF3 (Activating
Transcription Factor 3, FDR = 3.11 × 10−10) binds CRE elements
in DNA and represses transcription, and has been shown to
negatively regulate pro-inflammatory cytokine expression in
macrophages (Rosenberger et al., 2008; Labzin et al., 2015). We
recently showed that monocytes from the same cohort described
here exhibit a decrease in ex vivo responsiveness to IFNg after
subjects have received ivacaftor for 7 days (Hisert et al., 2020).
An increased expression of genes that deactivate or dampen
inflammatory signaling could partly explain why transcriptome
data predicted that these monocytes have a more inflammatory
phenotype while the same cells, when stimulated ex vivo,
exhibited decreased IFNg responses.

Study Limitations and Strengths
Our study has several limitations. First, our cohort was small,
which may have limited our ability to detect important changes
in monocyte activation states or plasma biomarkers. Second, we
performed our analysis at a single time point after treatment, and
thus our data capture an early snapshot of acute changes in
monocytes after initiation of ivacaftor, which may not reflect
chronic therapy. Most studies evaluating changes in cells and
biomarkers following initiation of CFTR modulators have
sampled subjects at only one time point, with few longitudinal
studies (Rowe et al., 2014; Hisert et al., 2017; Ronan et al., 2018;
Kopp et al., 2019; Sun et al., 2019; Harris et al., 2020); however,
the synthesis of individual time points with the longitudinal
studies suggest that there may be phases of changes in
inflammation following restoration of CFTR activity with
modulators. The changes reported here occurred within the
first week of ivacaftor treatment, and thus reflect acute
responses to ivacaftor, and may not reflect a longer term
steady-state that incorporates both primary and secondary
changes induced by ivacaftor. In future studies of subjects
initiating highly active modulator therapy, analyses of changes
in inflammatory endpoints at multiple time points should be
performed. Third, we did not assess transcriptional profiles of
monocytes from healthy control subjects in this study, and
therefore we cannot draw conclusions about the relative
inflammatory state of CF monocytes compared to those from
healthy donors. However, building on the prior literature,
we hypothesize that the overall increase in activation of
transcriptional programs in CF monocytes post ivacaftor
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reflects a change from the tolerant state of monocytes pre-
ivacaftor, and a return towards the activation state of healthy
“wildtype” monocytes following restoration of CFTR activity.
Finally, although we investigated an early timepoint to try to
detect direct consequences of CFTR restoration by ivacaftor, our
data cannot ultimately discriminate whether the changes in
monocyte transcriptomes post-ivacaftor are due to direct
effects of ivacaftor on monocyte CFTR activity, indirect effects
of ivacaftor increasing CFTR activity on other cells in the body
(such as airway epithelial cells), or off target effects of ivacaftor on
monocytes. The literature suggests that some CF PBMC
impairments are likely an indirect consequence of CFTR
activity, resulting from exposure of the cells to an altered
milieu of CF plasma (Zhang et al., 2019).

Nevertheless, our cohort’s unique design provided several
strengths. Our ability to compare cells from the same individuals
pre- and post-ivacaftor minimized confounding and maximized
statistical power, allowing for detection of statistically significant
changes despite the small cohort size. The fact that all subjects were
from one institution allowed for processing of specimens on site,
and the application of multiple studies to the same specimens,
resulting in a deeply phenotyped cohort. Third, we detected a
clinically meaningful response to ivacaftor within 48 hours, which
provides additional confidence that the changes in immune cells
and mediators were related to restoration of CFTR activity and
could contribute to changes in airway inflammation. Finally, our
data here and in our previous publications describe changes in one
immune cell population (monocytes) before and after CFTR
modulator therapy, thus providing a detailed functional
description of a target cell for potential therapeutic manipulation.
SUMMARY

Peripheral blood monocytes travel to sites of inflammation,
including the CF airway, and are attractive therapeutic targets
for dampening the deleterious inflammation in CF lungs.
Leveraging an unbiased transcriptomics approach, we
systematically characterized changes in the inflammatory
phenotypes of these cells following restoration of CFTR
activity with ivacaftor. Unexpectedly, our findings revealed that
multiple transcriptional programs, including pathways
associated with immunity and inflammation, are up-regulated
in circulating CF monocytes after one week of ivacaftor
treatment. Coincident with this early enhancement of
monocyte immuno-inflammatory signals, we identified
significant increases in plasma levels of the myeloid
chemokines CCL2 and CXCL2 and an overall improvement in
FEV1. Collectively, our results demonstrate that ivacaftor causes
acute alterations in the inflammatory state of blood monocytes in
people with CF, which in turn, may modulate airway
inflammation and influence lung function. Future studies are
necessary to determine if this enhancement of monocyte
transcriptional pathways associated with inflammation and
immunity is a transient phenomenon, or reflects the new
steady state of people with CF receiving highly effective CFTR
modulator therapy.
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