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Abstract: Seasonality is a critical source of vulnerability across most human activities and natural
processes, including the underlying and immediate drivers of acute malnutrition. However, while
there is general agreement that acute malnutrition is highly variable within and across years, the
evidence base is limited, resulting in an overreliance on assumptions of seasonal peaks. We review
the design and analysis of 24 studies exploring the seasonality of nutrition outcomes in Africa’s
drylands, providing a summary of approaches and their advantages and disadvantages. Over half
of the studies rely on two to four time points within the year and/or the inclusion of time as a
categorical variable in the analysis. While such approaches simplify interpretation, they do not
correspond to the climatic variability characteristic of drylands or the relationship between climatic
variability and human activities. To better ground our understanding of the seasonality of acute
malnutrition in a robust evidence base, we offer recommendations for study design and analysis,
including drawing on participatory methods to identify community perceptions of seasonality, use of
longitudinal data and panel analysis with approaches borrowed from the field of infectious diseases,
and linking oscillations in nutrition data with climatic data.

Keywords: acute malnutrition; seasonality; methodology; Africa; dryland

1. Introduction

Seasonal variations occur in most human activities and natural processes, intercon-
nected and part of the environmental and meteorological patterns of the ecosystems. The
recognition of seasonality as a source of temporal variability is present across most dis-
ciplines, including ecology, anthropology, biology, food systems, and animal and human
health. Less attention has been given to building the evidence base around the seasonality
of malnutrition, despite (or maybe because of) the multi-causal nature of nutrition out-
comes relating to almost all other disciplines. However, as we strain to meet the targets
of the nutrition Sustainable Development Goals (SDGs) and acknowledge that, in some
contexts, we are persistently seeing levels of malnutrition equated to a humanitarian emer-
gency, despite the presence of an emergency [1], it is time to emphasize and better quantify
the role of seasonality in nutrition outcomes.

Seasonality, a systematic periodic occurrence of events over the course of a year, is a
well-known phenomenon in human health conditions manifested by marked fluctuations
in the incidence of diseases [2]. The main determinants of temporal variations in health
conditions are related to evolving host susceptibility, periodicity in exposure to pathogens,
food availability, and the ever-changing environment that can support or repress a host’s
growth and health. Seasonality in malnutrition refers to any pattern or variability in
nutrition outcomes that are correlated with the seasons, specifically with changes in envi-
ronmental conditions such as temperature, rainfall, and vegetation. Seasonal changes in
these variables, mediated through livelihoods and institutions, underpin the underlying—
food security, childcare, health—and immediate—disease and food consumption—drivers
of child acute malnutrition [3]. Thus, the manifestations of acute malnutrition, most com-
monly measured by the weight for height z-score (WHZ), mid-upper arm circumference
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(MUAC), wasting defined as having a WHZ less than negative two standard deviations [4]
or mid-upper MUAC less than or equal to 125 mm, and severe wasting defined as having
WHZ less than negative three standard deviations or MUAC less than 110 mm, tend to ex-
hibit a high level of variability over a short period of time [5–10]. Global acute malnutrition
(GAM) refers to the prevalence of wasting in a population and severe acute malnutrition
(SAM) refers to the prevalence of severe wasting (WHZ<-3). In addition, underweight,
defined as having a weight for age z-score (WAZ) below negative two standard deviations,
also partially captures acute malnutrition given its construction. The observed variability
in acute malnutrition within the course of the year can be even greater than the variability
observed across years [11]. However, the evidence base for seasonality is extremely limited,
resulting in an overreliance on general assumptions. Thus, more recently, there has been a
call for a better understanding of the seasonality of acute malnutrition, with seasonality
identified as the “missing link” [6] or major gap in acute malnutrition prevention [1,3,12].

While seasonality of acute malnutrition is observed in many climatic conditions,
it might be most pronounced in locations prone to environmental extremes. Drylands,
defined as having an aridity index of less than 0.65 [13], are characterized by erratic rain-
fall, seasonally high temperature, and significant environmental variability across both
time [1,13,14] and space [15]. Livelihood activities are ecologically adapted to the dryland
environment, with communities taking advantage of the seasonal distribution of natural
resources. Thus, the climatic variability and hence seasonality, mediated through liveli-
hoods and institutions, are reflected in the immediate and underlying drivers of acute
malnutrition, as well as the nutrition outcomes themselves. Populations living in drylands
experience marked seasonal variability and stress across multiple outcomes, including
child nutrition [16–18]. Many of the countries identified as drylands also correspond to
humanitarian contexts that experience emergency levels of acute malnutrition, even in the
absence of an emergency and significant humanitarian and development funding [19]. It is
not surprising that over the last decade, international donors have spent roughly 90 billion
dollars in just nine countries with large dryland areas, accounting for almost 50 percent of
all humanitarian assistance worldwide [20]. Existing assumptions around malnutrition
seasonality dictate the content and timing of programming, infrequently supported by
evidence [21]. Thus, in this paper, we review the analytical approaches for existing nu-
trition seasonality research in drylands, as well as making recommendations on how to
improve this research in order to design more appropriate interventions implemented at the
correct time.

The three main features that characterize seasonality are: (1) a point in time when
a seasonal curve reaches its maximum; (2) an amplitude from peak to nadir, and (3) a
duration of a seasonal increase defined by a shape of a curve [2]. The shape of a seasonal
pattern reflects how quickly a temporal curve reaches its peak and declines to a nadir over
the course of a full cycle, typically a year or a half of a year. Therefore, the seasonal curve
of a nutrition outcome can be characterized by periods of high or low malnutrition and
could have one or more seasonal peaks. Quantifying these seasonal characteristics of acute
malnutrition is critical for measuring progress towards the SDGs and the development
of appropriately timed nutrition-sensitive and nutrition-specific interventions to reach
those goals. More so, without a clear understanding of the seasonality of wasting, it is
impossible to either interpret the aggregated global estimate of wasting [6] or report on
trends in wasting, as is done with stunting and obesity [22].

Most existing seasonality studies in nutrition rely on categorical measures of the “time”
variable, comparing nutrition outcomes across two to four time periods in the year. The
selection of the timing of data collection is either based on implicit assumptions that acute
malnutrition is seen to be caused first and foremost by a lack of food [21], by selecting
seasons such as pre- vs. post-harvest, or using even-interval quarterly data collection. The
categorical approach to “time” does not correspond to how time is analyzed in other public
health fields that exhibit significant seasonal oscillation. Given that acute malnutrition
is a symptom of disease [3,23], a cause of disease [24,25], and shows significant with-in
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year variability [11] similar to infectious diseases, we draw on analytical applications from
the field of epidemiology that model and forecast oscillations in disease. Seasonality in
the epidemiology literature is characterized by the magnitude, timing, and duration [26]
of seasonal increases and thus requires sufficiently frequent observations, analyzed as a
continuous variable, in order to capture those components and establish an understanding
of seasonality. The use of a categorical time variable in both the design and analysis stage
does not correspond to the reality of climatic variability, the relationship between that
climatic variability and human activities, and instead might inadvertently support existing
assumptions instead of contributing to a robust evidence base.

The aim of this paper is to review the existing methods and models for assessing
seasonality in acute malnutrition. We then proceed to offer recommendations for primary
data collection, study design, and data analysis. Throughout the review, we specifically
narrow in on dryland given the high level of seasonal variability and possible comparability
given the similar environmental context. However, an understanding of the seasonality
of acute malnutrition is critical beyond just the dryland context and is necessary for
designing appropriately timed interventions and tracking progress towards the SDG goals
more broadly.

2. Materials and Methods

We carried out a scoping review to identify the literature on the seasonality of acute
malnutrition in drylands. We based our search on the following inclusion criteria:

• Objective: While the article did not have to list seasonality analysis as an objective,
some measure of seasonality had to be included in the analysis, either modeled or
visually.

• Geography: Only articles looking at drylands were evaluated. These included the
following countries: Benin, Botswana, Burkina Faso, Chad, Ethiopia, Eritrea, Gambia,
Ghana, Kenya, Mali, Malawi, Namibia, Niger, Nigeria, South Africa, South Sudan,
Sudan, Zimbabwe in Africa; Chile in South America; and Pakistan, Mongolia, Kaza-
khstan, and Afghanistan in Asia. Countries were identified as drylands according to
whether they had territory with an aridity index less than 0.65 [27,28].

• Outcome measures: Only articles that included a measure of acute malnutrition, either
wasting, severe wasting WHZ, MUAC, global acute malnutrition (GAM), and/or
severe acute malnutrition (SAM), as well as weight for age (WAZ) and underweight
(WAZ < −2) given the inclusion of weight in the construction.

However, information on modeling approaches, such as seasonal analysis, is notori-
ously difficult to extract through regular search engines. For example, we did a scrape on
Google Scholar on the search terms “seasonal”, “child”, and “acute malnutrition”, and all
their possible variations, as well as the geographical criteria. We specified that the search
terms must appear in either the title, abstract, or keywords. We set the start date to 1920.
This approach allowed us to identify 548 articles. We then applied our “outcome” criteria
to the article as well as confirming that some findings on seasonality were presented or
included in the models, which reduced the number of articles to 9. More importantly
the search missed 15 of the articles identified through non-systematic approaches, such
as communication with other researchers and reviewing bibliographies. Combing all ap-
proaches, we identified 24 articles that met all three criteria upon careful review. Notably,
no research on seasonality of nutrition outcomes in dryland contexts was found for either
South America or Asia, despite multiple countries in the latter being identified as having
persistently high levels of acute malnutrition [19].

3. Results

Seasonality has been a critical component of research and programming around agri-
culture [18] and infectious diseases [26,29–33], but less so when it comes to nutrition.
However, there is a growing body of evidence that aims to quantify the seasonality of
acute malnutrition in drylands with a mix of different design and analytical approaches. In
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this section, we present a summary of those methodological approaches and their respec-
tive advantages and disadvantages in measuring and analyzing nutrition seasonality in
Africa’s drylands.

Table 1 provides a summary of temporal measures, data types, e.g., cross-sectional vs.
longitudinal, statistical tests used to perform seasonality analysis, and nutrition variable
under study, as presented in the reviewed literature related to nutrition seasonality. Over
half of the studies (13) reviewed compare across two to four time periods, with either a
month selected to be representative of a predefined season, aggregation of data across
several months to create a seasonal mean, or the use of even-interval quarterly data. There
is a mix of both cross-sectional and longitudinal studies, but a similarity across statistical
methods. The analytical approaches utilized in these studies to establish seasonality
are primarily the comparison of the time periods using paired and unpaired t-tests (4),
multivariate analysis with the inclusion of season as a dummy variable (5), and/or repeated-
measure analysis of variance (3). In addition, six papers drew conclusions from visual
representations of nutrition outcomes by month; two papers used harmonic regression;
three papers used random-, fixed-, or mixed-effects analysis; one paper used Bayesian
hierarchical space–time modeling, and one paper used Fourier regression.

Table 1. Summary of temporal measures, data types, statistical tests, and seasonal nutrition variables presented in the
reviewed literature.

Temporal
Resolution Country Temporal Measure Data Type: Statistical Tests Nutrition

Variable

Two time
periods

Ethiopia wet vs. dry season Longitudinal paired t-test Wasting

Chad end of dry season vs. end
of rainy season

cross-
sectional

multivariate
logistic regression GAM

Malawi lean cropping season vs.
post-harvest season cross-sectional multivariate

logistic regression Underweight

Ethiopia
monthly, but grouped into

post-harvest vs.
pre-harvest

Longitudinal random-effects
regression WHZ

Kenya dry vs. rainy Longitudinal mixed logistic
regression model

SAM with
complications

Three time
periods

Mali
monthly, but grouped into

harvest, dry, and rainy
season

Longitudinal
repeated-measures

analysis of
variance

WHZ

Greater Horn
of Africa

secondary data grouped
into moderate, hunger,

and post-hunger season

cross-
sectional

multivariate
analysis Wasting

Temporal
Resolution Country Temporal Measure Data Type: Statistical Tests Nutrition

Variable

Four time
periods

Kenya Aug-Nov, Dec-Feb,
Mar-May, and Jun-Sep Longitudinal visual inspection WHZ

Gambia May, October, February,
September Longitudinal visual inspection WHZ

Senegal February, June, October,
December Longitudinal t-test, analysis of

variance WHZ

Niger November, February, May,
September Longitudinal

t-test and
multivariate
regression

Wasting
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Table 1. Cont.

Zimbabwe

four seasons:
January-March,

April-June,
July-September,

October-December

cross-
sectional

multivariate
regression

Under-
weight

Somalia
harsh dry season, rainy

season, second dry season,
short rainy season

cross-
sectional

Bayesian
hierarchical

space-time model
Wasting

Monthly

Niger monthly cross-
sectional

none, visual
inspection Severe wasting

Malawi monthly Longitudinal none, visual
inspection Wasting

Chad, Sudan,
South Sudan monthly cross-

sectional
none, visual
inspection Wasting, WHZ

South Sudan monthly cross-
sectional

none, visual
inspection Wasting

Malawi monthly cross-sectional linear regression # of children
underweight

Ghana monthly Longitudinal t-tests, linear
regression Wasting, WHZ

Sub-Saharan
Africa monthly cross-sectional fixed-effects

regression Weight, Wasting

Kenya monthly Longitudinal
repeated-measures

analysis of
variance

MUAC for age

Gambia monthly Longitudinal Fourier regresson WHZ

>Monthly

Nigeria every 2–4 weeks cross-
sectional

mixed-effects
harmonic

regression with 2π
terms

GAM

Sudan day of survey cross-
sectional

mixed-effects
harmonic

regression with 2π
terms

GAM, SAM

GAM: Global acute malnutrition; WHZ: weight for height z-score; SAM: severe acute malnutrition; MUAC: mid-upper arm circumference.

Each analytical approach is associated with distinct benefits, but also caveats, as
presented in Table 2. A clearer understanding of the options for analysis can help to identify
opportunities and appropriate study designs. The use of t-tests is the simplest form of
analysis when comparing nutrition outcomes across two to four seasonal categories. The
test itself is well understood and the results easy to interpret. Complexity slightly increases
when running multivariate analysis with the inclusion of the season as an indicator, or
dummy variable, but still allows for easy interpretation and for controlling for other
key characteristics, such as the age and sex of the child. With only two to four seasons
and hence a maximum of three variables indicating a season, multivariate analysis does
not require a long time series of data that define a sample size needed for the analysis.
These approaches can be applied to both cross-sectional and longitudinal data. Repeated-
measures analysis of variance can further improve the analysis by taking advantage of the
panel nature of the data and hence controlling for factors that cause variability between
subjects. However, because all three of these analytical approaches require “time” to be
included as a categorical variable, they force several assumptions on the model that do not
correspond to the environmental variability characteristic of drylands and violate basic
principles of time continuity.
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Table 2. Summary of temporal resolution, analytical methods, and their respective benefits and caveats in analyzing
nutrition seasonality.

Temporal Resolution Analytical Method Benefits Caveats

Categorical variable
representing seasons (e.g.,
wet vs. dry, pre-harvest vs.

post-harvest)

t-test (paired, unpaired) Easy to calculate and interpret

Assumes independent samples of two
populations are normally distributed
with same variance
Cannot control for differences
between populations

Multivariate Regression

Can control for wide variety
of covariates
Variables can be transformed
to meet assumptions
Easy to interpret coefficients

Assumptions:

• Relationship between
independent and dependent
variables is linear

• All variables are multivariate
normal

• Independent errors: no
autocorrelation

• Homoscedastic errors: constant
variance of errors, no
multicollinearity

Results can only be interpreted in
comparison to reference category

Fixed-Effect Regression

Useful for longitudinal data to
control for subject-specific
means
Easy to interpret coefficients

Assumes unobservable factors
influencing both independent and
dependent variables are
time-invariant
Assumes constant group means, thus
selection of grouping variables is
critical
Regression assumptions hold (see
Multivariate Regression above)

Bayesian Models

Flexible probability-driven
method
Does not rely on traditional
regression assumptions

Requires selection of appropriate
distributions to characterize prior and
posterior beliefs
Requires advanced numerical
approximation algorithms
(e.g., Laplace Approximation,
Markov Chain Monte Carlo)
Not widely utilized in development
community

Categorical variables
representing monthas a

proxy to a season

Multivariate Regression
(see Multivariate Regression above)
Use of indicator or dummy variables to represent temporal variable (as
month or week) can obscure temporal sequence

Repeated-Measures
ANCOVA

Useful for longitudinal data
with large sample size and
regular observations

Assumes population variances of all
possible difference scores are equal
(sphericity)
Results can only be interpreted over
fixed time points; must be serialized
for continuous interpretation

Continious variable
representing seasons in
time units, e.g., month,

week, or day

Harmonic Regression

Useful for cyclical phenomena
Easy estimation of harmonic
characteristics such as peak
timing and amplitude

Begin modeling with more than one
periodic term (2π, 4π, 6π, etc.) to
account for possibility of more than
one seasonal peak

Classic and Modern Time
Series Model Useful for cyclical phenomena Might be complex in interpretation

and require specialized software

Bayesian Models (see Baysian Models above)
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The categorical classification of seasons is not appropriate for dryland contexts as
seasons are not fixed with respect to calendar months. There can be significant variability
with respect to the timing of the rains in a given location and hence when the “rainy”
season happens versus the “dry” season. For example, in the Ouaddai Region of Chad,
the beginning of the rains can typically start as early as March or as late as June and end
as early as August or as late as December [1]. Thus, having a fixed month to serve as
representative of that season could be capturing two very different climatic conditions
and hence the presence of different underlying and immediate drivers of acute malnu-
trition. Furthermore, the “rainy” periods vary in duration and intensity over time and
across locations.

Similarly, taking a mean of multiple months to represent a seasonal mean does not
take account of the climatic variability in drylands. A few studies aggregated nutrition
data across pre-determined seasons, thus ultimately reducing the precision of the data.
The problem with this approach is that a lot of information can be lost in the aggregation
of seasonal data [29,34], especially if the critical period for peak wasting is likely to be
short [7], as is the case in the findings around the start of the rains being a critical period of
acute malnutrition risk in Chad, Sudan, and South Sudan [1].

The pre-selection of two to four seasons also does not correspond to community
perceptions of seasonality in drylands. For example, among the Fulani, three or four major
seasons are recognized, but communities also identify sub-seasons that relate directly to
their annual cycle of agricultural and pastoral activities, reporting up to eight seasons [35].
In Chad and Sudan, households identify five seasons, which include categories that reflect
the start of the rains and period between the harvest and dry season, on top of the more
standard categories of rainy, dry, and harvest season [1,36,37]. These periods of transition
between the standard seasonal categories can be fairly short, up to three weeks, but are
extremely vital. Recently, several studies have identified the start of the rains, an extremely
short season lasting roughly three weeks, as the period of greatest risk of acute malnutrition
in Africa’s drylands [1].

Furthermore, the pre-selection of specific seasons and their identification as “harvest”,
“pre-harvest”, and “post-harvest” or “moderate hunger”, “hunger”, and “post hunger”
implies a built-in assumption of food security or production yield as the primary driver of
acute malnutrition, corresponding to the food-first bias [21]. While the use of even-interval
selection of timing of data collection decreases the possibility of built-in assumptions
around specific seasons, there is a clear implication here, likely borrowed from western
culture, that seasons are equal in duration. However, seasons as described by local popula-
tions follow the pattern of human activities and access to specific natural resources and
thus almost never fall into evenly spaced intervals.

A handful of studies (4), on the other hand, utilized random-, fixed-, or mixed-effects
modeling, treating time as a continuous variable and thus avoiding some of the built-in as-
sumptions present with categorical data. Two of these studies applied harmonic regression
analysis typical of epidemiology and used in the modeling of infectious diseases [26,31,38].
However, both studies limited the model to the inclusion of 2π sine and cosine terms that
refer to a single seasonal peak and thus could not accommodate a more complex form
in seasonal variations relevant to food security concepts. The exclusion of higher-order
harmonic terms means that the model directly embedded the assumption of just one peak
in the nutrition outcome, which might not be the case in all drylands [1].

4. Discussion

Given the importance of environmental variability and seasonality in relation to peak
timing of acute malnutrition and its drivers [3], there are several approaches to improv-
ing both the design and analysis of nutrition seasonality research, with an emphasis on
borrowing from techniques developed and tested in modeling and forecasting infectious
diseases, given the clear link with disease as both a cause and effect of acute malnutri-
tion and similar within-year oscillation. Furthermore, analytical methods in the field of
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epidemiology have advanced and adapted to more complex and developmental settings,
characteristics of the context that have significant malnutrition [39,40]. A better under-
standing of these techniques can not only improve the accuracy of the analysis, but also
better inform nutrition seasonality study designs, as well as provide improved options for
analysis of data originally collected with a categorical measure of seasonality. We provide
several recommendations below with an emphasis on incorporating participatory methods
to capture household perspectives on seasonality, lining up the quantitative data collection
and analysis with climatic variability by drawing on remote sensing data, opportunities
for drawing on secondary data for prediction of seasonal peaks in acute malnutrition, and
general tips for improving the precision of seasonality analysis.

People’s livelihoods, such as pastoralism, farming, and fishing, require access to
natural resources, access that is directly related to environmental variability, particularly
in dryland contexts. The ways in which these resources are used, mediated through
institutions and social norms, influence the immediate and underlying drivers of acute
malnutrition. Thus, greater value must be placed on indigenous knowledge and local
perspectives on seasonality. Communities distinguish between multiple seasons, which
is extremely useful for the anticipation and description of environmental changes and
human activities [7,35] that need to be taken into account in seasonality research along-
side more quantitative methods. Without the investment in participatory methods to
identify the seasons as they relate to household livelihoods and activities, there is a
danger of accidentally missing a critical season when it comes to both research and
programming design.

In addition to a strong investment in participatory methods, to guide a seasonal un-
derstanding of the context, quantitative methods need to be in line with seasonal variability.
While collection of high frequency longitudinal data should be prioritized as it allows for
the use of mixed-effects modeling with the harmonic terms (Table 2), the use of remote
sensing data can help to align changes in nutrition outcomes with climatic variability.
As discussed above, dryland contexts exhibit significant variability and thus calendar
months cannot be consistently associated with a specific season. For example, in Chad,
data collection in June might capture the dry season, the initial intermittent rains, or the
rainy season, all depending on the year of data collection [1]. Thus, seasonal nutrition
variability can be best understood when analyzed with respect to variables such as precipi-
tation, temperature, and vegetation, which was done by a few of the nutrition seasonality
studies [1,11].

Approaches to incorporating climatic data for better acute malnutrition modeling
and forecasting can be borrowed from the existing infectious disease literature [29,30]. For
example, our recent study dealing with the complex non-linear structure with strong sea-
sonality of rotaviral infections introduced a novel two-step procedure to estimate seasonal
features and understand the relationship between infection and environmental conditions
for the purpose of peak timing forecasting [41]. Another study used agglomerative cluster-
ing methods to create a composite of meteorological conditions or rule of thumb to detect
days favoring salmonellosis outbreaks in a given location [42]. In this approach, we are
taking advantage of a data-driven methodology to navigate how to create “seasons” which
are meaningful in a specific context.

There are also opportunities to take advantage of existing secondary data, applying
some of the analytical techniques used on high frequency longitudinal data (Table 2). Many
of the dryland contexts in Africa also experience frequent humanitarian emergencies and
therefore entail significant and consistent data collection of nutrition outcomes. Taking
advantage of all available raw survey data across multiple surveys, rather than just an indi-
vidual survey, can provide many observations across time, allowing for the enumeration
area to serve as the unit of analysis and hence turning cross-sectional data into longitudinal
data. For example, Chotard et al. take advantage of 900 SMART surveys carried out
across the Horn of Africa to examine seasonal trends [43]. Nielson et al. used 164 publicly
available surveys carried out in the Darfur region of Sudan to carry out seasonality analysis,
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utilizing the day of survey collection to create a continuous time variable for analysis [44].
Another analysis looked at 300 SMART surveys over 20 years in Chad, Sudan, and South
Sudan to identify two seasonal peaks of acute malnutrition [1]. Finally, Thiede et al. utilized
39 Demographic and Health Surveys (DHS) across 18 countries over 25 years [45].

When it comes to the analysis of seasonality features, there are multiple ways to
improve data quality and to increase the precision and depth of data analysis irrespective
of the design stage. Information on the day of data collection, instead of a rough recording
of a month, even if the study uses a monthly or quarterly design, should be widely utilized
and strongly enforced for analysis purposes [44]. Given that most data are now collected
on digital data collection devices (i.e., tablets, smart phones, etc.), information such as day
and time of data collection could be included automatically as a timestamp and in the most
efficient and appropriate format, including year, month, and day, to allow efficient data
sorting, arranging, and verification. With improved temporal granularity data, analysts
could expand the range of models and convert time units into the most suitable aggregation,
such as a week or a month, if needed [29].

In addition, the collection of global position systems (GPS) coordinates is also fre-
quently automatic when conducting digital data collection. Inclusion of this information
can allow for easier and proper linkages with remote sensing data, thus allowing the direct
analysis of nutrition outcomes with respect to changes in rainfall, vegetation, temperature,
as well as land use, topology, proximity to markets, health centers, etc., as opposed to using
a crude assignment of a season or a rough proxy as a month indicator in an analytical
model to deal with the temporal and spatial heterogeneity.

At the modeling stage, seasonality analysis needs to check for multiple peaks in
nutrition outcomes by utilizing harmonic regressions with 2π, 4π, and higher-order sine
and cosine terms or using non-parametric data-driven methods. Recently, several studies
have identified more than one seasonal peak in acute malnutrition in unimodal dryland
contexts [1]. It is possible that even more peaks exist in more complex climatic conditions,
such as in bimodal rainfall drylands. All analysis also needs to occur across both the binary
(wasting) and continuous form (WHZ) of acute malnutrition given that the two forms
capture different information (tail end of the distribution versus median) and thus reflect
different programmatic implications. In addition, data need to be explored separately
for boys and girls, as they might have different drivers and seasonal trends in nutrition
outcomes, thus requiring different programmatic approaches. Multiple studies have found
boys to have significantly worse nutrition outcomes compared to girls [46–51], as well
as different seasonal patterns [50,52]. Thus, an investment in sex-stratified seasonality
research is critical in order to design appropriate interventions.

Modeling seasonality in the fields of infectious disease epidemiology could provide
a rich ground for methodology cross-fertilization. Not only is such research valuable for
a deeper understanding of the relationship between malnutrition and infections, but the
methodological aspects and data sources could increase the range of available approaches.
For example, in our study in India, we used systematically collected hospitalization records,
taking advantage of detailed patients place of origin data, to provide insight into the
seasonality of cholera at the point of care to support comprehensive national infectious
disease surveillance [39]. This approach is relevant for countries where the nutrition
outcomes are routinely collected at local clinics, health centers, and hospitals. Research
from Costa Rica used hospital admission data to estimate peak timing of rotavirus infections
and to provide the benchmark at the start of the national vaccination campaign [40]. Such
use of centralized records could be of value for monitoring the impact of intervention
strategies. Existing surveillance data can be also used for both forecasting purposes as well
as providing insight into historical outbreaks. Our study in Australia used surveillance
data on Ross River virus and Barmah Forest virus to identify peak timing, as well as to
estimate the impact of a false-positive Barmah Forest virus epidemic in 2013 [53]. We had
recently demonstrated the summertime synchronization of foodborne outbreaks in the USA
using the national surveillance data [54]. Thus, secondary data could be extremely useful
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as part of formative research, for extrapolating seasonal trends from smaller and context
specific primary seasonality research, as well as for general forecasting and modeling.
Obviously, the analysis provided in this paper can be expanded beyond malnutrition in
drylands and cover broader health and climatic aspects in future research.

With the recent explosion of open data sources, novel analytical tools, increased
computation and visualization capacities, and broad interests in seasonal variations of
health conditions, new opportunities are emerging to better understand the nature, drivers,
and implications of interventions to improve nutrition and health outcomes. Seasonal
patterns in malnutrition have been long recognized by epidemiologists and their links
to environment and sensitivity to climatic fluctuations deserve close attention. Better
assessment of seasonality, its characterization, analysis, and description is critical for health
practitioners, researchers, and decision-makers for targeting the timing of interventions
in a more accurate manner, for efficient allocation of precious resources, and for careful
programming of preventive strategies geared toward nutrition and meeting the targets of
the nutrition SDGs.

5. Conclusions

Understanding the seasonality of acute malnutrition is critical for designing appropri-
ately timed interventions for both treatment and prevention, as well as tracking progress
towards the SDG goals. Unfortunately, at the time of writing, the evidence base on the
seasonal patterns of nutrition outcomes in Africa’s drylands is limited. However, there
are significant opportunities to improve the design and analysis of the seasonality of
acute malnutrition, borrowing from lessons learned and methods developed in the field of
epidemiology. A better understanding of the benefits and caveats of different analytical
methods can inform study design and improve analysis of seasonality more broadly. Child
malnutrition is a complex phenomenon that requires us to draw across multiple fields
of study: agricultural production, infectious diseases, nutrient content, water systems,
cultural norms, livelihoods, gender, etc. Thus, our methods toolbox should be equally
diverse, constantly learning from best practices and adapting to contextual constraints.
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