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ABSTRACT: Allostery plays a fundamental role in most
biological processes. However, little theory is available to describe
it outside of two-state models. Here we use a statistical
mechanical approach to show that the allosteric coupling between
two collective variables is not a single number, but instead a two-
dimensional thermodynamic coupling function that is directly
related to the mutual information from information theory and
the copula density function from probability theory. On this basis,
we demonstrate how to quantify the contribution of specific
energy terms to this thermodynamic coupling function, enabling an approximate decomposition that reveals the mechanism of
allostery. We illustrate the thermodynamic coupling function and its use by showing how allosteric coupling in the alanine
dipeptide molecule contributes to the overall shape of the Φ/Ψ free energy surface, and by identifying the interactions that are
necessary for this coupling.

■ INTRODUCTION

Allostery plays a fundamental role in most biological processes
and has been suggested to be present in nearly all proteins.1 One
of the best-studied allosteric phenomena is the activation of a
receptor, which we will denote as R, by a ligand, denoted as L.
The most common model for allostery in this system is the
allosteric two-state model (ATSM).2,3 We can construct a
thermodynamic cycle for the process of ligand-induced activation
of the receptor:

We refer to this as an “allosteric cycle”. To describe the allostery
in this system, the allosteric efficacy, α, can be calculated from the
cycle as

α =
K

K
bound

unbound (2)

where (assuming the volume is constant), each equilibrium
constant is a function of the difference in Helmholtz free energy,
A, for the two states:

= β− ΔK e A (3)

Thus,

α = =
β

β
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A
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unbound (4)

For convenience, we will discuss the allosteric efficacy in terms of
the quantityΔΔA, which we will call the thermodynamic coupling.
ΔΔA is symmetric at equilibrium, that is, ΔΔA for receptor

activation conditional on ligand binding is equivalent to theΔΔA
for ligand binding conditional on activation. Thus, the following
two definitions of ΔΔA are equivalent:

ΔΔ = Δ + → − Δ + →

ΔΔ = Δ → − Δ + → +

A A(R L R L) A(R L R L)

A A(R L R L) A(R L R L)

on on off off

off on off on
(5)

However, there is no reason to assume that the receptor
activation is a two-state process. In fact, NMR experiments have
revealed a multimodal activation process in the β2-adrenergic
receptor (β2AR),

4 and quantitative mass spectroscopy experi-
ments have revealed ligand-specific states in the same system.5

These results, along with other evidence for additional states in
β2AR and other receptors,6−11 indicate that activation must be
treated as either involving more than two discrete states, or even
as involving a continuous conformational space.
Receptor activation involves not only multiple states but also

multiple dimensions. The complex behavior of an allosteric
receptor is thus unlikely to be well described by a single reaction
coordinate; instead, the large number of potential conforma-
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tional states may be best described by multiple collective
variables (CVs; variables that are functions of the atomic
coordinates) that are thermodynamically coupled in nontrivial
ways. It is impossible to understand the molecular mechanism of
ligand-induced receptor activation without explicitly considering
the thermodynamic coupling between the ligand binding site and
active site, so a minimal set of CVs should at least include one CV
for each one of these sites. These CVs are intrinsic to the specific
receptor, and their thermodynamic coupling arises from the
complex network of molecular interactions that separates them
spatially in the receptor’s structure. This intrinsic thermody-
namic coupling is of great interest, as an understanding of the
nature of this coupling can be used to inform both the design of
ligands that modulate function in a highly specific manner, and
the design of receptors with modified allosteric properties. We
have previously represented this intrinsic thermodynamic
coupling using the recently developed Allosteric Ising Model
(AIM),12 a two-state model of allostery that implicitly includes
the potential energy of interaction between structural
components. While the AIM and other statistical mechanical
models of allostery, such as the ensemble allosteric model,13 have
allowed us to derive some analytical features of simple allosteric
systems, a general method that does not rely on the two-state
assumption is still needed to study the intrinsic thermodynamic
coupling between structural components in real systems. Here
we describe such a method and illustrate its capabilities by
showing how allosteric coupling in the alanine dipeptide
molecule contributes to the overall shape of the Φ/Ψ free
energy surface, and by identifying the interactions that are
necessary for this coupling and their contributions to the
energetics.

■ THEORETICAL DEVELOPMENTS
Derivation. To quantify the intrinsic thermodynamic

coupling between CVs, we will derive expressions analogous to
the allosteric efficacy for the coupled perturbation of discrete or
continuous CVs away from their equilibrium distributions. Let
⃗ ∈ r N represent the coordinates of the allosteric protein and its
environment that define our system, which does not include any
ligand that we consider here as external perturbations. The
probability density of eachmicrostate r ⃗ is given by the Boltzmann
distribution,

∫
⃗ =

⃗

β

β

− ⃗

− ⃗
f(r)

e
e dr

U(r)

U(r)
(6)

where U(r)⃗ is the potential energy function. The numerator is
the Boltzmann factor denoted as

⃗ = β− ⃗B(r) e U(r)
(7)

The free energy can be written as a functional of the Boltzmann
factor function,

∫β
⃗ = − ⃗β− ⃗A[B(r)]

1
log( e dr)U(r)

(8)

We define a CV as a function X(r)⃗ of the system’s coordinates
that can be either continuous or discrete. For a continuous CV,
the probability density function is

∫
∫

δ
=

⃗ − ⃗

⃗

β

β

− ⃗

− ⃗
f(x)

(X(r) x) e dr

e dr

U((r))

U(r)
(9)

For a discrete CV, the probability mass function, p(x), is defined
by an identical expression, but is bounded to be less than 1
everywhere. We can calculate the free energy conditional on a
value of the CV as

∫β
δ|⃗ ⃗ = = − ⃗ − ⃗β− ⃗A[B(r X(r) x)]

1
log( (X(r) x) e dr)U(r)

(10)

Equation 10 can be rewritten in terms of either f(x) or p(x).
Because we use the histogrammethod to estimate the probability
mass function of the CVs in the application following this
derivation, we will assume discrete CVs described using p(x)
without loss of generality. The free energy becomes

β
|⃗ ⃗ = = − + ⃗A[B(r X(r) x)]

1
log(p(x)) A[B(r)]

(11)

Consider a second CV, Y(r)⃗, with analogous probability function
and free energy definitions. A joint probability mass function for
the two CVs can be written as

∫
∫

δ δ
=

⃗ − ⃗ − ⃗

⃗

β

β

− ⃗

− ⃗
p(x, y)

(X(r) x) (Y(r) y) e dr

e dr

U(r)

U(r)
(12)

so that the analogous free energy conditional on values of both
CVs is

β

|⃗ ⃗ = ⃗ = =

− + ⃗

A[B(r X(r) x, Y(r) y)]
1

log(p(x, y)) A[B(r)]
(13)

One can imagine X(r)⃗ to describe the ligand binding site and
Y(r)⃗ to describe the active site of the protein; the binding of a
ligand to the system then acts as an external perturbation to the
distributions of these CVs. To quantify the intrinsic coupling
between these CVs, we apply artificial perturbations to the
equilibrium CV distributions such that one or both CVs become
constrained to a given value. From the equilibrium state and
these artificially perturbed states, we calculate the allosteric
efficacy of the following thermodynamic cycle:

We will refer to this class of thermodynamic cycles as
“thermodynamic perturbation cycles”. The thermodynamic
coupling of the perturbations at position (x,y) in the CV space,
ΔΔA(x,y), can be calculated as

ΔΔ = |⃗ ⃗ = ⃗ = + ⃗

− |⃗ ⃗ = − |⃗ ⃗ =

A(x, y) A[B(r X(r) x, Y(r) y)] A[B(r)]

A[B(r X(r) x)] A[B(r Y(r) y)] (15)

Equation 15 simplifies to

β
ΔΔ = −

⎛
⎝⎜

⎞
⎠⎟A(x, y)

1
log

p(x, y)
p(x) p(y) (16)

This is the mathematical definition we propose for the central
quantity ΔΔA(x,y) that we call the thermodynamic coupling
function for the CVs X(r)⃗ and Y(r)⃗. In two dimensions, eq 16
defines what we call the allostery landscape (see Figure 1 for an
example).
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It should be noted that the thermodynamic coupling function
has a natural normalization when the CVs are discrete. If the two
CVs are maximally coupled, constraining one CV will fully
constrain the other. Thus, at maximum coupling,

|⃗ ⃗ =

= |⃗ ⃗ =

= |⃗ ⃗ = ⃗ =

A[B(r X(r) x)]

A[B(r Y(r) y)]

A[B(r X(r) x, Y(r) y)] (17)

and thus

ΔΔ = ⃗ − |⃗ ⃗ = ⃗ =A (x, y) A[B(r)] A[B(r X(r) x, Y(r) y)]max
(18)

We can then normalize (16) to this upper bound to define the
normalized allosteric coupling (AC),

= −
ΔΔ

ΔΔ
= −AC(x, y)

A(x, y)
A (x, y)

log(p(x) p(y))
log(p(x, y))

1
max

(19)

The AC ranges from 1 to −1 and matches the convention
commonly used for positive and negative allostery; positive
values indicate that constraining one CV reduces the free energy
required to constrain the other, whereas negative values indicate
that constraining one CV increases the free energy required to
constrain the other. In essence, the magnitude of the AC describes
what f raction of the maximal allostery is contributing to the f ree
energy of the joint state, whereas the sign of the AC describes whether
that allostery is positive or negative.
When applied to the biophysical information transmission

process occurring in a receptor (i.e., the thermodynamic
coupling between the ligand binding site and the active site),
the definitions above indicate that the thermodynamic coupling
function is negative if measuring the active site to be in the
“active” state reduces the uncertainty associated with whether or
not the ligand binding site is in the “bound” state. The two-state
ligand-induced receptor activation model defined in eq 1 can be
just as easily described using the thermodynamic coupling
function if the collective variables X(r)⃗ and Y(r)⃗ are defined to
take only two discrete values (bound/unbound and on/off,
respectively). In this context, the two-state allosteric efficacy in
eq 4 can be calculated from an allosteric cycle composed of four
allosteric perturbation cycles:

so that

ΔΔ = ΔΔ + ΔΔ

− ΔΔ − ΔΔ

A A(L , R ) A(L , R )

A(L , R ) A(L , R )

cycle bound on unbound off

unbound on bound off
(21)

Thus, a large negative ΔΔAcycle for the allosteric coupling
between activation and ligand binding indicates that when the
receptor is in the active state, the uncertainty that a ligand is
bound is greatly reduced, whereas when the receptor is in the
inactive state, the uncertainty that a ligand is not bound is greatly
reduced.

Relationships to the Mutual Information and the
Copula. The mutual information, which is often used to
quantify allostery,14−17 is defined as

∑ ∑=
∈ ∈

⎛
⎝⎜

⎞
⎠⎟I [p(x, y)] p(x, y) log

p(x, y)
p(x) p(y)2

x X y Y (22)

Interestingly, ΔΔA(x,y) in eq 16 is proportional to the
logarithmic term in 22, which is known as the pointwise mutual
information (PMI),18

=
⎛
⎝⎜

⎞
⎠⎟PMI(x, y) log

p(x, y)
p(x) p(y) (23)

Like the allosteric efficacy, the PMI is symmetric (i.e., the order of
variables x and y does not matter). To understand the PMI from
the perspective of information theory, one can consider the
information gained due to the reduction in uncertainty
associated with measuring a variable. This information gain by
measuring X(r)⃗ to be equal to x is

= −I(x) log(p(x)) (24)

However, if two variables are measured, and those variables are
dependent on each other, the amount of information gained by
measuring the second variable will be different from the amount
that would be gained if it were measured alone. For example, if
Y(r)⃗ was measured to be y, the probability distribution of X(r)⃗ is
now conditioned on Y(r)⃗ = y, and thus the information gained by
measuring X(r)⃗ becomes

| = − |I(x y) log(p(x y)) (25)

The PMI is the difference in the information gain,

= − |PMI(x, y) I(x) I(x y) (26)

The mutual information is the PMI weighted by the joint
probability density function. Consequently, the mutual informa-
tion gives a high weight to the thermodynamic coupling of
perturbations of high equilibrium probability states and low
weight to those of low equilibrium probability. This is important
for the mechanistic interpretation of allosteric couplings that are
quantified only by their mutual information, as functionally
significant perturbations do not necessarily drive the protein
toward a region of its intrinsic CV space that is already high
probability prior to perturbation. In fact, perturbations such as
ligands generally drive the system away from the unbound
equilibrium (e.g., where the inactive state is preferred to the
active state), so the mutual information would end up giving
larger weight to less functionally relevant states. In such cases,
when considering only the protein’s degrees of freedom, the
mutual information is not a good quantification of the intrinsic
thermodynamic couplings that mediate the system’s response to
ligand binding. Even in the simplest case of the allosteric
coupling between ligand binding and activation as described in
the ATSM, the mutual information between ligand binding and
activation will depend on the affinity of the ligand, and will go to
0 as the affinity goes to either 0 or ∞, independent of the
allosteric efficacy of the ligand. Therefore, we argue that it
becomes preferable instead to analyze the entire 2-dimensional
thermodynamic coupling surface, ΔΔA(x,y), which we call the
“allostery landscape”, as it contains information regarding the
allosteric efficacy for all possible perturbations to the distribution
of those CVs.
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The thermodynamic coupling function is also related to the
copula density function from probability theory.19 The copula
density function of a bivariate probability distribution is

=c(P(x), P(y))
p(x, y)

p(x) p(y) (27)

where P(x) and P(y) are the cumulative distribution functions of
X(r)⃗ and Y(r)⃗.
Any multivariate distribution can be expressed as a set of

marginal probability distributions and a copula that defines the
dependency between them,19 and the entropy of the copula
distribution is equivalent to the mutual information.20 Thus, a
multivariate thermodynamic coupling function behaves like a
copula, defining the information transmission properties of the
allosteric system. The relationship between the thermodynamic
coupling function and fundamental concepts in information
theory and probability theory suggest that past work in these
fields may be able to be adapted for biophysical applications and
provide new insights into allostery.
Contribution of Specific Energy Terms. Having intro-

duced a quantification of the allosteric coupling between two
CVs with the allostery landscape, a major mechanistic question
still remains. What features of the structure and energetics of a
given system define the thermodynamic coupling function? To
answer this question, we derive the change in thermodynamic
coupling function when a generic biasing potential energy term
Ubias(r)⃗ is added to the system’s total potential energy function,
U(r)⃗. The change in thermodynamic coupling, eq 16, at any
point in the CV space can be estimated using a free energy
perturbation approach, which we will refer to here as “biasing” to
avoid confusion with “perturbing” that refers here to constraining
the system at (x,y) in the CV space in eq 14. The change in free
energy of the system when a biasing potential is added is

∫β
Δ ⃗ → ⃗ = − ⃗ ⃗β− ⃗A[f(r) f (r)]

1
log( e f(r) dr)bias

U (r)bias

(28)

The change in free energy of the perturbed states can be similarly
written as

∫β

Δ |⃗ → |⃗ =

− |⃗ ⃗β− ⃗

A[f(r x, y) f (r x, y)]
1

log( e f(r x, y) dr)

bias

U (r)bias

(29)

Thus, the biased thermodynamic coupling function is

∫ ∫
∫ ∫β

ΔΔ = ΔΔ

−
|⃗ ⃗ ⃗ ⃗

|⃗ ⃗ |⃗ ⃗

β β

β β

− ⃗ − ⃗

− ⃗ − ⃗

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

A (x, y) A(x, y)

1
log

e f(r x, y) dr e f(r) dr

e f(r x) dr e f(r y) dr

bias

U (r) U (r)

U (r) U (r)

bias bias

bias bias

(30)

We wish to understand the contribution to the thermodynamic
coupling function of a structural feature of interest, or of a specific
interaction between structural elements of the system. Assuming
this feature of interest is described by a specific energy term
Uint(r)⃗ of the total potential energy function U(r)⃗, we can use eq
30 with a biasing potential that is equal and opposite to that
energy term, Ubias(r)⃗ = −Uint(r)⃗. In the next section, we use this
approach to quantify the contribution of specific interactions in
the alanine dipeptide system by mapping the corresponding
change in thermodynamic coupling, ΔΔΔA(x,y) = ΔΔA(x,y) −
ΔΔAbias(x,y).

Consider the special case of a particular energy term of interest
that is a function of a CV, Z(r)⃗. This corresponds to a biasing
potential of the form Ubias(r)⃗ =−Uint(Z(r)⃗). We have found (see
Appendix) that this results in the following biased thermody-
namic coupling functions:

1. If Z(r)⃗ is independent of either X(r)⃗ or Y(r)⃗,

ΔΔΔ =A(x, y) 0

2. If Z(r)⃗ is conditionally independent of Y(r)⃗ given X(r)⃗, or
if Z(r)⃗ = X(r)⃗,

∫
∫β

ΔΔΔ =
⃗ ⃗

|⃗ ⃗

β

β

⃗

⃗

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟A(x, y)

1
log

e f(r) dr

e f(r y) dr

Z

Z

U( (r))

U( (r))
(31)

The second result is interesting because in this case ΔΔΔA(x,y)
becomes a function of y only. A corresponding result is found if
X(r)⃗ and Y(r)⃗ are permuted.
Importantly, these findings indicate that the influence of any

specific energy term on the thermodynamic coupling between
two CVs can be clearly defined from the difference between the
unbiased and biased thermodynamic coupling functions. The
two conditions described above indicate that unbiasing by a
potential energy term that mediates an allosteric coupling will
have a two-dimensional effect on the thermodynamic coupling
function (i.e., the second term in eq 30 is dependent on both
X(r)⃗ and Y(r)⃗). We know that, owing to nonadditive effects, the
free energy contributions of such coupled energy terms cannot
be rigorously deconvoluted.21 Therefore, the contributions
obtained by biasing the allosteric coupling function (shown in
Figure 2), cannot be taken as a sensu stricto decomposition of
ΔΔΔA(x,y). This method nonetheless allows for the detailed
analysis of the mechanism of allosteric coupling and can be
applied generally across any system whose conformational
ensemble can be sampled using methods such as molecular
dynamics (MD).
As we show below with the example of the alanine dipeptide in

solution, MD can provide the data necessary for our formalism to
be implemented for specific allosteric proteins of interest. The
need for this type of data in order to describe allostery is
foreshadowed by the discussion accompanying Weber’s
introduction22 of a multistate model of cooperativity in
oligomers in 1972. He noted that a thermodynamic description
of allostery based on the protein’s intrinsic conformational
equilibrium (referred to as “tautomerization”) was “far more
restricted in scope and less useful”22 than a model based on its
oligomerization equilibrium. Weber argued that “character-
ization of tautomerizations in molecules involving as large a
number of potential degrees of freedom as proteins is confined to
some structural detail that happens to be observable”22 and that it
appeared “unlikely than any method can furnish us with a precise
determination of the tautomerization constants necessary to
characterize completely the system”.22 Indeed, in order to utilize
the formalism derived above, it is necessary to observe a large
number of degrees of freedom simultaneously with high accuracy
and precision so that a free energy landscape can be estimated.
Although such detail had not yet been described for proteins in
1972, the first molecular dynamics (MD) simulation of a protein
was published23 just five years later in 1977. Using MD
simulations, we are now able to estimate the equilibrium
distribution and corresponding free energy landscape of one or
more CVs in many proteins, while simultaneously observing
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both the coordinates of all atoms in the system and their
interaction energies, which is essential to the application of the
formalism derived above.

■ APPLICATION: THE ALANINE DIPEPTIDE
Estimating the Thermodynamic Coupling Function.To

illustrate the use and utility of the thermodynamic coupling
function, we analyzed the allostery landscape of the alanine
dipeptide in solution. The alanine dipeptide is a popular model
system for testing enhanced sampling and free energymethods as
the entire system can be described well by only two CVs, the Φ
and Ψ torsion angles along the bonds connecting the alanine Cα

atom to the capped N- and C-terminus, respectively (see Figure
1a). Here, in analogy to larger allosteric systems, we consider that
Φ captures the state of the N-terminal domain andΨ the state of
the C-terminal domain, and we ask the question of how the N-
terminal and C-terminal domains of the protein are allosterically
coupled. Despite the small size of the system, the irregular
features of the Φ/Ψ free energy surface (see Figure 1b) indicate
that these CVs are thermodynamically coupled in a nontrivial
way, and thus the alanine dipeptide is an ideal model system for
illustrating the power of the thermodynamic coupling function.

We constructed the 2-dimensional Φ/Ψ probability density
function of alanine dipeptide in water from five independent 50
ns trajectories produced with driven adiabatic free energy
dynamics24,25 (see Methods). Following a protocol that we
previously demonstrated to yield well-converged free energy
surfaces up to 40 kJ/mol above the global minimum,26,27 we
reconstructed the free energy landscape shown in Figure 1b using
the reweighted histogram estimator. To investigate which
features of the alanine dipeptide free energy landscape are due
to thermodynamic coupling between the two angles, we used eq
16 to calculate the thermodynamic coupling function shown in
Figure 1c. Significant allosteric couplings are evident in the
regions of the left-handed α-helix (known as αL, which should
not be confused with the symbol for allosteric efficacy) and the
region labeled C7ax′ (shown on Figure 1b, slightly lower than the
C7ax conformation stabilized in the gas phase27). This indicates
that if Φ is driven to the (0 to 2 rad/0° to 120°) region, the
transition ofΨ to the (0 to 2 rad/0° to 120°) and (−1 to−2 rad/
−60° to −180°) regions becomes more favorable.
In the normalized AC landscape of the alanine dipeptide,

calculated according to eq 19 and shown in Figure 1d, the αL and
C7ax′ , regions have couplings of around 0.4, indicating that a

Figure 1.Allostery in the alanine dipeptide. Our calculations reveal that the allosteric coupling betweenΦ andΨ destabilizes the high free energy regions
and stabilizes the αL and C′7ax states. (a) The alanine dipeptide molecule with the backbone dihedral anglesΦ andΨ indicated by arrows. The molecule
is partitioned in three domains as indicated by the black lines (see text for details). (b) Free energy surface A(Φ,Ψ) calculated according to eq 13, with
prominent states labeled in white. In all panels,Φ andΨ are expressed in radians. (c) The allostery landscape representing the thermodynamic coupling
betweenCVsΦ andΨ, calculated according to eq 16. (d) The normalized allosteric coupling, calculated according to eq 19. In panels c and d, greyed-out
regions represent data that are not surely different from zero, based on its 95%-confidence interval estimated by bootstrapping (see Methods).
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substantial amount of the maximal theoretically possible Φ/Ψ
allostery contributes to these state’s stabilities. Thus, while these
regions have a relatively low probability, our analysis suggests
that the allosteric coupling accounts for the small but significant
populations of αL and C7ax′ conformations that appear at
equilibrium. In addition, there appears to be significant coupling
present at the transition region between αL and PPII, and to a
lesser extent between αR and C7ax′ , indicating that these
transitions may also be facilitated by allostery. We also see
significant negative allosteric coupling in the high free energy
regions, which indicates that an unfavorable thermodynamic
coupling between the CVs contributes to the high free energy of
these regions.
The mutual information, eq 22, between Φ and Ψ is 1.11 ±

0.01 nats (95% confidence interval from bootstrapping), or for
better comparison to the thermodynamic coupling, 0.29 ± 0.03
kJ/mol at 300 K. It should be noted that these values are quite
low compared to the numerous regions of high thermodynamic
coupling and normalized AC (|ΔΔA(x,y)| > 6 kJ/mol, |AC(x,y)|
> 0.3, see Figure 1), and thus utilizing the mutual information
alone understates the thermodynamic coupling between Φ and

Ψ. Mapping the quantity summed over in eq 22 (see Figure S1)
shows that the major contributions to the mutual information
come from very localized regions of the CV space. Thus, using a
single number to quantify the coupling betweenΦ andΨmisses
the fact that the allostery landscape has significant regions of both
negative and positive coupling. This can be important if, for
example, one seeks to design a ligand that allosterically stabilizes
a lower probability state.

The Influence of Specific Interactions on the Allosteric
Coupling between Termini. To understand which structural
features contribute to the thermodynamic coupling of Φ and Ψ,
we decomposed the alanine dipeptide into three structural
components, as shown in Figure 1a: (i) the N-terminus, which
includes all atoms on the N-terminal side of the Cα carbon, (ii)
the C-terminus, which includes all atoms on the C-terminal side
of Cα, and (iii) the “channel”, which includes Cα as well as the
hydrogen and methyl side chain bound to it. These three
structural components can mediate the Φ/Ψ thermodynamic
coupling through three different mechanisms: (i) direct
nonbonded interaction of the termini (estimated with a dielectric
constant ε = 60), (ii) indirect interaction of the termini through

Figure 2. Contributions of specific interactions to the allosteric coupling function of the alanine dipeptide. The contribution of the specific interactions
identified for each panel was calculated according to eq 30, revealing the prominent role of bonded interactions between the termini and channel. (a)
Contribution of the dihedral energy term corresponding to the definition of the angle Φ (C−N−Cα−C). The corresponding interaction energy as a
function ofΦ andΨ, biased free energy surface, the biased allosteric coupling function, and the associated AC are shown in Figure S2. (b) Contribution
of the nonbonded interaction energy between the termini. Additional plots are in Figure S3. (c) Contribution of the nonbonded interactions between
the termini and the channel. Additional plots are in Figure S4. (d) Contribution of the bonded interactions involving atoms from both the termini and
the channel. Additional plots are in Figure S5. In all panels, greyed-out regions represent data that are not surely different from zero, based on its 95%-
confidence interval estimated by bootstrapping (see Methods section).
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nonbonded interactions with the channel, and (iii) indirect
interaction of the termini through bonded interaction with the
channel. Thus, we estimated the potential energy Uint(r)⃗
contributed by each of these groups of energy terms for each
frame along the trajectories and reweighted the free energy
landscape with an equal and opposite biasing potential Ubias(r)⃗
according to eq 28, see Figures S2−S4. We then calculated the
contribution of Uint(r)⃗ to the thermodynamic coupling landscape
ΔΔA(x,y) using eqs 29 and 30, as represented on Figure 2 in the
form of ΔΔΔA(x,y) = ΔΔA(x,y) − ΔΔAbias(x,y). As a control,
we also biased using the negative of the potential energy term
corresponding exactly to the definition of the Φ(r)⃗ CV, that is,
the C−N−Cα−C dihedral angle. This reweighting resulted in
one-dimensional variations of the thermodynamic coupling
function along theΨ axis, as expected from eq 31 (see Figure 2a).
Interestingly, while chemical intuition may suggest that the

direct interaction of the termini is the major mediator of the
thermodynamic coupling, we find that the direct nonbonded
interaction only contributes to the negative thermodynamic
coupling surrounding the central forbidden region, as shown in
Figure 2b. The only other significant change to the
thermodynamic coupling function is one-dimensional bands at
Ψ ∼ 1 andΨ ∼ −1 rad, which indicates that the interaction itself
may to some extent be indirectly coupled toΦ through its direct
dependency on Ψ.
Figure 2d shows that the bonded interactions between the

termini and the channel are the most significant contributors to
both the positive and negative thermodynamic coupling between
the termini, while the nonbonded interactions between the
termini and the channel (Figure 2c) do not significantly
contribute to the thermodynamic coupling. These results suggest
that Φ and Ψ become thermodynamically coupled due to the
energetics of the bonds, angles, and dihedrals composed of atoms
shared between each terminus and the channel. For example, the
Φ and Ψ dihedrals each share the angle formed by three central
atoms. Different combinations of Φ and Ψ frustrate this central
angle to different extents, leading to a thermodynamic coupling
between the two. We however note that in the alanine dipeptide
system, the energy terms described above are tightly coupled
with each other, as well as with other energy terms (such as the
internal bonded energy of the channel). Therefore, the
contributions represented in Figure 2 do not represent an
exact decomposition ofΔΔA(x,y) andmust be regarded as useful
cues for the qualitative understanding of how allosteric coupling
can be established between two domains of a molecular system.

■ CONCLUSIONS
We have derived a thermodynamic coupling function based on
the allosteric efficacy that quantifies the allosteric coupling
between two continuous or discrete CVs. We find that the
thermodynamic coupling function is related to both the
pointwise mutual information and the copula, and is best
represented in the form of an allostery landscape, in units of free
energy. Such a representation reveals the allosteric response to all
possible perturbations of the CVs. We showed that the allostery
landscape of theΦ andΨ dihedral angles of the alanine dipeptide
contains positive allosteric couplings that appear to stabilize the
αL and C7ax′ conformations, and negative allosteric couplings that
coincide with the high regions of theΦ/Ψ free energy landscape.
On the basis of the formalism we developed, we were able to
attribute features of this thermodynamic coupling function to
specific interaction energy terms, thus allowing interpretation of
the allosteric landscape. It is important to note that the criterion

introduced here for determining whether a specific interaction
mediates an allosteric coupling is more rigorous than our
previous n-body information-based criterion.14 While the 3-body
information between three CVs is in fact a function of biased
thermodynamic coupling functions (see Appendix, eq 46), if
Z(r) is conditionally independent of X(r) or Y(r) given the other
CV, the 3-body information will be maximal. Consequently, the
3-body information does not permit to determine definitively
whether Z(r) mediates a thermodynamic coupling between X(r)
and Y(r), or if one of the CVs mediates a thermodynamic
coupling between Z(r) and the other. Specifically, the 3-body
information criterion will include some number of false positives
(as we have previously described14), whereas all structural
features that correspond to a potential energy term and have a
two-dimensional influence on the thermodynamic coupling
function can be considered to be effective mediators of the
thermodynamic coupling.
The concepts developed here are very general and are

applicable to larger molecular systems, provided enough
sampling is available and the functionally relevant CVs are
known. This second condition is especially noteworthy for cases
in which a complete functional description involves multi-
molecular considerations. For example, to apply this method to a
specific GPCR, one must first identify the CVs that best describe
the agonist binding process and the G protein activation process.
However, in order to understand agonist-induced activation of a
G protein by a GPCR, one may need to also understand the
thermodynamic coupling between the agonist binding CV and
additional CVs that describe the process of G protein binding to
the GPCR as well as the process of G protein activation. Our new
theoretical formalism and its computational implementation
remains applicable despite such complications, and can serve as a
powerful tool in understanding the molecular mechanisms of the
many proteins in which allostery is essential to biological
function. It has the potential to identify novel allosteric sites that
modulate functionally important reaction coordinates, and such
capabilities can help achieve a large variety of end points.
Examples include the design of novel therapeutic agents that
allosterically modulate their specific targets in new ways, as well
as the elucidation of allosteric mechanisms to guide the design of
novel, synthetic allosteric proteins.

■ METHODS
The alanine dipeptide (N-acetyl-alanine-N′-methyl amide) was
modeled with the all-atom charmm22* force field28 and solvated
in explicit TIP3P water molecules.29 charmm22*was chosen as it
is able to reproduce an accurate alanine dipeptide free energy
landscape without utilizing the CMAP30 term used by other force
fields. We chose to avoid force fields using the CMAP term as it
induces a trivial thermodynamic coupling through a direct
interaction between Φ and Ψ, rather than allowing it to emerge
from separate terms of the traditional potential energy function.
Molecular dynamics simulation were performed using the
Charmm port31 in the Gromacs 4.5 program32 with particle-
mesh Ewald33 treatment of electrostatics and Lennard-Jones
interactions switched off between 10 and 12 Å.
The systems were maintained at temperature T = 300 K with

Nose−́Hoover chain thermostats.34 Similarly to our previous
study on dipeptides,27 enhanced sampling was achieved with
driven adiabatic free energy dynamics24,25 (dAFED), also known
as temperature accelerated molecular dynamics35 (TAMD),
implemented in the PLUMED plugin.36 Two collective variables
(CVs), defined as the backbone dihedral angles Φ and Ψ, were
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coupled (harmonic constant 1000 kJ/mol/rad2) to heavy
fictitious particles (pseudomass 50 amu·nm2/rad2) held at
temperature Ts = 600 K by generalized Gaussian moment
thermostats (order 2).37 Simulations were conducted in five
independent replicates of 50 ns each after a standard
equilibration phase starting with independent initial velocities.
Free energy surfaces (FESs) in the (Φ,Ψ) plane were
reconstructed26 using the reweighted histogram smoothed with
multivariate Gaussian kernel regression in Matlab (release
2015b, The MathWorks, Inc., Natick, Massachusetts, United
States). A cutoff of 40 kJ/mol was used for the FESs, above which
sampling was too poor for reliable surface estimation.
In principle, estimating an observable from a dAFED/TAMD

simulation requires binning the observable values in the CV
space, and reweighting each bin by a function of the FES at this
point.38 However, ΔΔA(x,y) in eq 16 depends only on the
probability mass at 300 K in the CV space, p(Φ,Ψ). This can be
derived directly from the density obtained from the dAFED/
TAMD simulation, padb(Φ,Ψ), by rescaling and renormalizing,

Φ Ψ ∝ Φ Ψp( , ) p ( , )adb
T /Ts

(32)

Due to the surface smoothing steps, propagation of uncertainties
is not practical for estimating confidence intervals on the
allostery landscape. Instead, we use the bootstrapping
approach.39 Specifically, because observations from MD time
series are notoriously not independent, we use block boot-
strapping;40 that is, we generate artificial samples by drawing at
random (with replacement) segments of trajectory of 1 ns in
length. Then, for each bin in the (Φ,Ψ) plane, we estimate a 95%
confidence interval for the allosteric coupling function and for
the AC based on the standard deviation among the bootstrapped
samples. If in a given bin this confidence interval includes the
value zero, the existence of an allosteric effect cannot be assessed
with certainty in this bin and we represent it in a greyed-out color
in panels c and d of Figure 1 and in Figure 2.

■ APPENDIX

Biasing the Thermodynamic Coupling Function with
Potentials That Are Functions of a CV
If X(r)⃗ and Z(r)⃗ are independent,

| =p(z x) p(z) (33)

Thus, we can rewrite the integrals in the biased thermodynamic
coupling (eq 30) as

∫ ∫
∫

∫ ∫
∫ ∫

∫
∫ ∫

|⃗ ⃗ = |

= |

|⃗ ⃗ = |

|⃗ ⃗ = |

=

⃗ ⃗ =

β β

β

β β

β β

β

β β

− ⃗

− ⃗

− ⃗

− ⃗

e p(r x, y) dr e p(z x, y) dz

e p(z y) dz

e p(r y) dr e p(z y) dz

e p(r x) dr e p(z x) dz

e p(z) dz

e p(r) dr e p(z) dz

U (r) U (z)

U (z)

U (r) U (z)

U (r) U (z)

U (z)

U (r) U (z)

bias int

int

bias int

bias int

int

bias int

(34)

and we find that

ΔΔΔ =A(x, y) 0 (35)

The equivalent is true if Y(r)⃗ and Z(r)⃗ are independent.

If X(r)⃗ and Z(r)⃗ are independent given Y(r)⃗,

| = |p(z x, y) p(z y) (36)

we can rewrite the integrals in the biased thermodynamic
coupling (eq 30) as

∫ ∫
∫

∫ ∫
∫ ∫
∫ ∫

|⃗ ⃗ = |

= |

|⃗ ⃗ = |

|⃗ ⃗ = |

⃗ ⃗ =

β β

β

β β

β β

β β

− ⃗

− ⃗

− ⃗

− ⃗

e p(r x, y) dr e p(z x, y) dz

e p(z y) dz

e p(r y) dr e p(z y) dz
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e p(r) dr e p(z) dz

U (r) U (z)

U (z)

U (r) U (z)

U (r) U (z)

U (r) U (z)

bias int

int

bias int

bias int

bias int

(37)

Thus,

∫
∫

∫
∫

β

β

ΔΔΔ =
|

=
⃗ ⃗
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β

β

β

β

⃗

⃗

⎛
⎝
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⎞
⎠
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⎝
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⎠
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log

e p(z) dz

p(z x)z

1
log

e p(r) dr

e p(r x) dr

U (z)

U (z)

U (Z(r))

U (Z(r))

int
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int
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(38)

If Y(r)⃗ and Z(r)⃗ are independent given X(r)⃗, we can use a similar
simplification to find

∫
∫β

ΔΔΔ =
⃗ ⃗

|⃗ ⃗

β

β

⃗

⃗

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟A(x, y)

1
log

e p(r) dr

e p(r y) dr

Z

Z

U ( (r))

U ( (r))

int

int
(39)

The Three-Body Information
The three-body information shared by three CVs X(r)⃗, Y(r)⃗, and
Z(r)⃗ is defined as

= − |I [p(x, y, z)] I [p(x, y)] I [p(x, y z)]3 2 2 (40)

This can be expanded to

∑ ∑

∑ ∑ ∑

β= − ΔΔ

−
|

| |

∈ ∈

∈ ∈ ∈

⎛
⎝⎜

⎞
⎠⎟

I [p(x, y, z)] p(x, y) A(x, y)

p(x, y, z) log
p(x, y z)

p(x z) p(y z)Z

3
x X y Y

z x X y Y

(41)

The second term can rewritten as

∑ ∑ ∑| =
∈ ∈ ∈

⎛
⎝⎜

⎞
⎠⎟I [p(x, y z)] p(x, y, z) log

p(x, y, z) p(z)
p(x, z)p(y, z)2

z Z x X y Y

(42)

and each probability can be rewritten as an integral:

∫ δ= ⃗ − |⃗ ⃗p(x, y, z) (Z(r) z)p(r x, y)dr

∫ δ= ⃗ − |⃗ ⃗p(x, z) (Z(r) z)p(r x)dr

∫ δ= ⃗ − |⃗ ⃗p(y, z) (Z(r) z)p(r x, y)dr

∫ δ= ⃗ − ⃗ ⃗p(z) (Z(r) z)p(r)dr
(43)
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The Dirac delta functions are proportional to harmonic biasing

potential terms with strictly positive force constants, k

δ ⃗ − ∝ =β β− ⃗ −

→∞

− ⃗ −Z( (r) z) e lim [e ]U (Z(r) z)

k

k(Z(r) z) /2bias
2

(44)

such that eq 42 becomes
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Z Z2
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(45)

Thus,

∑ ∑ ∑β= − ΔΔ
∈ ∈ ∈

I [p(x, y, z)] p(x, y, z) A (x, y)3
z Z x X y Y

bias(z)

(46)

This shows that the 3-body information can be expressed as the
average of a biased thermodynamic coupling function where the
bias restricts Z(r)⃗ to a fixed value.
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