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Adrian Schröder1*, Johannes Eichner1, Jochen Supper1, Jonas Eichner1, Dierk Wanke2, Carsten

Henneges1, Andreas Zell1
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Germany

Abstract

Today, annotated amino acid sequences of more and more transcription factors (TFs) are readily available. Quantitative
information about their DNA-binding specificities, however, are hard to obtain. Position frequency matrices (PFMs), the
most widely used models to represent binding specificities, are experimentally characterized only for a small fraction of all
TFs. Even for some of the most intensively studied eukaryotic organisms (i.e., human, rat and mouse), roughly one-sixth of
all proteins with annotated DNA-binding domain have been characterized experimentally. Here, we present a new method
based on support vector regression for predicting quantitative DNA-binding specificities of TFs in different eukaryotic
species. This approach estimates a quantitative measure for the PFM similarity of two proteins, based on various features
derived from their protein sequences. The method is trained and tested on a dataset containing 1 239 TFs with known DNA-
binding specificity, and used to predict specific DNA target motifs for 645 TFs with high accuracy.
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Introduction

As of March 2010, the genomes of 178 eukaryotes were

completely sequenced and for another 404 eukaryotic species

sequencing projects were in progress [1]. In a large effort, these

datasets are annotated by biologists or computational methods

[2,3], and meanwhile they have become one of the most

comprehensive resources in biological sciences. By means of the

annotation of their domains proteins can be assigned to certain

molecular functions (e.g., transcription factor), however, quantita-

tive functional information (e.g., DNA-binding specificities) remain

scarce. Despite recent progress in the development of high-

throughput technologies for the measurement of protein-DNA

interaction parameters as proposed by Maerkl and Quake et al. [4]

and microarray based technologies for the analysis of TF binding

specificities [5,6], the determination of highly resolved quantitative

binding specificity information remains laborious.

Accordingly, comprehensive binding specificity data is only

available for a fraction of all known proteins. Only for approximately

3% of all TFs in Arabidopsis thaliana, for instance, DNA-binding

specificities have been experimentally determined so far. Even for

the most intensively studied organisms, i.e., human, mouse and rat,

roughly one-sixth of all proteins with annotated DNA-binding

domain have been characterized experimentally (see Figure S1).

This leads to an enormous gap between the amount of annotated

protein sequences and the amount of quantitative binding data.

In the field of qualitative protein function prediction, annota-

tions that were assigned to one protein are often transferred to

other proteins with high sequence similarity [7,8], based on the

assumption that similar protein sequences imply similar protein

function [9–11]. Previously, some approaches were presented that

automatically perform such transfers of functional annotations

based on sequence similarities [12,13]. Several similar approaches

proceed by extracting the k-nearest neighbors for a query protein

and then transfer all or the most frequent functional annotations –

such as GO terms [14–17]. Engelhardt et al. used the evolutionary

history of proteins as represented by a phylogenetic tree to perform

protein function transfers [18]. Brunak et al. applied modern

machine learning techniques such as artificial neural networks or

support vector machines to predict protein annotations based on

various features derived from annotated amino acid sequences

[19,20].

Applied to TFs these functional annotations may indicate what

structural superclass a certain TF belongs to, for instance ‘zinc

finger’ [21]. Such annotations, however, do not provide quantita-

tive information, like the DNA-binding specificity of a certain TF,

because binding-specificities within TF superclasses, and even

within TF classes, may vary tremendously. During the past years,

significant progress has been made in our understanding of the

biophysical mechanisms underlying the specific DNA-recognition

by TFs [22–24]. Recently, accurate mechanistic models have been

developed to predict physical interactions between TFs and DNA

molecules [25,26]. However, for genome-wide applications, i.e.,

the computational inference of transcriptional regulatory net-

works, more simple representations of DNA-binding specificities,

such as position frequency matrices (PFMs) are used more
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commonly [27–29]. PFMs indicate for a certain TF how frequent

the nucleotides A, C, G, and T occur at each position within the

binding site [30]. Thus, to transfer or even predict this type of

quantitative information a new approach is needed, which allows

to perform transfers of quantitative information with low error

rate. To this end, Alleyne et al. applied various machine learning

methods in order to predict binding profiles of mouse homeodo-

main TFs [31]. More recently, Alamanova et al. proposed a new

approach to calculate position weight matrices from protein-DNA

complex structures [32]. Toward the challenge of developing a

general approach for the prediction of DNA-binding specificities

from protein sequences, several questions should be addressed. (1)

Which sequence based score is a good quantitative indicator for

binding similarity? (2) How large is the error when transferring

and recombining quantitative information between proteins? (3)

Can this process be automated on large sets of transcription

factors? In this work, we developed a method that transfers and

combines PFMs between proteins, while addressing each of the

open questions. First, instead of using a single pairwise alignment

score, we align two proteins with respect to different evolutionary,

structural and physicochemical properties. Given these alignments

we apply support vector regression (SVR) to infer a quantitative

measure for the PFM similarity of two proteins that is based on

their protein sequences. This approach is mathematically referred

to as distance metric learning, a relatively young discipline in the

field of supervised machine learning [33], and has previously not

been applied to predict PFM similarities. Based on the SVR

model, a framework is implemented that allows to transfer and

predict quantitative binding specificity data between TFs. Second,

to estimate the average error 5-fold cross-validations with 10 runs

is accomplished during the training and the final results are

evaluated on a separate dataset that is used for testing purposes

only. Third, to show that this method is applicable in large scale

we use it to transfer DNA-binding specificity data between TFs to

enrich the as yet incomplete annotation of DNA binding

consensus motifs of TFs.

Results

Functional and sequence datasets
To train our approach a sufficient number of TFs has to be

collected for which quantitative binding specificity information,

the protein sequence and the DNA-binding domain annotation is

available. We collected binding specificity data (PFMs) from

several databases, such as TRANSFACH (see Table 1), and protein

sequences with annotated DNA-binding domains from sequence

databases, such as UniProt (see Section ‘Protein sequences, DNA-

binding domain annotations and TF-classifications’) focusing on

eukaryotic species. These data was retrieved and merged into a

non-redundant dataset that contains 1 239 eukaryotic TFs with

known PFM (see Section ‘DNA-binding specificity databases’). We

partitioned this dataset according to the five structural superclasses

of TFs [34], following the assumption that TFs from different

superclasses bind distinct DNA-motifs and should therefore be

treated independently. The five structural superclasses are: (1)

basic domain (basic domain), (2) zinc-coordinating DNA-binding

domains (zinc finger), (3) helix-turn-helix (helix-turn-helix), (4) beta-

scaffold factors with minor groove contacts (beta-scaffold) and (5)

other transcription factors (others). In addition, each superclass

specific dataset was subdivided into a training and a test set with a

ratio of 2:1 (see Figure 1(a)). Then, a second dataset was compiled

that contains proteins for which no PFM but the protein sequence

and the DNA-binding domain annotation could be retrieved. This

dataset contains 5 723 TFs that were also partitioned according to

their structural superclass. In a later stage of this work, PFMs from

proteins in the first dataset were combined and transferred to

proteins in the second dataset, while estimating the average error.

The classification of TFs with annotated DNA-binding domain

and/or PFM to the five structural superclasses is shown in

Figure 1(a) and compared to the estimated number of existing TFs

[35]. It becomes obvious from Figure 1(a) that the number of TFs

without PFM is by far larger than the number of TFs with

experimentally determined PFM. Figure 1(c) shows the distribu-

tion of all TFs with known PFM over the structural superclasses.

The largest number of PFMs was obtained for the helix-turn-helix

class and the lowest number of PFMs was obtained for the class

others even though others is the second largest superclass (see

Figure 1(b)). In the Figure S1 the number of experimentally

derived versus predicted PFMs among six of the most intensively

studied model organisms including Homo sapiens, Mus musculus,

Rattus norvegicus, Arabidopsis thaliana, Drosophila melanogaster and

Saccharomyces cervisiae is depicted.

Predicting PFM similarity from annotated protein
sequences

The presented approach can be partitioned into two stages. The

first stage comprises the training of SVR models, i.e., one model

for each of the five structural superclasses, that quantitatively

predict the functional similarity (i.e., PFM similarity) of TFs based

on sequence homology and other features derived from their

annotated protein sequences (see Figure 2). In the second stage

these SVR models are used to transfer PFMs to TFs of interest (see

Figure 3).

First stage: Training of SVR model to predict PFM

similarities. In the first stage a training set of TFs with known

PFMs and annotated protein sequences is used to learn PFM-

similarities based on support vector regression. To this end, for each

pair of TFs in the training set a vector of 30 different pairwise

similarity scores in compiled with respect to various evolutionary,

structural and physicochemical properties. Most of those pairwise

similarity features are derived from the amino acid sequences of the

annotated DNA-binding domains. A comprehensive list of all

pairwise similarity scores can be found in Table 2. The results of

these pairwise comparisons are used to train an SVR model that

predicts PFM-similarities which are quantified using the well

established multiple alignment based PFM similarity score MoSta

[36]. In machine learning, this process, i.e., the learning of

similarities/distances from various features, is referred to as

distance metric learning [33]. Figure 2 depicts the training of this

supervised machine learning approach. For each pair of TFs in the

trainings set, feature vectors consisting of all 30 similarity features

are compiled. Based on these vectors, which represent the binding

domain similarities, the SVM is trained to learn the PFM

similarities.

Second stage: PFM prediction and error estimation. In

this stage PFMs are combined and transfered to query proteins

that either lack PFMs or that are used for testing purposes (see

Figure 1). The prediction framework requires for any given query

TF three pieces of information. First, the respective organism of

the query TF, which is required to derive the phylogenetic feature.

Second, the sequence of the annotated DNA-binding domain,

from which most of the remaining features are derived. Third, the

structural superclass of the DNA-binding domain, because one

model for each structural superclass was trained individually.

Given this information, pairwise similarities between the query TF

and all other TFs with known PFM are predicted using the

corresponding SVR model of the respective structural superclass.

The best matching PFMs, if any, are further processed an merged

Predicting PFMs
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to a consensus PFM in the remaining steps. First, outliers are

detected and removed. Second, the consensus PFM is generated

using the STAMP PFM merging algorithm which is described

elsewhere [37]. The resulting consensus PFM is finally returned as

output for the respective query TF. It is important to note, that not

for any given query TF an output is generated. If no similarities to

Figure 1. Classification of TFs in structural superclasses. (a) All TFs with known PFM are partitioned with respect to their structural superclass
[34]. The number of PFMs are given by the non-redundant dataset compiled in this work (Section ‘DNA-binding specificity databases’), which is split
into a training and a test dataset. (b) Distribution of TFs with annotated DNA-binding domain over structural superclasses, (c) Distribution of TFs with
experimentally derived PFM over structural superclasses.
doi:10.1371/journal.pone.0013876.g001

Table 1. Databases that provide models of DNA-binding specificities.

database covered species models reference URL

TRANSFACH eukaryotes 846 [64] http://www.biobase-international.com/

JASPAR core multicellular 123 [30] http://jaspar.cgb.ki.se/

YEASTRACT S. cerevisiae 284 [53] http://www.yeastract.com/

SCPD S. cerevisiae 23 [65] http://rulai.cshl.edu/SCPD/

AGRIS A. thaliana 65 [66] http://arabidopsis.med.ohio-state.edu/

FlyReg D. melanogaster 184 [67] http://www.flyreg.org/

The shown databases cover different organisms and contain varying numbers of models that are stored in different formats (PWMs, IUPAC motifs, or PFMs).
doi:10.1371/journal.pone.0013876.t001

Predicting PFMs
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known PFMs are predicted by the SVR models, no PFM

prediction can be performed.

In order to estimate the prediction error, an external test set is

compiled consisting of 414 TFs with known PFMs which are not

used in the SVR-training procedure (see Figure 1). The failure

between predicted and original PFM is quantified in terms of

MoSta units [36]. A detailed example for a myocyte enhancer

factor (MEF-2A), a mouse beta scaffold TF available retrieved

from TRANSFAC public, is depicted in Figure 3. Three MEF

isoforms from human are predicted by the respective beta scaffold

Figure 2. Training of SVR model to predict PFM similarities. An SVR-based supervised machine learning approach is used to predict pairwise
PFM similarities based on various features, derived from amino acid sequences of the DNA-binding domains of pairs of TFs. To this end, for each TF
pair in the training set, a feature vector consisting of phylogenetic, physicochemical and structural domain similarity scores is computed. All pairwise
PFM similarities in the training set are quantified using MoSta [36]. Next, a support vector machine is trained to predict PFM similarities based on the
sequence-derived feature vectors. In machine learning, this methodology is referred to as supervised distance metric learning [33].
doi:10.1371/journal.pone.0013876.g002

Figure 3. PFM prediction framework and error estimation. The prediction framework takes the following information about the query TF as
input: (1) the corresponding organism, (2) the entire protein sequence, (3) the interval spanned by the DNA-binding domain, (4) the structural
superclass of the TF. The query TF is compared to all TFs with known PFM and identical superclass. Pairwise feature vectors are computed and the
similarity between the known PFMs and the unknown one of the query TF are predicted based on SVR. Next, the best matches, i.e., the TFs for which
a PFM similarity above a predefined threshold (default: 0.95) was predicted, are merged to a consensus PFM using STAMP [37]. To assure that the
merged PFMs are sufficienly similar, an outlier filter is applied before merging in order to remove dissimilar PFMs causing inhomogeneity of the best
matches. In the shown example, four best matches were found for MEF2A, a mouse beta scaffold myocyte enhancer factor with known PFM taken
from the test set. The best matches are mostly MEF isoforms from human with known PFMs. Since these PFMs are very similar to each other, no
outliers have to be removed before merging. The predicted consensus PFM was compared to an experimentally detemined PFM in order to assess
the error in terms of normalized MoSta units [36]. The error between the predicted and the annotated PFM is 0.04, which precisely agrees with the
average PFM similarity of the best matches (0.96) predicted by the SVR model.
doi:10.1371/journal.pone.0013876.g003

Predicting PFMs
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SVR model to be highly similar to the PFM of the query factor

and all lie above the required best match threshold of 0.95. These

PFMs are very similar to each other such that no outliers need to

be removed. The error between the predicted consensus PFM and

the real PFM is 0.04. Thus, the estimated PFM similarity of 0.96

precisely agrees with the observed error.

The overall error rate is estimated for each structural superclass

individually by calculating the average absolute error (AAE), i.e.,

the average [0,1]-normalized distance between predicted and

annotated PFMs in terms of MoSta units [36]. The reader is

referred to the Methods section, for a formal description of the

AAE (see ‘Validation of the SVR models and predicted PFMs’).

Sequence based PFM similarity measure
Results of the most predictive SVR models for each

structural superclass. For each structural superclass one SVR

model was derived from the training datasets that contain binding

specificity data (PFMs). Thereby, the objective of every SVR was

to learn a quantitative relationship between the sequence based

features (see Table 2) and the PFM similarity of the TFs (see

Table 2. Similarity score calculation methods and their parameters.

Similarity type substitution matrix parameter reference

Alignment of the DNA-binding domains [Needleman-Wunsch [68]]

1. Sequence identity BLOSUM62 g~11, e~1 [69]

2. Sequence similarity BLOSUM62 g~11, e~1, tsim~1 [69]

3. Sequence similarity BLOSUM62 g~11, e~1, tsim~3 [69]

4. Sequence similarity BLOSUM62 g~11, e~1, tsim~5 [69]

5. BLOSUM based BLOSUM62 g~11, e~1 [69]

6. PAM based PAM80 g~11, e~1 [70]

7. PAM based PAM10 g~11, e~1 [70]

8. Secondary structure based LUTR910102 g~11, e~1 [71]

9. Secondary structure based MEHP950101 g~11, e~1 [72]

10. Secondary structure based MEHP950102 g~11, e~1 [72]

11. Secondary structure based MEHP950103 g~11, e~1 [72]

12. AA-contact frequencies based MIYS930101 g~11, e~1 [73]

13. AA-pair distance based MIYT790101 g~11, e~1 [74]

14. Structure based NIEK910102 g~11, e~1 [75]

15. Structurally related proteins based RISJ880101 g~11, e~1 [76]

16. Physical feature based WEIL970101 g~11, e~1 [77]

Alignment of the DNA-binding domains [Local Alignment Kernel (LAK) [58]]

17. BLOSUM based BLOSUM62 g~12, e~2, b~1 [69]

18. BLO based BLO62 g~12:5, e~5:0, b~0:5 [78]

19. PAM based PAM250 g~11:9, e~1:9, b~0:5 [78]

20. LAK optimized GCB g~11:19,e~1:3, b~0:5 [78]

21. LAK optimized JTT g~11:9, e~1:9, b~0:5 [78]

Alignment of the DNA-binding domains [MisMatch Kernel (MMK) [59]]

22. Number of matching subsequences – k~6, m~1 –

23. Number of matching subsequences – k~5, m~1 –

24. Number of matching subsequences – k~4, m~1 –

Alignment of the DNA-binding domains [SVM-pairwise [60]]

25. SVM-based BLOSUM62 g~11, e~1 [69]

26. SVM-based PAM80 g~11, e~1 [70]

Alignment of the flanking regions of the DNA-binding domains [Needleman-Wunsch [68]]

27. BLOSUM based BLOSUM62 g~11, e~1, l~25 [69]

28. BLOSUM based BLOSUM62 g~11, e~1, l~50 [69]

Alignment of the predicted secondary structures of the whole proteins [Needleman-Wunsch [68]]

29. Similarity of predicted secondary structure custom build g~10, e~1 –

Phylogenetic distance of the species of two proteins

30. Phylogenetic distance – – [79]

For each feature the method, its parameters and, when needed, the substitution matrix are provided. The parameters g and e give the gap opening and gap extension
penalties and tsim gives a similarity distance threshold below which two amino acids are still considered a match. The parameters b and k, m are parameters of the local
alignment and mismatch kernel, respectively. The parameter l defines the length of the flanking regions considered for the alignment.
doi:10.1371/journal.pone.0013876.t002
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Section ‘Low-level similarity score for PFMs’). To obtain robust

estimates of the predictive performance of the SVR models for

each structural superclass 5-fold cross-validations with 10 runs of

repeated random partitionings was performed. During this process

feature selection was dismissed, as it did not have a positive impact

on the prediction performance. Thus, all SVR models were

trained with all features. Finally, for each structural superclass the

predictive performance of the derived SVR models was evaluated

on the test dataset. The results of these tests indicate a linear

relationship between the predicted and the measured PFM

similarity scores (see Figure 4), where the Pearson correlation

coefficients are: basic domain: 0.77, zinc finger: 0.80, helix-turn-helix:

0.77, beta-scaffold: 0.64 and others: 0.69. The respective average

absolute errors (AAEs) on the test datasets are: basic domain: 0.093,

zinc finger: 0.087, helix-turn-helix: 0.098, beta-scaffold: 0.080 and others

0.137. The errors on the test and training set are in a similar

range, which indicates that the models have a good ability to

generalize. For the class others the AAE on the training set (0.095)

was lower than on the test set (0.137), thus the generalization

ability of this model is not optimal, which may be due to the small

number of training points and the structural diversity of the

contained TFs (see Figure 1).

Analysis of individual pairwise similarity measures. In

the previous section the results of PFM similarity predictions based

on 30 sequence based features were shown. Here, the question

arises if an individual feature is sufficient to infer PFM similarity

and accordingly, how much is the benefit of combining the 30

features using support vector regression? To determine if

individual features are already sufficient to quantitatively predict

PFM similarity, an SVR was trained and tested separately for each

of the 30 features on the structural superclass with the highest

Pearson correlation coefficient, namely zinc finger. The AAE for

each individual feature is given in Figure 5. This analysis shows

that the AAE increases about 60% when comparing the SVR

trained on 30 features against the best SVR that was trained on an

individual feature. These results suggest that the combination of 30

different sequence-derived features performs best to learn linear

relationships between sequence- and PFM-similarities. We

additionally assessed the prediction performance for diverse

subsets of the 30 features, selected based on PCA [38] and

RankProp [39], respectively (data not shown). Based on the

observation that the PFMs predicted by the all-feature classifier

performed best, we concluded that every individual feature

contributes to the overall prediction performance. Note that this

evalutation does not assess PFM transfer errors (these are shown in

Figure 6), but regression errors of SVR models.

Transferring PFMs between TFs
Prediction of PFMs for TFs with known PFM. After

deriving SVR models to predict PFM similarities, these models

were used to transfer PFMs to TFs without PFMs (see Figure 3).

Before applying this procedure, however, the average error of such

PFM-transfers was estimated on the test dataset that contained 413

TFs with known PFM. The results of this analysis are depicted in

Figure 6, along with the AAEs of a random model (Section

‘Prediction framework based on a random model’) and a nearest

neighbor algorithm (Section ‘Prediction framework based on

nearest neighbor algorithm’), which was additionally implemented

in this work. The AAEs of the framework with the default

parameters averaged over all TF classes is 0.12 on a scale from 0 to

2. In comparison, the average similarity Smax (see Materials and

Methods for details) between two PFMs that are randomly

sampled from the same structural superclass is 0.64, indicating that

the predicted performance of the SVR model is significantly

higher than the performance expected by random guessing.

Moreover, we observed that the average PFM similarity between

two PFMs, which are associated with the same TF and result from

different wet lab experiments, is approximately 0.1 in terms of

normalized MoSta units [36]. Thus, against the background of this

experimental variance, the SVR-based method hits the limits of

what is possible with respect to the prediction accuracy. The SVR

based approach yields slightly lower error rates in all structural

superclasses (see median and 75 percentile in Figure 6). On

average, however, also the nearest neighbor approach yields

satisfying low errors. These outcomes confirm the findings of

Alleyne et al., who suggested that for mouse homeodomain TFs

nearest neighbor algorithm is well suited to predict binding profiles

[31]. Our results suggest that this assumption also holds for the

general case. The cause of these findings might be that the set of

TFs without PFM is dominated by trivial cases, in which PFMs of

orthologs from other organisms are available. The nearest

neighbor algorithm might benefit for this reason. Examples of

non-trivial cases are depicted in Figures S3 and S4. Furthermore,

as additionally mentioned in the discussion, similarities learned by

the SVR model correlate on the full similarity scope with the true

PFM similarity of two PFMs (see Figure 4). Simple sequence

similarity features, however, such as the domain similarities of two

TFs with respect to the BLOSUM62 substitution matrix on which

the nearest neighbor algorithm is base, weakly correlate with the

true PFM similarity of two PFMs as depicted in Figure S2. The

SVR model should be preferred in applications were besides the

best matching TF also lower similarities or even dissimilarities are

of interest. In conclusion, the strength of the novel approach

proposed in this work is that this method computes a prediction

score, which is highly correlated with the true PFM similarity of

two TFs, by integrating various weakly correlated sequence

similarity measures.

Prediction of PFMs for TFs with unknown PFM. After

estimating the AAE on the test sets, PFMs of TFs with previously

unknown PFMs are predicted. Therefore, all 5 723 TFs without

known PFM are used as input for the prediction framework (see

Figure 3 and File S3). Please keep in mind that a transfer is only

performed for query TFs that have a predicted PFM similarity to

TFs with known PFM of at least 95% in terms of normalized

mosta units [36]. With these settings the PFMs of 645 TFs were

transferred. These TFs are distributed among the structural

superclasses as follows: 166 basic domain (26.5%), 180 zinc finger

(28.7%), 207 helix-turn-helix (33%), and 73 beta-scaffold (11.6%),

where the percentage indicates the fraction of query TFs for which

a reliable prediction could be made. This corresponds to an

average transfer rate of 11.3% for any given query TF. All TFs

along with their transferred PFMs are available in the File S1.

Examples of transferred PFMs. PFM prediction examples

for several TFs with unknown DNA-binding specificity are shown

in Figure 7 (a). Besides two examples of trivial PFM transfers

between DREB1 variants in A. thaliana two examples are given,

where similar PFMs from different species are merged to

consensus PFMs and transferred to the query TFs from H.

sapiens and A. thaliana. One further example from this figure is

HSF4 from A. thaliana which was predicted to have a similar

binding specificity as HSF1 from S. cerevisiae. Thus, the respective

PFM was transferred from HSF1 to HSF4. To visualize the DNA-

binding domain similarity their aligned protein sequences are

depicted in Figure 7 (c). This alignment shows that the HSF1 from

S. cerevisiae contains eleven amino acids in the DNA-binding

domain that cannot be aligned against the DNA-binding domain

of HSF4 from A. thaliana. By analyzing the structure of the HSF1

DNA-binding domain, one can see that these amino acids are not

Predicting PFMs
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contained in the canonical helix-turn-helix structure of HSF1 [40],

and may therefore leave the DNA-binding specificity unaffected

(see Figure 7 (b)). Thus, despite differences at the protein sequence

level, HSF4 and HSF1 are strongly conserved at the DNA-binding

domain level and are therefore likely to bind to similar regulatory

sequences on the DNA [9]. In order to check this hypothesis, the

transferred PFM for HSF4 is used to scan a set of co-expressed

heat shock genes from A. thaliana for significantly enriched

transcription factor binding sites (TFBSs). The heat shock gene

cluster was obtained by clustering stress-response microarray data

conducted by Kilian et al. [41]. In this work, Kilian et al. exposed A.

thaliana shoot and root cells to heat and other stress conditions and

conducted time-series to measure the transcriptional response. A

set of 16 genes was found to be co-expressed under different heat

stress conditions using EDISA [42] (see see Figure 7 (d)). Among

these, 10 genes were found to be known heat shock genes by gene

set enrichment analysis (corrected p-value 4:99:10{15). Next, the

promoter sequences of these genes were scanned for cis-regulatory

modules using the ModuleMaster algorithm [29]. As explained in

more detail in the Methods section (see ‘Application to sets of co-

expressed genes’), ModuleMaster uses a multi-objective

optimization approach to find TFBS enrichments in clusters of

co-expressed genes. ModuleMaster found matches of the

transferred PFM of HSF4 significantly enriched in the heat

shock cluster, indicating a regulatory relationship between HSF4

and the heat shock genes, which is also confirmed by literature

[43]. As additional source of evidence, the expression profile of

HSF4 was found to be strongly correlated to the heat shock genes

as detected by ModuleMaster (see yellow expression profile

highlighted in Figure 7 (d)). The result of the cis-regulatory

module detection is depicted in Figure 7 (e). Shown are promoter

sequences (1500 bp upstream of TSS) of 5 heat shock cluster genes

and the cis-regulatory module binding sites, respectively. The

TFBSs associated with the HSF4 PFM are highlighted in yellow. A

set of further non-trivial PFM predictions is depicted in Figures S3

and S4. A comprehensive list of all PFM predictions can be found

in File S1.

Discussion

In this work we presented a new method to transfer quantitative

information between proteins, which is based on the assumption

that similar DNA-binding domain sequences imply similar

transcription factor binding specificities. To apply this method to

Figure 4. Predicted versus experimental similarities for different structural superclasses. Each dot indicates the predicted and known
PFM similarity of all TF-pairs in the test dataset. The x-axis gives the sequence based SVR-based PFM similarity prediction and the y-axis gives the
similarity of their known PFMs. Thereby, for each structural superclass the best SVR model from the training dataset was used for the predictions. The
Pearson correlation-coefficients are as follows: basic domain: 0.77, zinc finger: 0.80, helix-turn-helix: 0.77 and beta-scaffold: 0.64.
doi:10.1371/journal.pone.0013876.g004
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the problem of transferring DNA-binding specificities between

TFs, a comprehensive dataset covering PFMs, DNA-binding

domain annotations, protein sequences and structural superclass

annotations was compiled. This dataset gave insights into the

current availability of DNA-binding specificity data and was the

basis for training and evaluating our method. Thereby, several

questions were approached: (1) Which sequence based score is a

good quantitative indicator of PFM similarity? (2) How large is the

quantitative error when transferring quantitative information to

another protein? (3) Can this process be automated on large scale

problems?

Regarding the first question, we found that the prediction of PFM

similarity based on a single pairwise alignment is subject to large

errors, when compared against our SVR models that were based on

30 features. The average error of the PFM similarity predictions was

below 0.1 (on a scale from 0 to 2) for all structural superclasses,

except others. Furthermore, we observed a high correlation between

known and predicted functional similarities for the structural

superclasses 1–4. Zinc finger, for instance, had a correlation of 80%.

Hence, the prediction of functional similarity should be based on

multiple features, at least in case of the given application.

Regarding the second question, the average absolute error of

PFM-transfers on the test dataset was 0.12 with an average transfer

rate of 11.3%. Thus, the transfers to the 5 723 TFs without PFM

had a low coverage but high specificity and reliability. Overall, the

presented framework could be used to predict the PFMs of 645 TFs

with high accuracy, which are provided in File S1. This constitutes a

significant improvement in the number of TFs with known PFMs.

Even if the overall coverage remains low the SVR models allow to

predict the PFM for any TF, whose annotated protein sequence and

structural superclass is known.

In this work, we apply the presented framework to predict

DNA-binding specificities to TFs with unknown PFMs. The

approach is based on distance metric learning, i.e., we train a

model to estimate the similarity of the DNA motifs recognized by

two TFs, based on the similarity of their DNA binding domains.

By using this model, we are able to identify TFs with known PFM

which bind to similar DNA motifs than a particular TF of interest

with unknown binding specificity. The PFMs of the TFs for which

the highest PFM similarity to the TF of interest was predicted, are

in turn merged to generate the predicted PFM. In order to assess

how much the PFM prediction benefits from the combination of

different sequence derived features through the SVR model, we

additionally implemented a nearest neighbor based approach that

screens the database of TFs with known PFMs and simply transfers

the PFM from the one TF with the most similar binding domain

sequence. The results from this comparison suggest on the one

hand, that the SVR approach performs in all cases better than the

nearest neighbor, but shows on the other hand, that the nearest

neighbor approach often yields on average comparable results. It

should be kept in mind that on average the similarity between two

PFMs, which are associated with the same TF and result from

different wet lab experiments, is approximately 0.1 in terms of

normalized MoSta units [36]. Thus, on average both methods hit

for some structural superclasses (i.e., helix-turn-helix) the limits of

what is possible with respect to the prediction accuracy. A second

advantage of the prediction framework presented in this work

compared to nearest neighbor methods or similar approaches is

the accurat similarity measure predicted by our approach, i.e., our

method computes a prediction score which is highly correlated

with the true PFM similarity of two TFs, by integrating various

weakly correlated sequence similarity measures (see Figure 4).

Conversely, the predictions performed by the nearest neighbor

approach are directly resulting from a single weakly correlated

feature, such as the domain similarities of two TFs with respect to

the BLOSOM62 substitution matrix. As depicted in Figure S2,

linear relationships between sequence similarity and PFM

similarity of pairs of TFs only exist in regions above 90% sequence

similarity. Similarities learned by the SVR model, however,

correlate on the full similarity scope with the true PFM similarities

(see Figure 4). Thus, the SVR model should be preferred in

applications were not only the best matching TF, but also lower

similarities or even dissimilarities are of interest. Furthermore, the

SVR model constitutes a means of estimating the true PFM

Figure 5. Regression error when using individual sequence based features. Depicted are the average regression errors when training the
SVR with a single feature for the superclass zinc finger. These error estimations are performed with a 1065 cross-validation on the trainings dataset.
The ‘all features’ bar indicates the average regression error when training on all 30 features. This evaluation is performed to assess the prediction
performance of SVR models trained on single features individually compared to the prediction performance of SVR models trained on all features.
These results suggest that the 30 feature SVR performs best to learn linear relationships between DBD- and PFM-similarities.
doi:10.1371/journal.pone.0013876.g005
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similarity of two TFs, even if their DNA binding profiles are both

unknown. It thus serves as a starting point for further analyses,

such as the hierarchical clustering of TFs based on the similarity of

their PFMs and the computation of probalistic models in order to

derive families of PFMs. These can subsequently be used as prior

knowledge to increase the detection sensitivity of motif inference

algorithms such as SOMBRERO [44], PRIORITY [45] or

NestedMICA [46].

Materials and Methods

Models and datasets
DNA-binding specificity models. PFMs model the DNA-

binding specificity of TFs. They store position specific nucleotide

frequencies in a matrix M of size 4|L, where L is the length of

the binding motif and each row represents one nucleotide. For

instance, entry mij specifies the frequency of nucleotide i
[ A,C,G,Tf g at position j in a multiple alignment of observed

binding sites. Other common models are motifs in IUPAC (Union

for Pure and Applied Chemistry) code or PWMs (Position Weight

Matrices). PWMs are similar to PFMs, but they store the log-

likelihood ratios of the nucleotide distributions and are often

normalized with respect to background probabilities at each

position. IUPAC representations model each position in the

binding site through a IUPAC-letter that represents one or more

nucleotides (e.g., W~ A,Tf g).
Here, the standard representation are PFMs. To convert a

PWM into a PFM, each entry is normalized by its column’s sum,

converting the number of occurrences into frequencies. To convert

a IUPAC representation into a PFM, a column is constructed by

giving all nucleotides of the respective IUPAC letter equal weight,

again assigning frequencies to every nucleotide.
DNA-binding specificity databases. Several databases

exist that contain models of DNA-binding specificities for

eukaryotes (e.g., PWMs, IUPAC motifs, or PFMs). An overview

of the databases used in this work is given in Table 1. All models

contained therein are retrieved and converted into PFMs. Thus,

we obtain a list of TFs with one or more PFMs assigned. In

TRANSFACH some PFMs are associated with TF complexes or

are marked as familial binding profiles; these entries are removed

Figure 6. PFM transfer error of the SVR-based method compared to nearest neighbor algorithm and a random model. The box plots
show the distribution of the AAE, i.e., the mean distance between predicted and annotated PFMs in terms of normalized MoSta units [36], when
applying the SVR model, the nearest neighbor, and a random model to the test set. The errors are calculated separately for the structural superclasses
1–4. The average error of the SVR model is in all four structural superclasses slightly lower than the average error of nearest neighbor algorithm and
the random model (see median and 75th percentile).
doi:10.1371/journal.pone.0013876.g006
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from the dataset, since these PFMs cannot be linked to one TF.

The corresponding data is provided in the File S2, PFMs from

TRANSFACH, however, are removed from this file since they are

proprietary.

Whenever multiple PFMs are available for one TF a consensus

PFM is generated. For this purpose STAMP is used [37]. Initially,

STAMP was developed to generate familial binding profiles (FBPs)

for certain classes of TFs. Here, instead, STAMP will be used to

integrate multiple PFMs that are associated with one TF. STAMP

is applied with an ungapped Smith-Waterman alignment.

Protein sequences, DNA-binding domain annotations and

TF-classifications. For all TFs in TRANSFACH the protein

Figure 7. Examples of PFMs transferred to different TFs. (a) Depicted are five examples of PFMs that are transferred to the query TF. These
transfers merge PFMs from different species and the final PFM is depicted as sequence logo. (b) Depicts the physical structure of the DNA-binding
domain of HSF4 from A. thaliana [61] that is drawn with BallView [62]. (c) For HSF4, the query and the best matching TF are aligned with JalView and
their DNA-binding domains are colored [63]. This alignment contains a gap consisting of eleven amino acids in the DNA-binding domain of the HSF1
from S. cerevisiae. The amino acids that constitute the gap in the alignment are drawn yellow within the physical structure (see (b)). From this
structure it can be seen that the colored amino acids do not affect the canonical helix-turn-helix structure of the HSF that is responsible for specific
DNA-binding [40]. (d) Depicts A. thaliana cluster of co-expressed genes that contains HSF4 and 15 other heat shock genes, which was derived with
EDISA [42]. (e) Depicts promoter scans of these genes; several matches of the predicted HSF4 PFM were detected by ModuleMaster [29].
doi:10.1371/journal.pone.0013876.g007
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sequences, protein domain annotations and the structural classes

are retrieved. TFs extracted from other databases are mapped to

these TFs through their SwissProt identifier. To restrict protein

annotations to DNA-binding domains, each protein domain is

mapped to its respective GO-annotation in Pfam and only

considered when classified as ‘DNA-binding’. In addition, the

structural class of every TF is obtained from TRANSFACH [34].

From this classification the superclass of every TF is extracted. If

for any TF the protein sequence or DNA-binding domain is

unavailable, the TF is removed from the dataset.

TFs without known PFM. To predict novel PFMs for TFs a

dataset containing TFs with unknown PFMs is compiled. In this

dataset all TFs are used which have: no PFM, a protein sequence,

a DNA-binding domain and a known structural superclass. Protein

sequences and DNA-binding domain annotations are taken from

UniProt [8].

Sequence and PFM similarity measures
Low-level similarity score for PFMs. To compare two

PFMs to each other their similarity (or distance) has to be

quantified. Here, the Smax, Dmax scores are used, which were

published in 2008 by Pape et al. [36]. In this scoring system, for

two PFMs X and Y , the number of binding site overlaps with an

offset k is determined on a random DNA sequence. This figure is

then divided by the product of the individual binding site

probabilities (Equation 1).

SX ,Y kð Þ~ log
cX ,Y kð Þ
aX
:aY

ð1Þ

Thereby, cX ,Y kð Þ denotes the frequency of X having a binding

site that overlaps at the kz1-th position with a binding site of Y .

The terms aX and aY give the probabilies for an occurrence of an

binding site for X and Y under the background model H0. The

maximal similarity score Smax for two PFMs is calculated by

considering all possible overlaps k in combination with the

different orientations (sense X and antisense ~XX ) (Equation 2).

Smax X ,Yð Þ~

max max
k

SX ,Y (k), max
k

S ~XX ,Y (k), max
k

SY ,X (k), max
k

S ~YY ,X (k)

� �

ð2Þ

In some cases it is desirable to calculate the distance of two

PFMs, rather than their similarity. To transform the Smax

similarity score into a distance measure the following formula is

applied:

Dmax X ,Yð Þ~1{Smax X ,Yð Þ ð3Þ

The Smax, Dmax scores can be calculated for every TF pair with

known PFMs and thus provide a label for supervised learning.

Sequence based similarity scores (features). To derive a

sequence based similarity measure that allows to predict PFM

similarities, first several alignment based similarity scores are

calculated, which constitute the basis for deriving the final

similarity measure. Here, 30 low-level similarity measures

(features) are derived that are based on local alignments of

DNA-binding domains, flanking regions of DNA-binding

domains, the alignment of secondary structure predictions and

taxonomic distances. These alignments are performed with

different substitution matrices and different alignment methods.

As substitution matrices BLOSUM and PAM are used, as well as

different physicochemical substitution matrices from the AAindex2

database [47]. As alignment methods Needleman-Wunsch and

several kernel methods are used. The mismatch kernel, however,

does not explicitly align the sequences. If multiple DNA-binding

domains are annotated in one or both TFs all domains are

compared to each other and the best similarity score is returned.

In addition to these alignment based features the taxonomic

distance of TFs is provided, which is taken from NCBI. All

methods and parameters used to generate these features are shown

in Table 2. Overall, for every pair of TFs a vector ~vv is obtained

that has 30 entries (features), each providing a different measure of

similarity.

Structuring and preprocessing the test and training
datasets

Given the 30 sequence based low-level similarity scores ~vv
(Table 2) and the label (Smax), the aim is to learn a model that

predicts Smax when only provided with sequence based informa-

tion ~vv. As indicated earlier an SVR is employed to learn the

optimal similarity score. This approach is applied separately for

each TF superclass, since TFs from different superclasses are not

expected to exhibit sufficient structural and functional similarity.

Thus, the dataset is split according to the TF superclass

annotations taken from TRANSFACH. In addition, for each TF

superclass, one third of all TFs are put aside as test dataset.

Before the SVR is applied several preprocessing steps are

performed. First, all features and labels are normalized between -1

and 1, with the following formula:

ŜS x,yð Þ~ S x,yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S(x,x):S(y,y)

p ð4Þ

Thereby, S x,yð Þ denotes the similarity score calculated by

comparing some property of two TFs x and y, whereas S x,xð Þ and

S y,yð Þ denote the similarity score when comparing the respective

TF to itself.

Learning the PFM similarity score
To learn the PFM similarity score all TF-pairs with a

normalized BLOSUM62-score of their DNA-binding domains

over 0.3 are considered for training, these are referred to as local

TF-pairs (see Figure S2). Furthermore, TFs that have a ŜSmax

similarity score of one are removed from the training and test set,

to avoid learning TFs that have been assigned to the same PFM.

For the remaining TF-pairs the similarity vectors~vv are calculated

and combined into a training matrix with 30 columns (features),

and one row for each considered TF-pair. For each row the label is

calculated by the normalized ŜSmax similarity score. Such a training

dataset is constructed for each of the five TF superclasses.

Support vector regression. To train the SVR model on

these datasets cross-validation and parameter optimization are

employed. On each training set a 5-fold cross-validation is

performed with 10 runs of repeated random partitioning, hence

a 1065-fold cross-validation. This repeated cross-validation is

intended to provide a robust regression error even when testing for

different SVR parameters. As SVR method, the E-SVR with RBF

kernel is used. The SVR parameters e and C, and the RBF-kernel

parameter c are optimized by a grid search. Thereby, the
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following parameters are considered C[ 2{2,2{1, . . . ,,26
� �

,

c[ 2{10,2{9, . . . ,21
� �

and E [ 2{8,2{6,2{4
� �

. To quantify a re-

gression error for the predictions made by each SVR model the

average absolute error (AAE) is calculated, on the test partitions of the

cross-validation. After compiling the training set with this procedure

for every structural superclass, the SVR is applied to each training set

as described above. The final SVR model, for each structural

superclass, is the model with the minimal AAE.

PFM prediction framework
Prediction framework based on the trained similarity

measure. The trained SVR models do not directly predict

PFMs, but the similarity of the DNA-binding specificities of

two TFs. To perform a PFM transfer a framework is

implemented, which makes use of the trained SVR models. As

input the algorithm expects the protein sequence of a query TF,

with its annotated DNA-binding domain, the structural superclass

and the species. Then the SVR model is used to predict the PFM

similarity of the query TF to all TFs with known PFM in the same

superclass, whenever their DNA-binding domain similarity exceeds

0.3 (normalized Needleman-Wunsch alignment score with

BLOSUM62). This provides a list of TFs with predicted PFM

similarities to the query TF. From this list all TFs with a predicted

similarity under a certain threshold are removed (default: 0.95).

From the remaining list the n (default: 5) TFs with the highest

predicted similarity are kept. If multiple PFMs remain after these

filtering steps, an outlier detection is performed. Therefore, for each

TF i, the average D̂Dmax-distance Di to all other TFs in TFi is

computed (Equation 5). Moreover, the average D̂Dmax-distance D of

all TF-pairs is calculated (Equation 6). If for any TF i the ratio of its

distance to the other TFs divided by the average overall distance

(
ŜSmax

av

ŜSmax
all

) exceeds a certain threshold (default: 1.5) this TF is removed.

ŜSmax
av TF, jð Þ~ 1

TFj j{1
:
X

j[TF, j=i

1{ŜSmax
norm

� �
ð5Þ

ŜSmax
all TFð Þ~ 2

TFj j2{ TFj j
:
X
i[TF

X
j[TF, jwi

1{ŜSmax
norm TFi,TFj

	 
� �
ð6Þ

After removing the outlier PFMs, the remaining PFMs are

merged into one FBP (using STAMP). This consensus PFM then

constitutes the predicted DNA-binding consensus motif for the

query TF. An overview of the framework is given in Figure 3. This

framework is applied to all TFs in the dataset that contains TFs

without PFMs (Section ‘TFs without known PFM’).

Prediction framework based on nearest neighbor

algorithm. To compare the prediction accuracy of our SVR-

based method against a naive supervised learning approach, we

implemented a prediction framework based on the nearest neighbor

(NN) algorithm. The algorithm simply transfers the PFM of the TF

for which the highest DNA-binding domain similarity to the given

query factor was computed. The domain similarities were measured

in terms of an alignment score with respect to the BLOSUM62

substitution matrix. As the SVM-based framework requires the

existence of a TF with known PFM which has sufficient domain

similarity to the given query TF, it did not permit the prediction of a

PFM for the entirety of all TFs comprised by the evaluation set.

However, to ensure a fair comparison we computed the AAE on the

same number of TFs for the SVM-based and the NN-based

framework. The included TFs were selected based on the predicted

PFM similarity for the SVR method and based on the domain

similarity score for the NN algorithm.

Prediction framework based on a random model. To

compare the SVR models against a random guesser, the

prediction framework is implemented with random TF picks

instead of the SVR model. This framework proceeds in the same

manner as the SVR based framework, however, after determining

the number of best matches the corresponding TFs are neglected

and resampled from all TFs of the same structural superclass.

Validation of the SVR models and predicted PFMs
To validate the PFM prediction framework and the similarity

scores their results are compared against the test dataset. First, the

SVR models are tested for their ability to predict the PFM

similarity of local TF-pairs. For this analysis the PFM similarity of

all local TF-pairs in the training datasets are predicted with the

respective SVR model and compared against the known PFMs.

To assess the quality of the predictions the Pearson correlation

coefficient R and the AAE are calculated for each structural

superclass. The PFM prediction framework is validated by

performing a PFM prediction for every TF in the test dataset,

and comparing the result against the corresponding annotated

PFM by means of the Smax similarity score. The AAE for a

respective structural superclass consisting of m query TFs is

calculated as follows (Equation 7)

AAE~
1

m

Xm

i~1

dnorm PFMpred ,PFMorig

	 

ð7Þ

where dnorm PFMpred ,PFMorig

	 

gives the 0,1½ �-normalized dis-

tance between predicted and known PFMs in MoSta units [36].

Application to sets of co-expressed genes
In subsequent computational analyzes, known and predicted

PFMs of different organisms were used to scan clusters of co-

expressed genes from microarray data sets for cis-regulatory

modules (CRMs). CRMs are sets of transcription factor binding

sites (TFBSs), which are found in physical proximity on promoter

sequences of co-expressed genes and are often used to detect

regulatory relationships [48–50]. In this work, we use the

ModuleMaster algorithm for CRM detection [29].

ModuleMaster retrieves promoter sequences from the Ensembl

database [51] for all genes within each cluster of co-expressed

genes. Next, the predicted PFMs are converted to PWMs and

together with PWMs (see RSA-tools for details [52]) from

YEASTRAC [53], JASPAR [54] and TRANSFACH [34] used

to scan through these promoter sequences. Furthermore, binding

motifs provided by the PLACE transcription factor binding

database were integrated [55]. In order to derive the binding

score of a single PWM H on subsequence x of sequence s,

ModuleMaster calculates weight scores, which were first intro-

duced by Aerts et al.

Wxi
Hð Þ~

Pw
j~1 H bj , j

	 

Pw

j~1 P bj jBm

	 
 , x~ b1,:::,bw½ �, ð8Þ

where bj is the nucleotide found at position j in the subsequence x,

H bj , j
	 


is the probability of finding bj according to PWM H and

P bj jBm

	 

is the probability of finding bj according to the

background model Bm. As background model, sequences from a

4th-order hidden Markov model that was derived from coding

sequences of the respective organism were used. w is a parameter
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that gives the length of the respective binding site. There are three

different strategies to calculate appropriate individual cutoff levels,

which minimize the amount of false positive and/or false negative

hits, as proposed by Kel et al.: (1) Minimization of false negatives,

(2) Minimization of false positives, (3) Minimization of a

combination of both [56]. The second cutoff strategy was used

to pre-calculate individual weight score cutoff values for all PWMs.

These individual cutoff values are used during matrix scan in order

to decide, if a match at a certain position within the promoter

sequence should be counted as TFBS or not. After matrix scan,

ModuleMaster searches for CRMs using a multi-objective genetic

algorithm that takes the weight scores and multi-variate correla-

tions between TFs and target genes on the expression level into

account.

Implementation and availability
The core of the prediction framework, from which various

libraries and external programs are called, is implemented in Java.

The source code of the prediction framework is licensed under the

GPL 3 and available at http://code.google.com/p/pfmprediction/.

The alignments are performed with BioJava [57]. Smax

similarity scores are calculated with the program MoSta provided

by Pape et al. [36].

The PWMs are merged with a local copy of STAMP, obtained

from Mahony et al. [37]. To train the SVR model LIBSVM was

used (available at http://www.csie.ntu.edu.tw/̃ cjlin/libsvm). A C-

implementation of the local alignment kernel was provided by

Saigo et al. [58]. Leslie et al. provided source code for the

calculation of the mismatch kernel [59]. An implementation of the

SVM pairwise score was obtained from Liao et al. [60].

Supporting Information

Figure S1 Distribution of TFs with and without PFMs for six

different species. The absolute numbers of TFs per species are

taken from the work of Wilson et al. (www.transcriptionfactor.org)

and reflect TFs predicted by HMMs. The number of known PFMs

is taken from the integrated dataset compiled in this work (see File

S3) and compared to the number of transferred PFMs. The

availability of PFMs heavily depends on the species of interest. S.

cerevesiae, for instance, has the best coverage of TFs with known

DNA-binding specificities, whereas for H. sapiens the largest

number of PFMs are available. Interestingly, the number of newly

predicted PFMs is highest for M. musculus and H. sapiens and worst

for S. cerevisiae.

Found at: doi:10.1371/journal.pone.0013876.s001 (2.25 MB TIF)

Figure S2 Sequence versus PFM similarities for all TF pairs.

Depicted are sequence similarities of DNA-binding domains versus

PFM similarities for different structural superclasses. To learn the

PFM similarity score, all TF pairs with a normalized BLOSUM62-

score of their DNA-binding domains over 0.3 are considered for

training; these are referred to as local TF-pairs.

Found at: doi:10.1371/journal.pone.0013876.s002 (2.84 MB TIF)

Figure S3 Set of non-trivial example predictions. Depicted are

several examples of non-trivial PFM transferrers from the test set,

for which the prediction error is estimated. The best matches, i.e.,

the TFs for which a PFM similarity above a predefined threshold

(default: 0.95) was predicted, are merged to a consensus PFM

using STAMP. The predicted PFM similarity for each best match

is given in brackets. Depicted are the sequence logos of the merged

consensus PFM. The prediction error in terms of normalized

MoSta units quantifies the distance between known and predicted

PFMs.

Found at: doi:10.1371/journal.pone.0013876.s003 (3.19 MB TIF)

Figure S4 Examples of non-trivial PFM transfers between TFs

from distinct classes. This figure shows sequence logos, PFM

similarity scores and TF class affiliations where either one (first

column) or all best matches (second column) belong to a different

TF class than the query TF. We found that for 51 TFs (70%) of the

query TFs all of the predicted best matches belong to the same TF

class. For the remaining 12 TFs (30%), we observed that at least

one of the best matches was from another class than the query TF

and for 6 of these 12 TFs (15%) we found that all best matches

were from another class. In most of these cases PFMs of TFs of

class 1.2. (Helix-loop-helix (bHLH)) were transfered to TFs of class

1.3. (leucine zipper (bHLH-ZIP)) and vice versa.

Found at: doi:10.1371/journal.pone.0013876.s004 (0.50 MB TIF)

File S1 Predicted TFs. File S1 contains all 645 TFs for which

PFM transfers were performed by our prediction framework. For

each TF various annotations are provided, i.e., UniProt ID,

species information, protein sequence, DNA-binding domain

annotation and the ID of the best matching PFM that was

predicted by our method. All PFM models are listed in File S2.

Found at: doi:10.1371/journal.pone.0013876.s005 (0.52 MB

TXT)

File S2 Binding specificity models. The integrated PFM-dataset

containing all PFM models of the test and trainings sets is provided

in File S2. For the models from TRANSFAC Professional no

matrix is given as they are proprietary.

Found at: doi:10.1371/journal.pone.0013876.s006 (0.71 MB

TXT)

File S3 All query TFs in input format. File S3 contains all 5723

TFs without experimentally derived PFMs but annotated DNA-

binding domains. This dataset was used as input file for the

prediction framework presented in this work.

Found at: doi:10.1371/journal.pone.0013876.s007 (4.21 MB

TXT)
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