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In recent years, the replicability of neuroimaging findings has become an important
concern to the research community. Neuroimaging pipelines consist of myriad numerical
procedures, which can have a cumulative effect on the accuracy of findings. To address
this problem, we propose a method for simulating artificial lesions in the brain in order
to estimate the sensitivity and specificity of lesion detection, using different automated
corticometry pipelines. We have applied this method to different versions of two widely
used neuroimaging pipelines (CIVET and FreeSurfer), in terms of coefficients of variation;
sensitivity and specificity of detecting lesions in 4 different regions of interest in the
cortex, while introducing variations to the lesion size, the blurring kernel used prior
to statistical analyses, and different thickness metrics (in CIVET). These variations are
tested in a between-subject design (in two random groups, with and without lesions,
using T1-weigted MRIs of 152 individuals from the International Consortium of Brain
Mapping (ICBM) dataset) and in a within-subject pre-/post-lesion design [using 21
T1-Weighted MRIs of a single adult individual, scanned in the Infant Brain Imaging
Study (IBIS)]. The simulation method is sensitive to partial volume effect and lesion
size. Comparisons between pipelines illustrate the ability of this method to uncover
differences in sensitivity and specificity of lesion detection. We propose that this method
be adopted in the workflow of software development and release.

Keywords: reproducible neuroimaging, cortical thickness, lesion simulation, pipeline accuracy, brain
morphometry, statistical parametric mapping

INTRODUCTION

Morphometric neuroimaging pipelines are widely used to study human brain development and
diseases. Cortical thickness, estimated from human magnetic resonance images (MRIs), is one
such metric commonly used in brain development/degeneration studies (Thompson et al., 2003;
Dickerson and Sperling, 2005; Lerch et al., 2005; Han et al., 2006). Several automated cortical-
thickness measurement methods have been developed, such as ANTs (Tustison et al., 2010,
2014), CIVET (MacDonald et al., 2000; Kim et al., 2005), FreeSurfer (Dale and Sereno, 1993;
Dale et al., 1999; Fischl and Dale, 2000; Fischl, 2012), and LOGIMBOS (Oguz and Sonka, 2014;
Oguz et al., 2015).
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Concerns arising from lack of reproducibility observed across
different operating systems (Gronenschild et al., 2012; Glatard
et al., 2015), necessitate to develop benchmarking methods
to trace spurious variations, introduced by computational
rather than biological variations, in the statistical outcomes of
neuroimaging studies.

Morphometric pipelines apply several image processing
methods to define the shape and boundaries of the white- and
gray-matter surfaces, in order to optimally tessellate them, and
link the surfaces in biologically plausible ways (Lerch et al.,
2005; Tustison et al., 2010; Fischl, 2012; Oguz and Sonka, 2014).
As such, these methods are highly sensitive to computational
errors arising from parametrization (for example, thresholds of
pre-processing parameters that determine the degree of noise
reduction or tissue classification).

To ensure the validity of these pipelines, some have compared
the validity of automated brain segmentation against manual
segmentation of MRIs (Kabani et al., 2001; Kuperberg et al.,
2003). Others have compared the validity of surface extraction
against histological data (Rosas et al., 2002; Cardinale et al.,
2014). However, given that MRI scans used in neuroimaging
studies have highly variable quality and that inter-rater reliability
is often low, manual segmentations are not the best approach to
validation of such pipelines.

Morphometric pipelines are rarely used for absolute
quantification of the cortical thickness (unless in cases where
cortical pathology is expected, such as malformations of cortical
development). Rather, they are used for uncovering the regions
that may be commonly affected by neurodegenertation or
atypical neurodevelopment, at the population level.

To evaluate the performance of different pipelines, Redolfi
et al. (2015) compared two popular pipelines (CIVET 1.1.9
and FreeSurfer 5.3). They examined a statistical mapping
of the correlations between cortical thickness and MMSE
(Mini Mental State Examination) score in relation to the
progression of Alzheimer’s disease. Han et al. (2006) used
test-retest datasets, both within and across scanner platforms,
with different sequence types and field strengths to show
that thickness estimates with FreeSurfer were reliable when
processing methods and MRI acquisition parameters were
held constant. Another study concluded that FreeSurfer was
highly reliable in a healthy elderly population (Liem et al.,
2015). While valuable, these methods are limited in their
ability to establish the validity of a given pipeline against
the ground truth, and do not provide quantitative metrics
to iteratively examine the sensitivity of different pipelines to
different experimental factors.

An alternative approach to test pipeline validity against the
“ground truth” is to simulate changes in the cortical thickness,
and then evaluate the accuracy of detected change against the
induced lesion. Lerch and Evans were the first to explore this
method to evaluate the accuracy of different cortical thickness
metrics, and the impact of blurring kernels, and sample size
on the detection power of an early version of the CIVET
pipeline (Lerch et al., 2005). One limitation of their study
was that the size of the lesion was at voxel scale and that
the location of the lesion was fixed. Later, Van Eede et al.

(2013) have presented a simulation framework in rodents that
allows to modify the shape of an anatomical structure at sub-
voxel scales by defining a region of interest and a tolerance
area within which the tissue can be shrunk or expanded
in any direction.

In this study, we have adapted their method to apply small and
simple lesions in the cortex. In this report we aim to present a
simple case study using this approach to illustrate its application
in comparing the sensitivity and specificity of lesion detection
in different versions of the same pipelines, in relation to lesion
location and size.

MATERIALS AND METHODS

Experimental Design
Figure 1 illustrates the experimental design of this study. In order
to minimize variations arising from registration, we registered
all raw data into the MNI152 stereotaxic space. We performed
three experiments: to evaluate different pipelines in the absence of
anatomical variations (Experiment 1); in presence of anatomical
variations across the population, when the same subject was
studied under two conditions (Experiment 2); in comparison
of two independent groups (Experiment 3). Dependent and
independent variables and test outcomes are summarized
in Table 1.

Datasets
Experiment 1 used the IBIS-Phantom: A subset of 21 T1-
weighted MRIs of the same adult male subject brain from the
Infant Brain Imaging Study (IBIS-Phantom)1 were randomly
selected from over 100 available scans. All were acquired on 3T
scanners with the same acquisition protocol. These images are
used for the within-subject analysis to test for reproducibility
under conditions of minimal anatomical variability.

Experiments 2 and 3 used the International Consortium for
Brain Mapping (ICBM) data set: 152 MRIs collected at the MNI
from healthy young adults (age 25–40) on a single Philips 1.5T
scanner at a 1 mm isotropic resolution (Mazziotta et al., 2001)2.
These images serve the population-level analysis in our study
(both independent and dependent tests) and offer a more realistic
assessment of detection power. More information about the scans
are shown in Table 2. In Experiment 3, we selected a random
sample of 76 samples from the MNI152 dataset (already in
stereotaxic space), to deform at stereotaxic ROIs.

Independent Variables
Table 3 shows the variables used in this work.

1The Infant Brain Imaging Study (IBIS) Network is an NIH funded Autism Center
of Excellence project and consists of a consortium of 8 universities in the U.S.
and Canada. Data used in this study is from a traveling phantom, and is made
available for this specific study by approval from PIs of the IBIS Network. https:
//autismbabybrain.com
2https://ida.loni.usc.edu/collaboration/access/appLicense.jsp
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FIGURE 1 | The flowchart of the implemented statistical analyses.

Regions of Interest
Four regions of interest (ROIs) are selected from sensory cortex,
anterior cingulate cortex, the precuneus, and superior-temporal
cortex to represent areas of varying structural complexity
(Table 4). In this report, for simplicity of illustrations, we have
used cubic ROIs but any shape can be selected, with different
dimensions, degrees of deformation, and applied to any part of
the brain image.

Cubic ROIs are defined by stereotaxic coordinates at the top,
left, and back of the bounding box which extends by the size
of each dimension. A tolerance area is set to make sure the
deformation field does not alter the image outside the ROI mask.
To verify this, we compare the unaltered and the deformed MRIs
to assure that only voxels inside the ROI have changed. The center
of the ROI cubes are defined as the center of the deformation.

The simulation toolkit allows one to configure
the shape, location, and degree of deformation (% of
contraction/expansion) of the simulated lesions and can be
used for other types of deformations. In this study, the sizes of
the cubic ROIs were 2, 5, and 10 mm isotropic, each expressed
at 5, 20, 30, and 40% of contraction in 3D volume (creating 1.67,
7.17, 11.21, and 15.66% in each dimension).

The resulting subtle, localized changes in the cortex in the
four ROIs used in the present work is shown in Supplementary
Material. A video of these ROIs can be accessed at: https://github.
com/aces/simulation_toolkit_statistics.

Thickness Metrics
Cortical thickness measures can be derived from a variety of
methods (Fischl and Dale, 2000; Lerch et al., 2005). We used
CIVET’s recommended cortical metric, tlaplace, which represent

the linear piecewise distance between the two ends of a non-
straight line connecting the WM and GM boundaries (Jones
et al., 2000); and FreeSurfer’s thickness metric that measures the
distance to the closest point between nodes on two opposite
surfaces, and averages the two values (Fischl and Dale, 2000).

Blurring Kernels
FWHM (full width at half maximum) represents the amount of
gaussian smoothing applied to the distance/thickness metrics.

Neuroimaging Pipelines
We use two popular methods of the fully automated cortical
thickness estimation, CIVET (MacDonald et al., 2000; Zijdenbos
et al., 2002; Tohka et al., 2004; Kim et al., 2005; Lerch et al.,
2005; Lee J. et al., 2006; Lee J. K. et al., 2006; Lepage et al.,
2020) and FreeSurfer (Dale and Sereno, 1993; Dale et al., 1999;
Fischl et al., 1999a,b, 2001, 2002; Fischl and Dale, 2000; Fischl,
2012), to illustrate the application of our proposed platform
in comparing either different pipelines or different versions of
the same pipeline. Key among our objectives is to evaluate the

TABLE 1 | The outputs of the Simulation tool.

CoV Coefficient of Variations (for Within Subject Tests)

T-Maps Calculated T-values all over the brain surface.

P-Values Calculated P-values all over the brain surface.

Sensitivity True positive rate.

Specificity True Negative rate.

Scattergrams Shows T-values of the vertices against the distance to the
deformed center.
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TABLE 2 | The information about the ICBM scans.

Unaltered subsample Deformed subsample

ICBM scans (N = 152)
Age mean ± std: 25.05 ± 4.79

ICBM scans (N = 76)
Age mean ± std: 25.43 ± 5.50

ICBM scans (N = 76)
Age mean ± std: 24.66 ± 3.95

Gender Female Male Female Male Female Male

n = 67 n = 85 n = 32 n = 44 n = 35 n = 41

Age mean ± std 24.68 ± 4.55 25.61 ± 4.90 24.12 ± 4.91 26.38 ± 5.76 24.51 ± 4.32 24.78 ± 3.66

Thickness calculated for unaltered scans mean ± std

ICBM scans (N = 152) ICBM scans (N = 76) Group-1 ICBM scans (N = 76) Group-2

CIVET2.1.1 tlaplace 3.27 ± 0.53 (mm) 3.27 ± 0.53 (mm) 3.27 ± 0.48 (mm)

FreeSurfer 6.0 2.43 ± 0.53 (mm) 2.43 ± 0.53 (mm) 2.43 ± 0.52 (mm)

ability of each pipeline to detect the artificial lesions described
above by measuring specificity and sensitivity of detection. These
two neuroimaging pipelines have different approaches (Redolfi
et al., 2015) and different processing stages to estimate cortical
thickness and thus will have different sensitivities to local lesions.
This highlights the interest of the toolkit we are presenting here
to analyze the impact of any changes along the many stages of
each method and differences in sensitivity and specificity between
pipelines. These pipelines, as well as the simulation toolkit used
in this study (SimDeformation) are available through CBRAIN
platform (https://www.cbrain.ca) (Sherif et al., 2014).

TABLE 3 | The variables used in the analyses.

Dependent variables Independent variables

Coefficients of Variation (CoV) Regions of Interest (ROI)

Statistical Parametric Mapping Thickness Metrics

Specificity Blurring Kernels

Sensitivity Neuroimaging Pipelines

T-Value Scattergrams Amount of deformation

Size of deformation

ROI

TABLE 4 | Information about the selected ROIs and applied deformations.

World
coordinates

(x,y,z)

Location Contraction
ratio (%)

ROI size (mm)

ROI-1 16, −6, 77 Sensory area Volume: 5, 20,
30, and 40%.

2 mm, 5 mm
and 10 mm

ROI-2 13, 49, 13 ACC One dimension:
1.67, 7.17,
11.21, and
15.66%

ROI-3 2, −58, 40 Precuneus

ROI-4 70, −11, 25 Superior
Temporal area

A given coordinate represents the top/left/back point of the ROI bounding box.

Deformation Ratio
The deformation method is adopted from Van Eede’s
simulation platform that generates lesions in the mouse
brain (Van Eede et al., 2013) by deforming the structures at
a given coordinate-based Region of Interest (ROI). Figure 2
illustrates the stages of this transformation:

• First, a desired Jacobian determinant, with a value below
1 for contraction and above 1 for expansion, is applied
to voxels inside the ROI. Voxels outside the ROI have a
determinant equal to one (no change).
• Second, a tolerance area (a “pad” of voxels outside of the

brain or a ring around the ROI) is specified to restrict the
deformations to the desired area and leave the rest of the
image unaffected. This is required so that the deformation
field can be applied correctly (in the following step)
to the ROI without making any unwanted deformation
beyond its boundaries.
• Third, an iterative algorithm creates a deformation field

from the input of the two previous steps (Jacobian
determinant and tolerance area) for subsequent application
to the original MRI volume (for more details, please see
the Github, https://github.com/Mouse-Imaging-Centre/
generate_deformation_fields).

In reality, lesions in the brain induce a measurable effect
on the registration of a brain image to the stereotaxic template
(Ceccarelli et al., 2012; de Jong et al., 2017). For this reason, and
in order to restrict the scope of simulation to surface extraction,
we performed the lesion simulation on T1W images that were
already registered into the MNI152 stereotaxic space. Using this
approach, we also removed the uncertainties that would have
emerged from a human anatomist having to select the brain
regions where the lesion was positioned. To do so, we defined
an ROI at a given stereotaxic location and defined a lesion size
by setting the dimensions and the shape of the lesion around
that ROI. In principle, the size and shape of the lesion can
be modified by setting different values for x, y and z, and
choosing different mask shapes. However, for the purpose of this
report, we were not interested in identifying the sensitivity of
the pipelines to shape variations, therefore we chose isotropic
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FIGURE 2 | The diagram shows the tissue deformation steps of the brain volume. The input and output volumes are in MINC format (for which DICOM and NIfTI
converters are available). The determinant matrix shows the painted GM in the box to be deformed. In our tests, we deformed the whole box in stereotaxic space,
since our data are from different subjects or are repeated scans of one subject and have different GM layer structure.

deformations within cubical or ellipsoidal masks. This ensured
that the lesion would be applied to the same brain region in
all MRIs included in the analysis, assisting us in addressing the
objective of pipeline reproducibility. It should be noted that the
original and the deformed scans were in an identical MNI152
space and served as inputs to both CIVET and FreeSurfer for
all simulations.

Statistical Analysis
Statistical analyses and visualizations were performed using
Surfstat (Worsley et al., 2009). Surfstat is a flexible MATLAB
toolbox designed to analyse both surface and volumetric
data, with mixed effects models and correction for multiple
comparisons by way of random field theory3.

Cortical thickness estimations of MRIs with simulated lesions
and their original, unaltered counterparts were compared (see
Figure 1). The IBIS-Phantom and ICBM datasets allowed us to
examine within-subject and population-level effects, respectively
(see below), and, in the latter case, both dependent and
independent tests were done for FreeSurfer (6.0 and 5.3)
and CIVET 2.1.1.

Coefficient of Variation
Coefficient of variation: The CoV measures the test-retest
reliability of a parameter. It is the standard deviation proportional
to the mean of the variable. We used this metric for within-
subject tests (IBIS-Phantom dataset). Since anatomical variability
is negligible in these repeated scans of a single participant, the
CoV should be highly specific to the variability introduced by
the simulated lesion. The CoV is calculated at each surface vertex
across all scans.

3https://www.math.mcgill.ca/keith/surfstat/, Information about statistic.

Statistical Parametric Mapping
Statistical parametric maps resulting from a Generalized Linear
Model (GLM) comparing deformed and unaltered datasets
illustrate the ability of a given pipeline (in our case, FreeSurfer
and CIVET) to recover the simulated lesions. These include
t-value and p-value maps over the brain surface.

Model = 1+ Deformation(ratio)+ Subject,

and the difference between “unaltered” and “deformed”
groups are studied.

Sensitivity and Specificity of Lesion Detection
Metrics of sensitivity and specificity are calculated as at
group level:

Sensitivity =
TP

(TP + FN)
,

Specificity =
TN

(TN + FP)
;

with TP (true positive, the predicted lesion corresponds to an
actual lesion), TN (true negative, where no lesion is predicted,
and there is no actual lesion), FP (false positive, if a lesion is
predicted where there is no actual lesion) and FN (false negative,
if no lesion is detected where there is an actual lesion).

The distribution of t-values obtained from Statistical
Parametric Mapping (SPM) over all vertices of the mid-surface
was plotted against the Euclidean distance of the vertex to the
center of the ROI in scatter grams.
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FIGURE 3 | Induced deformations (simulated lesions). Selected ROIs on the mid-surface (shown in red) and the surface extraction before (blue lines) and after (red
lines) deformation in Civet 2.1.1. The Center of ROIs are shown in green.

FIGURE 4 | Tissue probability changes (%) versus deformation ratio inside the mask for CIVET 2.1.1. Note that all standard deviations are on the order of 10-3 and
are not visible in the plots. (Top) Changes in GM tissue probability versus Volume changes. (Middle) Changes in WM tissue probability versus Volume changes.
(Bottom) Changes in CSF tissue probability versus Volume changes.
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RESULTS

Validation of the Simulation Method
We first investigated whether the regional deformation did
induce changes in cortical morphometry. Figure 3 illustrates
the changes in cortical surfaces caused by lesions induced in 4
different parts of the brain, and subtraction images that illustrate
the focal effects of lesion on the GM surfaces.

In addition, in order to ensure that simulations did not
cause unexpected changes in tissue classification outside the

selected ROIs, we examined changes in the ratios of gray,
white, and CSF tissue classes inside and outside each ROI for
IBIS-phantom (Figures 4–6). The changes outside the mask
were negligible for all tissue classes and ROIs (less than 0.2%
change in tissue probability). These tests illustrate that the extent
of changes inside the masks depends on the location of the
ROI and the proportion of each tissue class (GM/WM/CSF)
inside the ROI. The discussion of the regional sensitivity of
this simulation methods is outside the scope of this current
report. However, we can see that the greatest changes were in

FIGURE 5 | CoV of cortical thickness for IBIS-Phantom brain scans (N = 21), CIVET 2.1.1:tlaplace and FreeSurfer 6.0.

FIGURE 6 | The effect of ROI location (ROI size = 10 mm, FWHM = 0 mm, 15.66% contraction in each direction for four defined cubic ROIs. IBIS-Phantom, N = 21),
CIVET 2.1.1:tlaplace and FreeSurfer 6.0. Euclidean distance is measured between the distortion center to each vertex of the mid surface.
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FIGURE 7 | (A) Sensitivity versus deformation ratio, IBIS-Phantom. (B) Scattergrams of statistically significant vertices. The effect of ROI size (ROI-4, FWHM = 0 mm,
15.66% deformation in each direction), IBIS-Phantom N = 21. Higher t-values are expected near the deformation point (near zero in the plots). The scattergrams
show the vertices that fall within the statistically significant thresholds in blue and the vertical black line illustrates the ROI boundary, CIVET 2.1.1:tlaplace and
FreeSurfer 6.0. Euclidean distance is measured between the distortion center to each vertex of the mid surface.

FIGURE 8 | Within subject analysis results for IBIS-Phantom (N = 21). (A) ROC curves – CIVET 2.1.1. (B) ROC Curves - FreeSurfer 6.0. (C) Sensitivity and specificity
versus smoothing kernel.

ROI-1 for GM, ROI-2 for CSF, ROI-3 for WM, and ROI-4 for
GM/CSF. Consequently, the most easily detectable difference
in cortical thickness was in ROI-4, followed by ROI-2. In the
subsequent analysis, we illustrate between-pipeline differences in
detecting these ROIs.

Experiment 1: Single Subject Study
Variability
To investigate intra-subject scan variability, we used the
coefficient of variation (CoV) in cortical thickness measures at
each vertex of the 21 unaltered IBIS-Phantom scans. As can be
seen in Figure 5, CoVs are generally low over most of the brain,

indicating high reproducibility of cortical thickness calculations
for repeated scans with both CIVET 2.1.1 and FreeSurfer 6.

Sensitivity and Specificity
Sensitivity and specificity results are plotted in Figures 6–8 for
the 21 IBIS-phantom (single-subject) scans. Both FreeSurfer and
CIVET are sensitive to the simulated lesions and have high
specificity. The sensitivity and specificity are 48.1 and 100% for
CIVET 2.1.1 and 60.2 and 100% for FreeSurfer 6.0, on average
across ROIs. This means that both pipelines detected some, but
not all, of the vertices in a given ROI and, thus, sensitivity is less
than 100%. Neither pipeline generated false positives. We should
note that the shape of the lesion had some effect on the extent
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FIGURE 9 | Scattergrams of the statistically significant vertices for the ICBM dataset (N = 152), dependent tests. Higher t-values are expected near the deformation
point (near zero in the plots). Vertices that fall within the statistically significant thresholds are in blue and the vertical black line illustrates the ROI boundary. The
contraction ratios show the amount of deformation for a single dimension, CIVET 2.1.1:tlaplace and FreeSurfer 6.0. Euclidean distance is measured between the
distortion center to each vertex of the mid surface.

of accuracy. In Supplementary Figure 3, we have compared the
effect of choosing an ellipsoidal lesion (which is more realistic)
versus a cubic ROI (which induces a stronger deformation) and
as can be seen, the more realistic lesion increases the specificity.

The threshold of statistical significance is set at a Bonferroni-
corrected p < 0.05 (T-value >7.5). The t-value scattergrams
(Figure 6) illustrate the ability of both methods to detect the
deformations in the four ROIs. Vertices that fall within the
statistically significant thresholds are in blue and the vertical
black line illustrates the ROI boundary. Therefore, the blue dots
in the scattergrams have a t-value (y-axis) that corresponds to
a significant p-value. The x-axis shows Euclidean distance of
a point on the surface toward the center point of the ROI
that was deformed.

Effect of Lesion Size and Deformation Ratio on
Accuracy of Lesion Detection
Sensitivity and specificity are calculated for ROI-4 (at the size of
10 mm and FWHM of 0 mm) for different deformation ratios
(Figure 7A). ROI-4 is chosen based on the changes in tissue
probability calculated in Section “Validation of the Simulation
Method,” where this ROI has the higher changes in the cortical
area. As expected, sensitivity increases with deformation ratio

and 7% contraction in one dimension (0.07 mm change) was
the detection threshold for all measures and methods within this
single-subject repeated-scan sample. CIVET and Freesurfer both
have a specificity of 1 in all tests. Statistical significance is set to
Bonferroni-corrected p < 0.05 (t-value >7.5).

Figure 7B illustrates the distribution of all vertices of the mid
surface, with their t-values plotted against Euclidean distance
from the deformation core point. We expect to have higher
t-values near the deformation point (near zero in the plots).
Vertices that fall within the statistically significant thresholds are
in blue and the vertical black line illustrates the ROI boundary.
We can observe that neither CIVET nor FreesSurfer has false
positives distal to the lesion. Also, sensitivity increases with
increasing lesion size for both CIVET 2.1.1 and FreeSurfer 6.0.
Note that the number of vertices in FreeSurfer surfaces is four
times that of CIVET 2.1.1, which accounts for the greater number
of blue points for FreeSurfer in Figure 7B.

Effect of Blurring Kernel on the Accuracy of Lesion
Detection
ROC curves are plotted in Figures 8A,B for different smoothing
kernels for both pipelines. Plots show that applying smoothing
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FIGURE 10 | Surface t-maps and scattergrams of the statistically significant vertices for the ICBM dataset, independent tests (N = 76). ROI-4, 15.66% contraction
(one dimension), FWHM: 10 mm, ROI size: 10 mm, CIVET 2.1.1:tlaplace and FreeSurfer 6.0. Euclidean distance is measured between the distortion center to each
vertex of the mid surface.

increases the sensitivity and specificity for CIVET 2.1.1
and FreeSurfer 6.0.

Sensitivity and specificity versus smoothing kernel size are
depicted in Figure 8C for the selected thresholds (p < 0.05 and
T-value >7.5) and indicates that there is a peak in sensitivity
for each method, with 10 mm being best for CIVET 2.1.1 and
FreeSurfer 6.0 has maximum sensitivity at 20 mm and Specificity
is equal to 1 for both CIVET and FreeSurfer.

Population Simulation
Experiment 2 (Pre- and Post-lesion)
These analyses used the 152 MNI-ICBM individual MRIs,
unaltered and deformed and using the same four ROIs, as per
our method. Figure 9 displays t-values for all vertices on the
mid surface versus their Euclidean distance from the center of
the ROI. Statistically significant vertices are in shown blue and
the thresholds are Bonferroni-corrected at p < 0.05 and t > 7.5
(DoF = 151, t(df = 151) > 7.5, p > 0.05). The ROI boundary is
indicated by the vertical black line.

Neither method had false positives and their specificity
was equal to 1. Furthermore, both methods were sensitive to
local changes and, as was the case for IBIS-Phantom (single-
subject scans, Section “Experiment 1: Single Subject Study”), the
highest sensitivity was to ROI-4. Therefore, sensitivity was again
dependent on the location of the ROI.

The tolerance box size and deformation ratio to which the
techniques were sensitive was 10 mm and 11.21% (in each
dimension). This means that, for the ROIs tested here and in a
population sample of 152 individuals, the methods are sensitive
to a 0.1121 mm change in cortical thickness. Furthermore,
the number of true positives increased by increasing the
smoothing kernel.

Experiment 3 (Group 1 – Group 2)
We randomly assigned half (76) of the 152 subjects to an
“unaltered” group and the other half to the “deformed” group
(Table 4), whose images were altered with simulated lesions with
the same coordinates as in Table 2, as per our method. This
independent test shows lower t-values compared to dependent
tests and therefore the sensitivity is lower for both pipelines at
the statistical map level, while the specificity is still equal to 1.
However, Figure 10 shows there are higher t-values inside the
ROI than outside. The thresholds are Bonferroni-corrected to
p < 0.05 and t > 7.5 and the DoF is 150 [t(df = 150) > 7.5,
p > 0.05].

Software Version Comparison
One of the main applications of this simulation toolkit is to
study and document changes in performance between versions
of any one neuroimaging pipeline. Here, we show a simple use
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FIGURE 11 | Software version comparison: simulation tests between versions 5.3 and 6.0 of FreeSurfer. Scattergrams of the statistically significant vertices for
IBIS-Phantom N = 21. Higher t-values are expected near the deformation point (near zero in the plots). Vertices that fall within the statistically significant thresholds
are in blue and the vertical black line illustrates the ROI boundary. The effect of ROI location (ROI size = 10 mm, FWHM = 0 mm, 15.66% deformation in each
direction). Euclidean distance is measured between the distortion center to each vertex of the mid surface.

case for this toolkit by illustrating the changes in sensitivity
and specificity between two versions of the same pipeline,
FreeSurfer: 6.0 and 5.3 using a single-subject (IBIS-Phantom)
dataset. The scattergrams in Figure 11 show that the newer
version has higher sensitivity (more true positives) in all the
tested ROIs, which justifies using newer version of the tool
in future studies.

DISCUSSION

The goal of this work is to propose a general simulation
framework that can be used to study and document differences
between any two automated pipelines or, versions of the same
pipeline. It can be used to investigate the sensitivity and specificity
in response to small induced perturbations in brain images,
providing coefficient of variance and statistical significance maps
for either within- or between-subject tests.

Sensitivity and Specificity
With simulated lesions in four ROIs, our results illustrate the
high specificity and sensitivity of both CIVET and FreeSurfer.
Neither pipeline yields false positives in any of the tested ROIs,
irrespective of deformation ratio or blurring kernel size.

Sensitivity was dependent on the location and degree of
deformation. The partial volume effects vary in different regions
thus introduce variations in the tissue properties of the areas
at which the deformation is applied. While such effects in
a simulation platform are caveats, they nevertheless serve to
illustrate whether corticometry pipelines are sensitive to such
spurious alterations. The cortical thickness pipelines such as
CIVET or FreeSurfer involve very complex concatenations of
processing steps (e.g., registration, tissue classification, surface
extraction, etc.) each of which will yield somewhat different
results with even small perturbations to an image.

While our toolkit is not suitable for a head-to-head
comparison of different stages of computation involved in
cortical thickness measurement, it does provide simple (even
though crude) evidence about the validity of a pipeline. For
example, to detect false positives in an un-lesioned area in a
simulation study can help avoid erroneous interpretations of
data processed through faulty pipelines. Among regions with
simulated lesions in this study, both pipelines were maximally
sensitive to ROI-4, a region which had proportionally accurate
simulated changes in the GM volume. This suggests that
regional variations in tissue partial volume may influence the
accuracy and sensitivity of corticometry pipelines to detecting
real abnormalities. This simulation toolkit allows us to investigate
such questions, for example by creating a statistical parametric
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map to assess the detectability of simulated cortical lesions across
the cortical mid-surface.

The Effect of Deformation Ratio and Size
of the Lesion
In this study, there were no false positives and, therefore,
specificity was equal to 1 in all tests. The changes
(deformation/shrinkage) should be at least 0.35 mm [0.07∗5
(mm-size of ROI)] for within-subject tests, and 1.12 mm [0.11∗10
(mm-size of ROI)] for population-level tests, in order for them
to be statistically detectable.

Blurring Effects
Blurring is often used to increase detectability of lesions that
are slightly offset from one another. We found that the 5 and
10 mm FWHM are the best choices and match the ROI sizes
in Section “Results and Discussion”. This is expected based on
Lerch and Evans (2005): if there is prior information of the
induced lesion, the smoothing kernel FWHM should match
the size of the simulated area. In the case where no prior
information is available, FWHM can be estimated according
to the number of subjects/scans, where a small number can
benefit from increased sensitivity with a larger blurring kernel.
On the other hand, as shown in Section “Results and Discussion,”
increased smoothing may decrease sensitivity when the number
of statistically significant points is small (as was the case
for CIVET) or increase, sensitivity at the cost of specificity
when there are more statistically significant points (as was
the case for FreeSurfer). Normalized standard deviation for
different smoothing kernels was calculated for the unaltered
images of IBIS-phantom dataset (Supplementary Figure 1)
and the results indicate a decline with increasing kernel size.
This shows that variability decreases with increasing FWHM
and this leads to underestimation of the size of the simulated
lesion in CIVET.

Also, in examining the effect of FWHM on cortical
thickness measures, we observe a decline of normalized standard
deviations with increasing smoothing kernel size for unaltered
images (Supplementary Figure 2). This shows that variability
decreases with increasing FWHM which, in turn, may lead to
underestimation of the size and extent of the simulated lesions.

Limitations and Future Work
This study introduces a tool that can be used to compare the
performance of different automatic cortical thickness estimation
pipelines (e.g., CIVET, FreeSurfer) or different versions of a given
pipeline using simulated lesions. However, several limitations
need to be considered.

First, in the current analysis we only introduced cubical and
ellipsoidal lesions in cortical ROIs, and did not experiment
with other lesion shapes different types of lesions. However, the
deformation toolkit is not limited such lesions, nor to human
cortex, and in fact has been used previously to validate the
sensitivity of imaging pipelines for detecting subcortical shape
variations in rodents (Van Eede et al., 2013). Therefore this

methodology is also applicable for testing deformation-based
morphometry (DBM).

Second, we selected lesion locations based on our experience
that these regions are subject to image processing inaccuracies
emerging from high anatomical variability or partial volume
effects. In future work, the sensitivity and specificity probability
map could be calculated for the entire brain by selecting more
realistic lesions across various other parts of the brain. However,
it should be noted that given the anatomical features of the
cerebellum, the current tool may not be suitable for simulating
cerebellar lesions.

Third, we have introduced the lesions in the brains of
healthy adults, in stereotaxic space and have used these
spatially normalized images as input to the corticometry
pipelines. The advantage of this approach is that it isolates
the effect of the simulated lesions on the surface extraction
and corticometry algorithms; however, as a result it does
not fully account for variations that may emerge in the
registration of atrophied, or lesioned brains to normal
templates, thus there is room for extending the current
simulation platform.

Finally, to evaluate the performance of pipelines against each
other is outside the scope of this report. Our results illustrate
that with the accuracy in both pipelines is 100%, the larger
number of vertices used to tesselate the surface in FreeSurfer
increases the degrees of freedom and offers a moderate advantage
in sensitivity (62%) versus CIVET (48%), however, this comes at
the cost of increased computation time. Whether these metrics
are consistent across lesions in different parts of the brain remains
to be evaluated.

CONCLUSION

In this work, we propose a general simulation platform
to comparatively evaluate the sensitivity and specificity of
different neuroimaging pipelines to simulated lesions in
MRIs. We used two datasets (IBIS-Phantom and ICBM, for
intra- and inter-subject analysis, respectively) and deformed
to varying and controlled degrees small, coordinate-based
areas of T1-weighted images in stereotaxic space. We
then used two commonly-used pipelines (CIVET and
FreeSurfer) to estimate cortical thickness from unaltered
and deformed volumes and analyzed the accuracy of different
thickness metrics and blurring kernels. This simulation
toolkit can be used to simulate lesions in a controlled
manner and statistically analyze their effects on cortical
thickness estimation.
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Supplementary Figure 1 | Normalized standard deviation versus blurring kernel.
IBIS-Phantom, original scans, N = 21, CIVET 2.1.1:tlaplace and
FreeSurfer 6.0 and 5.3.

Supplementary Figure 2 | Within subject analysis results. (A) ROC curves –
Blurring kernel: 0 mm, (B) ROC curves – Blurring kernel: 15 mm, (C) Sensitivity
and specificity versus smoothing kernel. IBIS-Phantom (N = 21), CIVET
2.1.1:tlaplace and FreeSurfer 6.0.

Supplementary Figure 3 | Effects of lesion shape on the accuracy of lesion
detection and statistical detectability. Comparisons are performed in ROI-4
(FWHM = 0 mm, 15.66% deformation in each direction) in the IBIS-Phantom
(N = 21, single subject). Scattergrams illustrate the Euclidean distance of detected
lesions from the ROI’s coordinate. Euclidean distance is measured between the
distortion center to each vertex of the mid surface. The size of the cubic ROI is
10 mm in each direction, and the radius of the ellipsoidal ROI is
5 mm × 5 mm × 9 mm (x, y, and z directions, respectively), so the volumes of the
deformation area are almost the same for both cubic and ellipsoid ROIs. Higher
t-values are expected near the deformation point (near zero on the x-axis). The
scattergrams show the vertices that fall within the statistically significant thresholds
in blue and the vertical black line illustrates the ROI boundary, CIVET 2.1.1:tlaplace
and FreeSurfer 6.0.
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