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Abstract: The Industrial Internet of Things and Industry 4.0 paradigms are steering the industrial
landscape towards better connected entities, superior interoperability and information exchange,
which lays the basis for developing more intelligent solutions that are already starting to bring
numerous benefits. The current research aligns to this course, in an attempt to build an automated
and autonomous software tool, capable of reducing the energy consumption of a water treatment and
distribution facility, by optimizing the water sources usage. Based on several previous researches,
the present paper details both the complete automation of the optimizing strategy inside a proactive
historian application and the tests executed with the finished solution. Possessing the abilities to
directly influence the monitored system in a non-invasive manner, and to link all the sequences of the
algorithm automatically, the solution is now ready for long-term functioning without any external
interference.

Keywords: energy consumption reduction; Industrial Internet of Things; Industry 4.0; proactive
historian; water industry

1. Introduction

As a first remark, the primary point of interest regarding future research and devel-
opment in the contemporary industrial environment gravitates around improvements in
availability, safety, productivity and cost reduction, all of them obtainable through better
interoperability, connectivity and information exchange between different industrial enti-
ties. Certainly, those new links between previously isolated mechanical systems would set
the required conditions for the emergence of intelligent software solutions that, eventually,
will be capable of optimizing technical systems and maximizing their performances, with
directly measurable benefits for all parties involved. This relatively recent, wide spectrum,
fast advancing, high potential, huge interest drawing research direction from the industrial
branch is guided at the conceptual level by the Industrial Internet of Things (IIoT) [1–5] and
Industry 4.0 [6–10] paradigms, both very similar approaches which are pleading towards
the introduction of digitalization into industry and connecting the physical world to the
Internet [11]. The potential benefits of this endeavor are not neglectable in any way and
will be better highlighted with the introduction of more innovative technological solutions,
such as the ones described in [12–23].

Narrowing the focus on the water industry, which represents the deployment target of
the current research, the specific landscape of this domain is still predominated by legacy
systems, consisting of a large variety of technical solutions and processes, contributing to
a heterogeneous, chronologically dispersed perspective and even inefficiency, if modern
standards are considered. As a consequence, this field can definitely provide room to
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receive significant enhancements. The general perspective in the manufacturing industry
is more or less the same.

Nevertheless, the aforementioned IIoT and Industry 4.0 ideas have gradually begun to
make their presence felt in the water industry as well, initially tackling the interoperability
issue with the introduction of a standardized, platform independent communication
architecture, the Open Platform Communications Unified Architecture (OPC UA) [24–27]
and various advances in the networking area, such as time-sensitive networking (TSN) [28]
or the publisher-subscriber model [29], among others. After this initial development mostly
targeted infrastructure-level services, other relevant researches began to emerge in this
context, even towards the energy consumption of this industrial branch, similar to the ones
from [30–32].

Enjoying this kind of progress in place, the data accumulation phenomenon is already
encountered in real world industrial environments, being also spurred in recent years by the
increased availability of low-cost, lightweight, open communication protocols compliant,
open data access historian type of software applications. On this line, the development
from [33] was specifically tested in the water industry, while the studies [34–36] offer
alternatives for other industrial areas.

After gathering large quantities of data, using a historian application, the next natural
step is to determine a way to use this data, by analyzing it, identifying patterns, setting
objectives and ultimately develop proactive tools, capable of optimizing the monitored
technical system, in an autonomous regime, without human intervention or supervision.
The purpose of investing in this step is represented by increases in performance, efficiency,
productivity and/or decreases in operational costs, pollution in many industrial activities.
The task of obtaining such tools, at a technological readiness level that would allow them to
run autonomously, without constant human supervision, on critical infrastructure, such as
the water infrastructure, requires a tremendous research effort, sustained over a long period
of time. However, small, incremental progress on this path is currently being reported,
for example, the study from [37] is attempting to use historian gathered data from the
water industry for predictive control of a water distribution network. In the same direction,
article [38] introduced a 3-level reference architecture for a proactive historian, presenting
the software elements that need to be added to an elementary historian in order to elevate
it to the proactive level. Besides the theoretical development, the article contribution
expanded towards the practical area, by implementing the first level of the respective
architecture and testing it on a drinking water treatment plant (DWTP). Then, the research
from [39] improved the solution from [38] and implemented a weather-based prediction
strategy, as part of the second level of the reference architecture, applied on a wastewater
treatment plant (WWTP). Continuing on this already well established research topic,
article [40] brought a leap forward with its research of an energy consumption reduction
strategy inside a DWTP, based on prioritization of the water sources. The tests executed on
real world processes delivered the remarkable result of 30% energy consumption reduction,
without any output water quality or equipment maintenance alteration.

Considering the developments and results achieved to date, the current research
paper contributes to the effort towards obtaining a proactive historian able to optimize
the supervised industrial system. More precisely, this study attempts to continue the
strategy developed in [40] and to integrate completely the strategy into a proactive his-
torian software application, in order to obtain the capability of influencing a DWTP’s
water sources functioning, in order to reduce the energy consumption, in a non-invasive,
autonomous, unassisted operation. The paper approaches mainly the automatic identifica-
tion and adaptation of a water well quality indicators throughout continuous automatic
long-term analysis inside the proactive historian, but also further detailing, adjustments
and testing of implementations and concepts within the proactive historian in order to
ascend technological readiness level scale.

In the context of a functional industrial system, with an already implemented automa-
tion of the technological process, the local system will operate according to its algorithm
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an its imposed limits throughout its entire lifecycle. Invasive interventions at the pro-
grammable logic controller (PLC) or supervisory control and data acquisition (SCADA)
levels to implement changes are always avoided due to many reasons. Some basic and very
important reasons would be: the difficulties in the actual intervention caused by lack of
source codes/projects, lack of documentations, the complexity and implications of a basic
alteration in the core system, the general legacy nature of the approached structures (e.g.,
outdated hardware and software equipment, lack of software development and program-
ming environments, lack of development licenses, lack of firmware upgrade possibilities
for PLCs, lack of available licensed additional SCADA modules to implement the desired
algorithm), the requirement to not stop the system (e.g., a PLC intervention generally
causes a stop of the system; a simple start/stop procedure in the industry on a legacy or
not so well developed SCADA application can frequently cause 4–5 h of downtime), etc.
Also, the problematic interference in a functional industrial process may be limited by
various warranties, maintenance contracts, that are not meant to improve algorithms, but
to manage existing fix functioning. When talking about critical infrastructures (e.g., water,
electricity, gas, etc.) or time-sensitive manufacturing plants, the invasive interference is
excluded until the next upgrade of the whole local system, and in automation, this type of
upgrade is realized after very long functioning times, causing massive legacy equipment
being present in any industry. Going further, the industry lacks distributed data accumula-
tion structures, and when present, the historians are mostly unused components or used
in a very limited manner because of their lack of proactivity, lack of process awareness,
the incapacity to identify data dependencies, to determine efficiency increasing strategies
and to react over the functional systems. Even if a historian is present, the accumulated
data is waiting for the human eye to maybe find a dependency or a recipe in a long-term
behavior of the system, and obviously the amount of data is not possible to be handled
in this manner (e.g., one small DWTP can contain around 2000 tags without considering
audit-based tags, meaning 2000 values/sampling times, with in larger plants there can be
as many as 8000 tags). The process functioning can be altered over time (physical process
and equipment degradation, operator’s behavior change), and the data has to be analyzed
permanently. Following data dependency analysis, the historian must elaborate efficiency
related solutions based on objective functions and constraints, in a process aware context.
Also, the historian has to be able to react over the local system according to the identified
efficiency improvement strategy, in a non-invasive manner (e.g., change references in a
local control loop considering all the mentioned constraints), to commission the elaborated
strategy. A completely automated solution means that the distributed historian is able
to do all the above-mentioned actions throughout the functioning of the local system,
autonomously and automatically, in a process-aware context, without any human interven-
tion. The mentioned complete automated historian based solution was not encountered in
the literature or the industry.

Therefore, the current paper is highly interconnected to prior researches undertaken
by the authors and builds on top of previous developments, its main contributions being
mainly directed towards filling the gaps that prevented the fully long-term automatic
functioning of the strategy researched in [40], which, besides the scientific target, would
outline the practical creation of a proactive, intelligent, IIoT-compliant tool, drawing
considerable interest from the water industry companies.

The general motivation for pursuing the above goals presents a dual characteristic:
(i) reducing the energy consumption of a DWTP leads to reducing the operational costs,
which should, theoretically, reflect in the population’s water bill decreases, which, in some
parts of the globe, could mean improved accessibility to drinking water; (ii) depending on
the methods used to generate the consumed energy, a reduction could mean a fossil fuels
consumption reduction, which has a positive environmental impact.

Section 2 addresses topics related to DWTP particularities which have an impact on
the current research, presents previous works whose results are useful in this case and
details the researched and implemented solution which represents this paper’s contribution.
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Section 3 reveals the results obtained while testing the solution, results and findings which
are further discussed in the Section 4. Section 5 presents the conclusion.

2. Materials and Methods
2.1. Relevant DWTP-Specific Topics

This section presents a limited-details perspective, containing only a summary of
those parts and topics from a typical DWTP process that plays a role in the current research.
On the other hand, a more detailed and complete image over the processes that take place
inside a DWTP can be formed by consulting either [38] or [40].

First, a simplified representation of the water journey, starting from natural sources
and continuing until the moment of entering the drinking water network, is illustrated in
Figure 1, below, and discussed further in the sections that follow.

Figure 1. Simplified overview of the stages taken by the drinking water before entering the consumer network.

Taking into account the above schematization, it can be observed that a typical DWTP
relies on multiple distinct water sources, the most common type of source being, at least in
the authors’ geographical area, drill holes in the ground, from which water is extracted,
with pumps, from the ground water table. The water from all the sources is mixed into
one total flow, which is delivered at the treatment process input. The treatment process
cleans the water and ensures that, at its output, the water quality meets the legal drinking
water requirements. After treatment, the resulting water is placed inside water tanks, and
sometimes additionally a water tower, from which it is distributed into the drinking water
network. The water tanks acts, more or less, like a buffer between the network, which is
extracting water from it, and, on the other hand, the treatment process, which adds water
to it. The water level inside this tank dictates how much water the sources should provide.
However, the total mixed flow, directed at the treatment process input, in which all running
sources introduce water, is the one requested by the plant’s automation, based on water
level inside the tank and by the actual output flow low within the distribution network,
which leads to the ascertainment that both the way this total flow is split between sources
and the usage of sources are decided in practice only regarding the functioning hours of
water sources.

Regarding the energy consumption, it represents the consequence of industrial equip-
ment functioning inside the DWTP, large consumers being water pumps and air blowers,
the latter being used in the treatment process. In this context, an obvious observation is that
equipment functioning time reduction leads to lower energy consumptions. However, a
reduction in equipment functioning means a reduction in the amount of treatment applied
to the water, which, in order to maintain the DWTP output water quality, implies a better
water quality at DWTP input, the logical reasoning is that the better the water quality is at
the DWTP input, the less treatment it will require, which means less energy consumption.

In terms of water quality, in practice, there are noticeable differences between the water
sources of a DWTP. As a small parenthesis in the discussion, also of interest for the current
research is the difference of flow capacity that each source can offer. Returning to the water
quality, when a new water source (well or surface water) is put into service, a technical
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datasheet is being made, where different parameters of the water are written. Those parame-
ters are identified by taking water samples from the source and sending it to a laboratory for
analysis. It is important to underline that there is not single parameter that perfectly reflects
the quality of the water, but rather a series of parameters which can be considered, together,
although a generally accepted formula for computing a universally valid quality indicator
from the group of quality-indicating parameters does not exist. In the real world, the problem
is even more complex, because a source’s water quality is always changing over time as
a result of different factors, such as pollution or overuse. Despite this change, in practice,
the laboratory analysis is not periodically repeated after the initial entry into service, partly
because of the test costs and partly because of the trouble of taking samples, so, the result,
backed up by studies on around 50 DWTPs made by the article authors in recent years, is that
the quality indicators of the water from sources have not been taken into consideration until
now, at any of the implemented automation solutions. The best case scenario encountered in
practice is when local plant operators have noticed, over time, that if they request more water
from specific sources, then the plant equipment seems to work less than if they request water
from other sources, but those are empirical and subjective conclusions, established by chance
observations, not by scientific methods.

The most important conclusion from this section, that needs to be emphasized, is that the
energy consumption of a DWTP is directly influenced by the quality of the water introduced
at its input. Furthermore, this water quality can be adjusted, within certain limits, because it
is composed from a mix of the quality of each source that is delivering water in that specific
moment, depending on their flows, as indicated in the following equation:

Qt = Q1 × W1 + Q2 × W2 + . . . + Qn × Wn (1)

where Qt represents the quality of the water introduced at the DWTP input, Q1 . . . Qn
represent the quality of the water from sources 1 . . . n, while W1 . . . Wn represent the
weighting factors of each source, these factors being equal to the percentage that the current
flow from the respective source (how much water is currently being delivered by the
respective source) represents in the total flow delivered at DWTP input. By adjusting the
current flow of individual sources, the weighting factors are directly influenced, and, thus,
can be used to improve the quality of the water introduced at DWTP input (Qt).

The fixed, rigid requirement, imposed in real time by the DWTP automation, is the
total flow (quantity) of water that must enter the DWTP, namely Qt. The decision regarding
the way this quantity is reached, in essence, how much water is requested from which
sources, is taken arbitrarily at individual DWTP level. It is worth mentioning that, for
the same total quantity of water, different water quality can be obtained at DWTP input,
depending on which sources are used and what quantity each source provides, but the
real world setting shows that, although both the quantity of water than can be delivered
(minimum and maximum limits) and the quality of water differs for each individual source,
the sources are not being used in a way which follows the clear purpose of obtaining
the best quality for the water at the input of the DWTP. This reality means that all the
encountered DWTPs are currently running above their optimum energy consumption.

2.2. Related Research

As previously stated, the research presented in this paper is highly interconnected
with other studies, developments and researches made by the authors in recent years,
which are indispensable for allowing the current exploration to proceed. Because of this
fact, the present section reviews this previous work and offers brief explanations regarding
the reasons why it is necessary to refer it in the given situation, in order to facilitate a better
understanding of the context in which the current research is placed.

Any optimization attempt must rely on solid data, recorded from the monitored
technical system, such that it is imperatively needed that the primarily used tool is going
to be a historian type of software application. The answer to this was provided by [33],
which proposed a software application entitled Historian, which, to the difference of
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other available solutions, is lightweight, can be installed on a compact Raspberry Pi
hardware platform, uses the open OPC UA protocol and does not hide the stored data
under proprietary data access protocols. Furthermore, the practical implementation has
been tested exactly in the water industry, on real world equipment, making it suitable for
the current study.

Another crucial contribution that is used in this research is the data dependencies
identification module, developed and integrated in the Historian from [33] during the
research [38]. In order to reduce the energy consumption, there must be a method of identi-
fying how the technical system characteristics (water flows, functioning hours, substances
consumptions, energy consumptions, equipment faults, etc.) influence and depend on
each other. The algorithm from [38] and its practical implementation inside the Historian
(started in [38] and improved in [39]) perfectly meets this demand, by offering the infor-
mation, when the measured values, over time, of two characteristics are available, if those
values evolve, in time, proportionally or not regarding to each other and to what extent.

When recording the measured values of different characteristics of a system, any
historian type of application receives, from the system, a series of numerical values as-
sociated to a tag, which is a string of characters (tag examples: D1_max, OPCTpH1UA,
CSF9_Frecventa, etc.). Obtaining a complete automation of an energy consumption reduc-
tion strategy, which does not require human assistance, assumes that the automation tool
understands the practical significance behind those strings of characters. The automation
tool must understand, for example, that the tag ‘F3_Debit_T’ signifies the water flow that
is currently being offered by the water source with number 3, and the role of the structure
in the whole process. Practically, the idea is to have a process-aware historian, an idea
that was not found in literature or practice. The problem of attributing a specific meaning,
inside the Historian, to the tags that are being monitored was tackled in [39] and solved
with the introduction of the so-called “Historian Process Editor”.

Considering this article’s optimizing objective, the most important previous work
is described in [40], where the research team developed, at conceptual level, a complete
strategy for reducing a DWTP’s energy consumption, by prioritizing its water sources
and determining the flow reference for each local control loop. Furthermore, the research
from [40] was applied in the practical sphere as well, sustained by a MatLab Simulink
simulation, where the strategy was tested with input data from a real DWTP, before being
tested on real systems, the latter with limiting constrains imposed by the local water
company. Despite the fact that the practical approaches from [40] proved that the strategy
is efficient in reducing energy consumption, some aspects require more research to obtain
a completely automated long-term functioning of the proactive historian associated to the
real system. During the tests executed in [40], the water sources priority indicators were
determined by corroborating the experience-based input from local operators with various
dependencies identified by the Historian data analysis module which was implemented
in [38]. However, the procedure required a person setting different time intervals for
the analysis, in the Historian graphical user interface (GUI), executing the dependencies
analysis repeatedly and noting any relevant outcomes. Also, because the water company
did not allow changes at water sources requested flow set-points during tests, the practical
implementation of the theoretical strategy which divides the total flow requested from all
sources into specific flows for each source was not applied in the real scenario. The resulting
software component followed the general theoretical blueprint, but it was truncated in real
testing and did not cover all possible scenarios and corner cases. Also, the alteration of
the system operation in the context of the strategy response actions over the real system,
meaning the starting and stopping of water pumps at the water wells and miscellaneous
permitted minor adjustments were highly monitored and limited to human assistance.
Although this approach worked and delivered very good results in the test scenarios
from [40], for a large scale deployment and long-time autonomous functioning of the
solution in the water industry field, more research is needed. A completely automated
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approach will assure that this strategy can bring substantial benefits in the real world,
outside research trials circumstances.

2.3. The Implemented Solution

Having at the disposal of the authors the developments described in the previous
section, only the following gaps are currently preventing the complete automation of the
energy consumption strategy detailed in [40]:

• Lack of a completely automated method, without introducing additional overhead, to
determine the water quality indicator of each water source (periodic computation of
qf from Equation (3) in [40]);

• Lack of a robust, with all possible cases covered, practical software implementation
of both the series of formulas from [40] and the algorithm for dividing the neces-
sary flow between sources, introduced in the same article. This software should be
capable of directly applying the conclusions, in a non-invasive manner, inside the
monitored system.

The abovementioned gaps represent this paper’s concern and the fixes to those prob-
lems represent this paper’s main scientific and practical contributions. At this point,
the very complex context in which this paper is set has been brought to consciousness,
which means the rest of the current section will focus on this paper’s contributions and
implemented solutions.

From the start, it is very important to understand that any DWTP which wants
to benefit from this energy consumption reduction tool’s perks must meet a series of
prerequisites:

• The DWTP must have at least two water sources;
• The following data must be provided from the technical system to the optimizing tool,

for a period of time of at least 2–3 months before any optimization can be applied:
current water flow for each source (actual), reference water flow for each source (set-
point), minimum possible water flow for each source, maximum water flow for each
source, an indicator regarding how much each source has been used until now (e.g.,
functioning hours of water pumps, number of starts), total flow requested from all
sources, total DWTP energy consumption. This data will be used for analysis, in order
to identify patterns and dependencies;

• For each data described at the second bullet, an operator must associate a meaning,
inside the optimizing tool, to the respective tag (the optimizing tool must precisely
know, for example, if the numerical values of tag X represent the total water flow or
the energy consumption);

• The automation that is already present inside the DWTP, ensuring its normal operation,
and it must have control loops implemented in such a way that they use, as a reference
for the water flow that each source should deliver (set-point) the values attributed to
an OPC UA tag. This condition allows the optimizing tool to influence the system in
a non-invasive manner, without requiring any changes to the DWTP automation’s
control loops. This way, the tool changes tag values in order to alter the system’s
functioning.

Considering, on the one hand, the fact that all of the indispensable previous work
has been implemented in the proactive Historian software platform and, on the other
hand, the need to impose the abovementioned prerequisites, it was decided that the
best approach for obtaining the desired complete automation of the energy consumption
reduction strategy would be to integrate the practical development inside the Historian,
targeting an accordance with the level 3 of the software architecture described in [38]. The
starting basis has been taken at the Historian development point presented in [39], the
current paper building on top of the respective level.

Ensuring that all the required data is available and the prerequisites are met is done
with the help of the Historian Process Editor that was introduced in [39], and that induces
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the process-aware historian concept. More specifically, if the optimization strategy is used,
it was enforced that the currently used process has an OPC UA tag, from the DWTP’s
system, attributed to all of the characteristics mentioned in the second bullet of the pre-
requisites. Also, a convention was set that the object ‘Flowmeter 1’ indicates the total flow
requested from all sources and the object ‘Energy Sensor 1’ indicates the DWTP’s total
energy consumption, while the presence of those objects, along with at least two water
sources is also enforced.

As an example, Figure 2 above illustrates the minimum components that the currently
used process should be made up from, while Figure 3 below presents the minimum
characteristics of a water source that must have their tags associated for the optimizing
strategy to run.

Figure 2. Example of the minimum objects that must be defined, inside the Historian Process Editor,
for the currently used process, in order to execute the optimizing strategy.

Figure 3. Water source characteristics that must have tags associated, inside the Historian Process
Editor, for the currently used process, in order to execute the optimizing strategy.

By having all the input data available for the optimizing strategy, the next step is to
include the solution in the general, generic proactive architecture, in which the Historian
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will, at some point in the future, offer multiple optimizing objectives, at level 3 of the
reference architecture, from which a DWTP stakeholder will be able to choose. In order to
fulfill this long-term concept, the Historian GUI was improved, as presented in Figure 4, for
offering the optimization objective choosing possibility, the energy consumption reduction
being the only option available to date.

Figure 4. Optimizing objectives choice inside the proactive Historian application.

The implementation of the automation of the strategy from [40] began with a conceptual-
level identification of a method to compute the water quality indicator of each source (qf
from Equation (3) in [40]), without requiring any human assistance or any complicated
and expensive water sampling and analysis. The answer to this problem can be found by
capitalizing on the idea that the DWTP overall energy consumption is directly influenced
by the water quality at the DWTP input. Adding the fact that a higher flow of water from
a specific source means that the quality of water from that source has a bigger influence
on the total quality of the water at DWTP input, the authors draw the conclusion that
the water quality of a source can be determined by analyzing historical stored data and
correlating the water flow changes of that source with DWTP energy consumption changes.
This means that the water quality of sources can be determined by analyzing flows and
energy consumptions recorded while the DWTP functioned in the past, without executing
any laboratory analysis on water or measuring any other quality-specific indicator. Of
course, a data analysis tool is required, but the Historian application already has such a
dependencies identification algorithm, implemented in [38], which facilitates the imple-
mentation of this experimental method, covering the most important aspect that prevents
the complete automation of this optimizing strategy.

From the practical standpoint, the execution of the energy consumption reduction
strategy requires a previous successful execution of the dependencies identification al-
gorithm from level 1 in the reference architecture because the results of this first level
algorithm serves as input for the optimizing strategy execution.

The algorithm which determines qf, by starting from the results of the first level
algorithm, is presented, in the form of a logical diagram, in Figure 5, below, and further
detailed after the schematization.
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Figure 5. The implemented algorithm which determines qf from the results of the first level depen-
dencies identification algorithm.

The dependencies of interest, outputted by the first level algorithm, are the ones when
the current water flow of a source (actual value) was set as reference in the analysis and
the total energy consumption of the DWTP was the analyzed characteristic. Those roles,
alongside the meaning of the dependencies values are detailed in [38]. Those dependencies
of interest are extracted from the dependencies graph to an array, named WSD in Figure 5.
For the current application, the highest water quality is the one from water sources identified
as having flow values evolving inversely proportional to the energy consumption, followed
by the not proportional ones, the lowest quality being at the directly proportional ones. If
multiple sources are identified as having the same proportionality result, then (a) for directly
proportional, the best quality is at the lowest number, and (b) for inversely proportional, the
best quality is at the largest number. Again, in order to better understand the reasoning from
the last two phrases, an understanding of the first level algorithm results meaning is needed,
detailed explanations in this regard being available in [38]. For obtaining the qf values, in
accordance with the aforementioned logic, if there are any water sources that are inversely
proportional, their dependency value from level 1 algorithm is negative, so in this case, of
at least one inversely proportional, the absolute value of the minimum dependency value is
added to all qf values, as shown in the lower part of Figure 5. By doing so, all computed qf
values are always positive and the priority becomes linear with the values, regardless of the
proportionality: lowest number is highest quality, highest number is lowest quality. Due to
the fact that the obtained values do not respect the highest number equals highest quality
assumption, in order to compute the priority indicator based on water quality, the Equation (3)
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from [40] was transformed into the following equation, which, applied in the current context,
is equivalent to the original:

PQ f = 10 − q f ·
10

max(q1, . . . , qn)
(2)

After implementing the algorithm described above inside the Historian, the last piece
that was missing from the data required for the Equations (1)–(4) from [40] to be applied is
now available. The implementation of those equations calculations inside the Historian,
in Java, is quite trivial and does not pose any difficulties, so the details can safely be
overlooked, as there is no problem in recreating it after reading the article [40].

The last part of the implementation consists of the logic that decides the exact flow
each source should offer for an optimum energy consumption. This logic was described, at
conceptual level, in [40], but the robust, complete algorithm implemented in this paper,
inside the Historian, is described, from a high-level perspective, in Figure 6. However,
in order to facilitate possible reproduction attempts, a very detailed perspective was
considered, too, the same algorithm following the presentation, in the form of a logical
diagram, from Figure 7.

This figure was augmented with comments, to facilitate the following of the logical
thread and an explicative Table 1 was added after the image, to inform regarding the
abbreviations from the schematization. Due to the complexity of the algorithm, which
could make Figure 7 quite difficult to follow as a whole, this diagram was divided as
illustrated in Figure 7a,b, the two parts being logically linked with break connectors. Thus,
if only a general, high level idea is expected, then Figure 6 meets this demand, but Figure 7
covers the cases in which a detailed snapshot is required.

After executing the algorithm from Figure 7, the automation tool possesses the op-
timum flow that should be set for each source (FAO) in order to optimize the energy
consumption. Joining this information with the prerequisite of associating an OPC UA tag
for the water flow set-point of each source, the problem of finding a method to influence
the technical system is also solved.

The step-by-step results of each stage involved in the energy consumption reduction
strategy execution, integrated inside the Historian, is displayed on the GUI, as exemplified
in Figure 8, allowing external export, in PDF format.

The implementation of this strategy ends with the writing of the computed water
flow set-point of each source to the corresponding OPC UA tag used inside the DWTP
automation control loops. This way, for the first time, the proactive Historian has closed
the loop described in the reference architecture introduced in [38], becoming capable of
monitoring a technical system, analyzing the stored data and using the conclusions in order
to compute an energy consumption optimization, which is directly applied to the system,
whose functioning is influenced by the proactive Historian.
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Figure 6. A high-level summary of the implemented algorithm for dividing the total requested water flow into specific
flows for each source, in an optimum way for reducing energy consumption.
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Figure 7. Cont.
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Figure 7. Detailed perspective of the implemented algorithm for dividing the total requested water flow into specific flows for each source,
in an optimum way for reducing energy consumption, (a) right side of the diagram, (b) left side of the diagram.
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Table 1. Legend of Figure 7 and the explanations of the abbreviations used in Figure 7.

Abbreviation Explanation

WS_Used Boolean array showing which water sources are being used and which are stopped

TFCO Total Flow Currently Offered. This is the sum of all water flows from sources

preStartIdx Previously Started Index. This is the index for the last water source which was started

Ft_r The total flow requested from the water sources. This is the same as the one in Equation (5) from [40]

FAO Flows After Optimization. This is an array containing the optimum flow for each source, computed
by the optimizing strategy

N_WS Number of Water Sources

sumAllOpt Sum of optimum flows from all water sources

Fw_f Array containing the optimum flow for each water source, as computed by the optimizing strategy.
This is the same as the one in Equation (4) from [40]

LPRSV Lowest Priority Running Source Value

HIGH_MAX The highest maximum value possible

LPRSIdx Lowest Priority Running Source Index

Pf Array containing the priority indicator of each water source, as computed by the optimizing strategy.
This is the same as the one in Equation (1) from [40]

TFCOWLPS Total Flow Currently Offered Without Lowest Priority Source

HPIWSV Highest Priority Idle Water Source Value

LOW_MIN The lowest minimum value possible

HPIWSIdx Highest Priority Idle Water Source Index

HPUWSWMFSV Highest Priority Used Water Source Without Max Flow Set Value

HPUWSWMFSIdx Highest Priority Used Water Source Without Max Flow Set Index

WS_MaxF Array containing the maximum flow possible for each water source

WS_MinF Array containing the minimum flow possible for each water source

Figure 8. Example of displaying, in the Historian GUI, the results of running the optimization solution.
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3. Results
3.1. Step-by-Step Analysis of the Implemented Solution Execution

Maintaining a primordial importance in the testing and validation stages of the
implemented solution, verifying the fact that all the computed values are compliant with
the equations from [40] represented the initial focus.

In the continuation of this section, a step-by-step presentation of just one optimizing
strategy execution, inside the historian, from the collection of performed tests, is exposed,
with the intentions of both clarifying the way in which the optimization operates, and
detailing the practical result of the implementation. The following sequence of data is
extracted directly from the output displayed in the Historian GUI (similar to the one
depicted in Figure 8).

As stated before, the optimizing strategy uses the part of the output of the depen-
dencies identification algorithm from the first level of the reference architecture which
considered the actual water flow of sources as reference and the DWTP total energy con-
sumption as analyzed characteristic. In this specific case, the output was the one from
Table 2.

Table 2. Part of the dependencies identification algorithm output which is of interest.

Water Source Number Proportionality Quantity

1 Not proportional -
2 Directly proportional 29.0%
3 Directly proportional 54.6%
4 Not proportional -
5 Inversely proportional 18.7%
6 Inversely proportional 27.4%

Using the data from Table 2, the algorithm described in Figure 5 computed the
following water quality indicators for each source:

qf = [28.38 57.42 82.93 28.38 10.22 1.00]

The water quality indicators were used in Equation (2) from the current paper, obtain-
ing the following priority indicator, based on water quality, for each source:

PQf = [6.58 3.08 0.00 6.58 8.77 10.00]

The next step requires the functioning hours of each water source, as input. Those
values are obtained from the Historian database, as the most recent values available for the
respective tags. In our specific example, the values were the ones from Table 3.

Table 3. The most recently recorded functioning hours for the water sources, at the time of optimization.

Water Source Number Functioning Hours Value

1 3855
2 4171
3 5679
4 4781
5 4373
6 5884

The functioning hours from Table 3 were used in Equation (2) from [40], as hf, thus
obtaining the following priority indicator, based on functioning hours, for each source:

PHf = [3.45 2.91 0.35 1.87 2.57 0.00]
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The priority indicators based on water quality (PQf) and based on functioning hours
(PHf) were used, together, in Equation (1) from [40], obtaining the priority of each water
source. In our specific example, the value for both α and β was set to 0.5. This means the
priority indicator takes into consideration an equal contribution from the water quality
and the usage degree of the sources. As a side note, when deciding a priority indicator for
a source, it must be taken into account the usage degree of the source because, otherwise,
overuse of the best water quality sources equipment results in more mechanical failures,
which, due to the maintenance costs, make the optimizing strategy more expensive for the
water company, in the long term. The values obtained for the priority of sources was:

Pf = [5.01 2.99 0.17 4.23 5.67 5.00]

Performing the next step requires, as input, the minimum and maximum possible flow
that each source could deliver, this information being taken from the Historian database,
as the most recent values available for the respective tags. In our specific case, the values
were the ones from Table 4.

Table 4. The most recently recorded minimum and maximum possible flow that each source can
deliver, at the time of optimization.

Water Source Number Minimum Flow (m3/h) Maximum Flow (m3/h)

1 5.0 8.8
2 6.5 13.2
3 8.9 17.6
4 6.7 11.9
5 4.8 10.6
6 7.8 15.1

The data from Table 4 was used, together with the priority indicator based on water
quality (PQf), in Equation (4) from [40], in order to compute the following optimum flow
for each source:

Fw_f = [7.50 8.56 8.90 10.12 9.89 15.10]

The final step in the optimizing strategy requires, as input, the total water flow that
is currently requested from all sources. This value is computed inside the DWTP, by the
automation which ensures the functioning of the station, but the value is set to an OPC
UA tag, available for the Historian application to read. As a consequence, at the time of
executing the optimization strategy, this value is taken from the Historian database, as the
most recent value available for the respective tag. In our example, this value was:

Ft_r = 41.14

The final step consists in dividing the total water flow requested between the sources,
which, together, must provide it. This means the execution of the algorithm described in
Figures 6 and 7, which in the current example, provided the following optimized flows:

FAO = [7.50 0.00 0.00 8.66 9.89 15.10]

At this point, the execution of the optimizing strategy is finished. The solution
provides a series of water flows that, if requested from the sources, generates the lowest
possible energy consumption inside the DWTP for offering the requested flow (41.14 m3/h).

In the end, two additional pieces of information are displayed in the Historian GUI.
The first one is the total flow offered by sources after optimization, in our case, this being
equal to the requested flow (41.14 m3/h). However, it is possible, in certain objective
circumstances, that the requested flow can’t be perfectly matched. In those special cases,
the algorithm from Figure 7 was implemented to always choose to exceed the flow and not
offer less than requested. If less water is offered than requested, it is possible that the water
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inside the distribution tank drops at such low level that no more water can be introduced
in the drinking water network, although the network needs more water, this being a major
incident for any DWTP. If more water is offered than requested, then the water level inside
the distribution tank will grow faster, which means that the automation which operates the
DWTP will reduce the requested flow faster in time, with no undesired consequences at all.
Also, the second information displayed is a combination of tag name and value that the
Historian alters inside the DWTP, in our example, the extract from the GUI being:

Set PF1_setpoint to 7.50
Set PF2_setpoint to 0.00
Set PF3_setpoint to 0.00
Set PF4_setpoint to 8.66
Set PF5_setpoint to 9.89
Set PF6_setpoint to 15.10

By convention, a flow set-point value of 0.00 for a water source means that the
respective source will not function, i.e., it will be stopped. To sum up, the current section
presented a step-by-step example of an execution of the complete automation, developed
in this paper, of the energy consumption reduction strategy introduced in [40], referring
actual data, outputted by the proactive Historian.

3.2. Test Cases for the Algorithm Which Distributes the Total Water Flow between Sources

The second objective of the test procedure, after ensuring the equations are correctly
applied in the computations, was to verify if the output of the algorithm which distributes
the total water flow between sources (from Figure 7) follows the guidelines drawn by
the conceptual development from [40]. In an extremely simplified manner, the concept
presumes that more water is requested from the highest priority sources, to the detriment
of the lower priority sources, in the same time attempting to keep the requested flow for
each source as close as possible to the optimum computed flow (Fw_f).

In order to evaluate this secondary objective, two distinct scenarios have been consid-
ered, both involving data recorded from real world DWTPs, each one of them consisting
of multiple test cases. The test procedure consisted in editing the value of the total flow
requested from the sources, inside the Historian database, at the most recent record. This
way, with repeated executions of the optimizing strategy, a simulation of the way in which
the algorithm from Figure 7 performed, in identical conditions, for different total flow
values could be assessed, independent of the real DWTP operation. This procedure enabled
the execution of test cases which covered a wide range of total requested flows, in a safe
environment, which could not have been executed on a real DWTP.

The first test scenario involved data recorded from a real DWTP, which had six water
sources. The historical stored data analyzed by the first level algorithm covered a 4 weeks
period, spanning a timeframe from 7 October 2020 to 5 November 2020. Please note that
the order of sources, based on the priority indicator (Pf) associated to them, as identified by
the optimizing strategy, was, in this case (highest to lowest priority): 5, 1, 6, 4, 2, 3. The test
cases executed in this scenario and the results that occurred have been gathered in Table 5,
below, with the abbreviations explained in the Table 5 footer.
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Table 5. The test cases executed and their results, in the first test scenario.

Test Case
No.

Total Flow Requested
(Ft_r)

FAO 1 1 FAO 2 FAO 3 FAO 4 FAO 5 FAO 6 Sum of All
FAO

1 Ft_r < Min 5 2 0 0 0 0 Min 5 0 Min 5
(>Ft_r)

2 Min 5 < Ft_r < Opt 5 3 0 0 0 0 Ft_r 0 Ft_r

3 Opt 5 < Ft_r < Max 5 4 0 0 0 0 Ft_r 0 Ft_r

4 Max 5 + 1 Min 1 0 0 0 diff 5 0 Ft_r

5 Max 5 < Ft_r < Max 5 + Opt 1 Min 1 0 0 0 diff 0 Ft_r

6 Max 5 + Opt 1 < Ft_r <
Max 5 + Max 1 Min 1 0 0 0 Opt 5 Min 6 >Ft_r

7 Opt 5 + Min 1 + Min 6 < Ft_r < Opt 5 + Opt
1 + Min 6 diff 0 0 0 Opt 5 Min 6 Ft_r

8 Opt 5 + Opt 1 + Min 6 + 1 diff
(>Opt 1) 0 0 0 Opt 5 Min 6 Ft_r

9 Opt 5 + Max 1 + Min 6 + 1 Opt 1 0 0 0 Opt 5 diff Ft_r

10 Opt 5 + Opt 1 + Opt 6 Opt 1 0 0 0 Opt 5 Opt 6 Ft_r

11 Opt 5 + Opt 1 + Opt 6 − 1 Opt 1 0 0 0 Opt 5 diff Ft_r

12 Opt 5 + Opt 1 + Opt 6 + 1 Opt 1 0 0 Min 4 Opt 5 diff Ft_r

13 Opt 5 + Opt 1 + Opt 6 + Opt 4 + 1 Opt 1 Min 2 0 Min 4 Opt 5 Opt 6 >Ft_r

14 Opt 5 + Opt 1 + Opt 6 + Opt 4 + Min 2 + 1 Opt 1 Min 2 0 diff Opt 5 Opt 6 Ft_r

15 Opt 5 + Opt 1 + Opt 6 + Max 4 + Min 2 + 1 Opt 1 Min 2 Min 3 Opt 4 Opt 5 Opt 6 >Ft_r

16 Opt 5 + Opt 1 + Opt 6 + Opt 4 + Min 2 +
Min 3 + 1 Opt 1 diff Min 3 Opt 4 Opt 5 Opt 6 Ft_r

17 Opt 5 + Opt 1 + Opt 6 + Opt 4 + Opt 2 +
Opt 3 Opt 1 Opt 2 Opt 3 Opt 4 Opt 5 Opt 6 Ft_r

18 Opt 5 + Opt 1 + Opt 6 + Opt 4 + Opt 2 +
Opt 3 + 1 Opt 1 diff

(Opt 2 + 1) Opt 3 Opt 4 Opt 5 Opt 6 Ft_r

19 Opt 5 + Opt 1 + Opt 6 + Opt 4 + Max 2 +
Opt 3 + 1 Max 1 diff Opt 3 Max 4 Max 5 Max 6 Ft_r

20 Max 5 + Max 1 + Max 6 + Max 4 + Max 2 +
Opt 3 + 1 Max 1 Max 2 diff Max 4 Max 5 Max 6 Ft_r

21 Ft_r > Max 5 + Max 1 + Max 6 + Max 4 +
Max 2 + Max 3 Max 1 Max 2 Max 3 Max 4 Max 5 Max 6 <Ft_r

1 FAO1 = Flow After Optimization of Water Source 1. 2 Min 5 = Minimum Flow that Source 5 can offer. 3 Opt 5 = Optimum flow for Source
5, as computed by the optimizing strategy (same as Fw_f). 4 Max 5 = Maximum Flow that Source 5 can offer. 5 diff = The difference resulted
by subtracting the sum of all FAO besides current column from the value in last column of the table.

The second test scenario also involved data recorded from a real DWTP, but a different
one from the DWTP used in the first scenario, this time with only four water sources. In this
second scenario, the analyzed stored data covered a 2 weeks period, spanning a timeframe
from 2 December 2020 to 15 December 2020. Please note that the order of sources, based on
the priority indicator (Pf) associated to them, as identified by the optimizing strategy, was,
in this case (highest to lowest priority): 2, 4, 1, 3. In a similar approach as the one presented
above, the test cases executed in this scenario and the related results compose Table 6, the
abbreviations keeping the same meaning as the one detailed in Table 5 footer section.

By analyzing the test data presented in the current section, the conclusion that can be
drawn is that the practical implementation of the algorithm from Figure 7 follows, indeed,
the general theoretical guidance provided by the strategy proposed in [40]. Therefore,
based on the results made available in the last two sections of the current paper, the
complete automation of the energy consumption strategy, inside the proactive Historian,
can be considered as validated.
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Table 6. The test cases executed and their results, in the second test scenario.

Test Case No. Total Flow Requested (Ft_r) FAO 1 1 FAO 2 FAO 3 FAO 4 Sum of All FAO

1 Ft_r < Min 2 0 Min 2 0 0 Min 2 (>Ft_r)

2 Min 2 < Ft_r < Opt 2 0 Ft_r 0 0 Ft_r

3 Max 2 + 1 0 diff 0 Min 4 Ft_r

4 Max 2 + Min 4 + 1 Min 1 Opt 2 0 Min 4 >Ft_r

5 Opt 2 + Min 4 + Min 1 + 1 Min 1 Opt 2 0 diff Ft_r

6 Opt 2 + Opt 4 + Min 1 + 1 Min 1 Opt 2 Min 3 Opt 4 >Ft_r

7 Opt 2 + Opt 4 + Min 1 + Min 3 + 1 diff Opt 2 Min 3 Opt 4 Ft_r

8 Opt 2 + Opt 4 + Opt 1 + Min 3 + 1 diff Opt 2 Opt 3 (=Min 3) Opt 4 Ft_r

9 Opt 2 + Opt 4 + Opt 1 + Opt 3 < Ft_r <
Max 2 + Max 4 + Max 1 + Max 3 diff Opt 2 Opt 3 Opt 4 Ft_r

10 Ft_r > Max 2 + Max 4 + Max 1 + Max 3 Max 1 Max 2 Max 3 Max 4 <Ft_r

11 Max 2 + Opt 4 + Opt 1 + Opt 3 + 1 diff Opt 2 (=Max 2) Opt 3 (=Min 3) Opt 4 Ft_r

1 FAO1 = Flow After Optimization of Water Source 1.

4. Discussion

This section discusses and interprets the findings and results presented in the previous
chapter, by also considering the perspective of previous studies. It must be highlighted that
the objective of the current paper was not to prove the efficiency of the energy consumption
reduction strategy, because the results had been proven in [40], where it was shown that the
strategy reduced the energy consumption of a DWTP, by 9% in a model with real input data,
and by 30% in a test conducted on a real process that used only a part of the algorithm.

Therefore, the main desired output of the tests executed in the current research was to
prove that the developed automated method of applying the respective strategy is indeed
compliant with the concept that delivered the significant energy consumption reduction
results. In this regard, a series of test results were thoroughly analyzed in order to ensure
all the computations based on the strategy’s equations are correct, one such test result being
dissected in Section 3.1. In the same testing process, Section 3.2 presented two different
scenarios, one with a DWTP containing six water sources and the other one with a DWTP
containing four water sources. The results, synthesized in Tables 5 and 6, confirmed that
the automated solution is capable of choosing the water flow for each source in accordance
with the guidelines of the optimization strategy.

The results of this paper must be interpreted as providing a tool, integrated inside a
proactive historian type of software application, that can apply, in a completely automated
manner, without requesting human assistance, an energy consumption reduction strategy
inside a DWTP, in a non-invasive way regarding the station’s local automation. The
complete automation from the current research means that it is now possible, after a
minimum configuration required in the initial phase (setting up the objects of the process
inside the Historian Process Editor and assigning meanings to the tags), to apply that
strategy in practice without limitations related to human presence or knowledge. This
enables the deployment of the solution on a large scale, in a fully automated long-term
functioning, in the water industry, which delivers the practical benefits derived from all of
the related research work to the industrial, practical, real environment.

The deployment of the now complete prototype in a real-scenario and the long-term
testing will have to be allowed by the water company, and such tests are planned. Until
then, the authors claim only the energy consumption reduction values obtained in [40].

Attempting a comparison between the results from this study and the results of a
similar solution is not feasible at the time of writing this article because another fully
automated energy consumption reduction strategy, applicable over a DWTP, could not be
identified to date in either literature or practice.

The solution implemented in this paper is complementary to the local automation
solution of a DWTP and acts in a non-invasive manner, the latter having priority in
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operation through the local open and closed-loop control strategies, basically a total control
over the processes. The automatically identified priority indicators for the water wells, the
process awareness, the permanent energy efficiency improvement strategy automatically
obtained inside the historian considering all the constraints, the ability to automatically
react over the local system and to deploy the energy efficiency strategy without human
intervention, are assuring the complete automation of the historian-based energy efficiency
increasing solution for a drinking water facility. The obtained priority indicators and
the flow set-points for the water wells are validated regarding the energy consumption
reduction strategy as in [40] in the context of a completely automated solution.

Regarding the future research directions, in a broader perspective, under this proactive
Historian area, the possibilities are numerous and varied, including researches towards
other kinds of optimizations inside DWTPs (e.g., substances consumptions, equipment
maintenance, output water quality, etc.), researches focused on other type of facilities
(e.g., wastewater treatment plants) or even studies for optimizations in different industries
(e.g., energy, manufacturing, etc.). By narrowing down the perspective to the current
paper’s thematic only, the obtained automated tool represents just a first version of the
implementation of a conceptual development, which makes it very plausible to being
susceptible to improvement. By long term observations regarding the tool’s performance
in the real world, specific adjustments and enhancements can be studied and developed, in
time, in order to improve the efficiency in reducing the energy consumption.

5. Conclusions

The current context, governed by the Industrial Internet of Things and Industry 4.0
paradigms, offers a perfect environment for researching and developing more intelligent
software solutions for industrial settings. These kinds of applications of the future will be
able to work autonomously in monitoring technical systems, analyzing their parameters
and, ultimately, interfering in their normal operation, in order to optimize and improve
various aspects, which can bring significant benefits for all involved parties.

In this general framework, and using results and developments from previous works,
the current paper proposed a software tool, integrated inside a proactive Historian appli-
cation, that can autonomously and automatically reduce the overall energy consumption
of a DWTP. The end result of the research is a complete practical implementation of the
optimizing solution, ready to be deployed into the real world.

Although a significant amount of previous work was fructified in the current research,
it also brought important innovative contributions, such as: the research and development
of a method of linking the results of the already available dependencies identification
algorithm (from the first level of the proactive Historian reference architecture) to the
quality indicators of water sources, as shown in Figure 5 and Equation (2) from current
paper; the complete development of the robust algorithm that decides the exact flow each
water source should provide, given a total flow that must be delivered, in order to optimize
the energy consumption, in Figures 6 and 7; the integration of the whole optimizing
strategy inside a pre-existing Historian. All those contributions helped bridge the gaps that
previously prevented the transition of the optimizing strategy towards an automated tool.

With future development directions being varied and multiple, the solution still
retains a high potential to extend tangible improvements to current industrial systems.
This paper’s contributions represent just a step in a long path, sustaining the tremendous
effort directed towards bringing the digital power’s benefits to the many legacy systems,
from different industrial branches, in order to access efficiency and performance levels, not
long ago, inaccessible.
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