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SimiC enables the inference of complex gene
regulatory dynamics across cell phenotypes
Jianhao Peng 1,12, Guillermo Serrano 2,12, Ian M. Traniello3,4, Maria E. Calleja-Cervantes 2,5,

Ullas V. Chembazhi 6, Sushant Bangru 6, Teresa Ezponda 5,7, Juan Roberto Rodriguez-Madoz 5,7,

Auinash Kalsotra 3,6,8, Felipe Prosper 5,7,9, Idoia Ochoa 1,10,11✉ & Mikel Hernaez 2,3,7,11✉

Single-cell RNA-Sequencing has the potential to provide deep biological insights by revealing

complex regulatory interactions across diverse cell phenotypes at single-cell resolution.

However, current single-cell gene regulatory network inference methods produce a single

regulatory network per input dataset, limiting their capability to uncover complex regulatory

relationships across related cell phenotypes. We present SimiC, a single-cell gene regulatory

inference framework that overcomes this limitation by jointly inferring distinct, but related,

gene regulatory dynamics per phenotype. We show that SimiC uncovers key regulatory

dynamics missed by previously proposed methods across a range of systems, both model and

non-model alike. In particular, SimiC was able to uncover CAR T cell dynamics after tumor

recognition and key regulatory patterns on a regenerating liver, and was able to implicate glial

cells in the generation of distinct behavioral states in honeybees. SimiC hence establishes a

new approach to quantitating regulatory architectures between distinct cellular phenotypes,

with far-reaching implications for systems biology.
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Gene regulatory networks (GRNs) infer regulatory inter-
actions between genes, including relationships between
transcription factors and their targets, and have become one

of the most important steps in determining cellular functions1,2 and
modeling different systemic behaviors3,4. In addition, GRNs have
been found to be reliable surrogates/predictors of behavioral state5,6.
GRNs are usually represented as graphs, where the nodes are genes
and the edges represent a regulatory (or co-expression) relationship
between the genes that they connect. These graphs can be broadly
classified as: directed, if the regulatory direction is known; weighted,
where the weight of each edge represents the regulatory strength of
the connection; or bipartite, where genes are split into disjoint sets
and edges only connect genes of distinct sets. In addition, some GRN
inference methods follow a module-based approach, where genes are
first clustered in modules and then a GRN is inferred per module, in
contrast to other methods that build a unique single GRN for the
data7,8.

Until recently, most available gene expression data were
derived from “bulk” RNA-Sequencing (RNA-Seq), which does
not differentiate among the cellular composition of a tissue
sample, and therefore only gives an average measure of the gene
expressions across all cells. More recently, single-cell RNA-
Sequencing (scRNA-Seq) has made it possible to acquire gene
expression data for individual cells in samples containing up to
millions of cells9. scRNA-Seq data are generally summarized as a
matrix containing the expression values of genes for each
sequenced cell. Available bioinformatic pipelines then group these
cells by similarities in gene expression patterns, thus generating
cell clusters that are predicted to represent distinct cell types that
share anatomical or functional characterization10,11. However,
the nature of scRNA-Seq data limits the applicability of tradi-
tional GRN inference methods to single-cell expression data. In
particular, GRN inference methods for bulk RNA-Seq data
assume that gene expressions across samples are independent and
identically distributed (i.i.d.). However, this does not apply to
single-cell data, as cells in the same cluster exhibit similar
expression patterns.

The newly developed computational methods for scRNA-Seq
data provide a new landscape for single-cell GRN inference, as the
data can be imputed to reduce its intrinsic high sparsity caused by
the dropout effect12–17, and the information on cell types, such as
their pseudo-temporal ordering, can be used as side information
for GRN inference18,19. For example, the ordering of cells is used
to infer the regulatory relationships among genes via ordinary
differential equations20, correlation methods21, information the-
oretic measures22, or boolean functions23. To control the dropout
effect, Papili et al.24 used time-stamped scRNA-Seq data and
transformed the expression data into (ordered) distances between
expression profiles before inferring the relationships among genes
using ridge regression, whereas Yuan et al.25 converted the
expression profiles into images and used additional side infor-
mation to train a deep convolutional neural network for inference
of gene relationships. Although not its primary goal, the
single-cell GRN inference method SCENIC26,27 generates scores
indicative of the activity of a transcription factor (TF) and its
associated target genes (denoted as a regulon) in a particular cell,
thus providing in principle, the capability to study the regulatory
dynamics of regulons across cells. Similarly, ICAnet28 provides
activity scores for each of the modules (i.e., set of associated
genes) it infers. However, ICAnet module score may refer to
several TFs. Furthermore, a given TF may be encountered in
several modules simultaneously, hindering the inference of
regulon-level regulatory dynamics. For a comprehensive survey
on GRN inference methods for scRNA-Seq data, see29.

All the GRN inference methods discussed above produce a
unique GRN per input dataset. However, related cells, such as

those arising on a cell differentiation path, will be potentially
characterized by similar, but distinct enough, GRNs, as it is
natural to assume that there should be a smooth transition
between the GRNs associated with each phenotype30. Similarly,
the GRNs of identical cell types under different conditions are
expected to vary, and even slight changes can be informative
regarding the effects of specific cellular conditions. In this con-
text, directly inferring GRNs independently for each cell pheno-
type might result in a group of divergent networks that share little
in common. It would therefore be useful to add constraints on the
inferred GRNs to allow for comparisons of GRN architectures
across related cell types in different conditions, as it would allow
capturing the underlying complex gene regulatory dynamics
driving the transitions between cell phenotypes.

We present SimiC, a GRN inference algorithm for scRNA-Seq
data that takes as input single-cell imputed expression data, a list of
driver genes, the cell labels (cell phenotypes), and the ordering
information, and produces a GRN for each of the different pheno-
types. Given the provided ordering between the cell phenotypes,
SimiC adds a similarity constraint when jointly inferring the GRNs
for each phenotype, ensuring a smooth transition between the cor-
responding GRNs. Evaluating the quality and accuracy of GRNs is
not a straightforward task, as there are no clear metrics for
evaluation13,19. Besides, most existing GRN inference algorithms only
give a static picture of the GRN and provide hypotheses based on
such network. SimiC, on the other hand, generates multiple networks
at the same time, providing a framework to further evaluate the
network dynamics. Hence, drawing from Aibar et al.26, we propose a
regulon activity score that captures, per driver gene, the activity of
their associated gene set in each individual cell. We further evaluate
changes in distribution of the activity scores across cell phenotypes to
describe the regulatory dissimilarity of each driver gene across cell
phenotypes.

All these analyses have been incorporated into the SimiC fra-
mework, and we show, on both simulated and real datasets, that
SimiC enables the inference of complex gene regulatory dynamics
across cell phenotypes. In particular, we show on simulated data
that SimiC’s inferred GRNs obtain higher micro-F1 and Cohen’s
kappa coefficients, as well as better goodness of fit as measured by
the adjusted R2. We also test SimiC on a variety of real datasets,
including model and non-model organisms, and show that SimiC,
contrary to SCENIC26,27, ICAnet28, and SINCERITIES24, was
able to recapitulate complex gene regulatory dynamics and
accurately characterize them via the proposed regulon activity and
regulatory dissimilarity scores. These methods are considered the
state-of-the-art. Note also from the review in29 that most avail-
able methods cannot handle more than 2000 genes. From those
that do, SCENIC is the best performing one, and the only one to
generate a set of regulons that allows the user to assess dynamics
at the single-cell level. In addition, SCIMITAR31 is no longer
maintained and we were not able to run it; SCODE20 is designed
to work with TF-TF interactions and is not recommended for full
GRN inference; LEAP21 generates a gene-gene correlation matrix
at specific “lags”, thus making it unfit to generate regulon activity
scores across cell-types.

Taken together, we show the importance of being able to
jointly infer several GRNs from related cell phenotypes (such as
different timepoints). The joint GRN inference performed by
SimiC enables capturing regulatory dynamics across cell pheno-
types that are missed by previously proposed GRN inference
methods.

Results
Overview of the method. We consider imputed scRNA-Seq
expression data with the corresponding cell labels that indicate
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the phenotype of each cell (and possibly additional information
such as cell type), as well as a linear ordering between cell phe-
notypes (Fig. 1a). In cases with only two cell phenotypes (e.g.,
case vs control), the ordering is implicit. Note that when the
phenotype is not available, the ordering of cells can be inferred,
for example, from the pseudotime of cells using pseudotime
inference methods.

SimiC expects the scRNA-Seq data to be represented as a
matrix of dimension number of genes by number of cells, in
which the set of driver genes are specified. We note that in our
analyses we use transcription factors (TFs) as the driver genes.
SimiC draws from the fused LASSO regression technique32 to
infer a GRN for each cell phenotype, while imposing a (learned)
level of similarity across GRNs of contiguous cell phenotypes (see

“Methods”). Thus, the output of the optimization problem is a set
of incidence matrices representing the GRNs associated to each
cell phenotype (Fig. 1b). These inferred matrices are of dimension
number of TFs by the number of target genes, and each entry is a
weight representing the influence of the TF in the corresponding
target gene (Figs. 1c and 2a). In what follows, and following the
nomenclature of26,27, we denote the regulon of a TF as its
connected target genes. However, unlike Aibar et al.26, we take
into account the weights of the edges between the target genes
and the TF. Factoring the weights allows us to account for both
the strength and the direction (promotion or repression) of the
regulation between the TFs and their associated target genes.

In order to evaluate the regulatory dissimilarity of the different
TFs across the different cell phenotypes, we perform the following

Fig. 1 Workflow of SimiC. a Example of input data to SimiC consisting of the imputed cell expression data of cells with phenotype 1 (C1) and phenotype 2
(C2). The data is visualized in the tSNE-reduced space, where the color indicates the cell phenotype. b SimiC objective function based on LASSO32 with an
added similarity constraint. The W(i)s represent the inferred incident matrices, and the X(i)s and Y(i)s the expression matrices of the driver and target
genes, respectively. The superscripts correspond to the cell phenotypes (K in total). λ1 and λ2 are hyperparameters to control the weights of the
regularization terms. c Incidence matrices inferred by SimiC, one per phenotype. The dimension is the number of driver genes, such as transcription factors
(TFs), by number of target genes. WeightWi,j represents the influence of the ith TF in the jth target gene. The bar plots show the differences in the inferred
weights for a given TF and target gene for the two phenotypes (indicated by color).
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analysis on the inferred GRNs. First, we measure how the activity
of the different regulons change across cell clusters. We propose
to use a new metric to compute it: the regulon activity score
(Fig. 2b, “Methods”), inspired by the AUC score from26,27. For
each cell, the regulon activity score serves to quantify the relative
activity of a given regulon with respect to the expression of all
target genes. Intuitively, for a given TF, if the most expressed
target genes in a cell correspond to those with the highest weights
in its weighted regulon, the TF in question may have a large
influence on the expression profile of the cell. This is represented
by a large regulon activity score. The regulatory activity of a
regulon can also be visualized at single-cell resolution in the
tSNE-reduced space, giving more insight into how a specific TF
changes its activity at single-cell level (Fig. 2c).

For each TF, we also compute the empirical distribution of the
regulon activity score for each cell phenotype (Fig. 2d). We then
compute the distance (via the total variation metric) between the
empirical distributions to measure how the activity of the
regulons change across different cell phenotypes (Fig. 2e,
“Methods”). We refer to this distance as the regulatory
dissimilarity. Further, subdividing the overall cell population into
smaller clusters allows us to deepen into the regulatory

dissimilarity across cell phenotypes at cell-cluster level. Thus,
the SimiC workflow can generate a heatmap that shows the
regulatory dissimilarities for all regulons and all cell clusters. This
heatmap allows us to uncover shifts in regulatory activity that are
associated with different conditions, environments, or develop-
mental states (Fig. 2f).

Finally, when assessing the accuracy of the inferred GRNs, we
measure the goodness of fit via the adjusted R2 coefficient
between the true target genes’ expression and the one computed
as the linear combination of the TFs’ expressions inferred by
SimiC (via the GRNs). Specifically, we split the data into training
and testing sets with a 80/20 ratio (note that this split is only done
for assessing the accuracy, the remaining results are obtained
from applying SimiC to the whole data). We then infer the GRNs
on the training data, and use the inferred networks, together with
the TFs’ expression on the test data, to predict the target genes’
expression. Finally, we compute the adjusted R2 on the test data
using the true target genes’ expression and the predicted one. In
addition, the sparsity of the regulatory program of each target
gene (that is, the set of TFs regulating a given target gene) must be
also controlled, as otherwise, the LASSO optimization may
generate highly dense GRNs, which is undesirable7,33. Thus, on

Fig. 2 Proposed metrics to unravel complex gene regulatory dynamics. a SimiC’s inferred incidence matrices W(1) and W(2) for phenotype 1 and 2,
respectively, for the input data of Fig. 1a. The incidence matrices correspond to the inferred gene regulatory networks (GRNs). b For a given regulon, and
hence transcription factor (TF), we compute the regulon activity score per cell as follows. First, for a given cell c, we sort the target genes by their
expression values in an increasing order. Then, for each sorted target gene we show the contribution of its corresponding weight in the weighted regulon by
increasing the y-axis by that amount. The regulon activity score corresponds to the area under the generated curve. c tSNE plot visualizing the input
scRNA-Seq data, where each cell is colored by its regulon activity score for TFj. d For a given TF, using the cells' individual regulon activity score, we can
compute the empirical regulon activity score distribution for each cell phenotype. An example of the obtained distributions for the considered two
phenotypes and a given TF are depicted, P(C1) for phenotype 1 (yellow) and Q(C2) for phenotype 2 (light blue). e Computing the distance between the
obtained distributions for each TF provides a metric for the regulatory dissimilarity of each TF between the cells belonging to phenotype 1 (C1) and those
belonging to phenotype 2 (C2). The heatmap shows an example of the obtained regulatory dissimilarity for several TFs when the total variation distance
δ(P,Q) is used. f The dissimilarity score can be further computed for different cell-clusters across the phenotypes, as shown in the heatmap, which reveals
TFs with high dissimilarity scores across cell clusters as well as TFs with similar ones.
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real datasets, we control the sparsity via hyperparameter tuning to
achieve desirable levels of sparsity while maintaining satisfactory
goodness of fit (see “Methods”).

SimiC is implemented in Python but we also provide a script to
call the program from R. The code and scripts are available at
https://github.com/jianhao2016/SimiC.

SimiC correctly captures network dynamics on synthetic data.
We first evaluated the performance of SimiC on synthetic data
satisfying the assumption that GRNs change smoothly between
states, and showed that it captured the network dynamics more
accurately than the previously proposed inference method
SINCERITIES24. To the best of our knowledge, SINCERITIES is
the only existing method that also takes as input scRNA data
sequenced at different timepoints (or that belong to different
phenotypes) and connects TFs and target genes with weighted
edges, which allows for a fairer comparison. Note, however, that
SINCERITIES generates a unique GRN as output, contrary to
SimiC, which generates a GRN per phenotype. Specifically, we did
not consider SCENIC26,27 for this comparison as it can not be run
without transcriptome annotations (such as TF-binding sites),
which do not apply in this case. In addition, the GRN inference
methods GENIE334 or GRNBOOST235, which are used internally
by SCENIC, do not produce weighted GRNs, which impairs their
analysis based on model fitting. These same reasons prevented us
from using ICAnet28 in this analysis.

We simulated scRNA-Seq data for five different cell states (or
phenotypes) with a linear order between them, where the
underlying GRNs of consecutive states did not change abruptly
(Fig. 3a, see Methods). We simulated scRNA-Seq data for 1000
cells per state, for a total of 5000 cells. We considered 50 TFs and
20 target genes, and GRNs containing 3 types of edges: no
regulation (edge weight= 0), activation (edge weight=+1) and
depression (edge weight=−1). Finally, we simulated the TF’s
expression by sampling from a negative binomial distribution36,37,
and computed the targets’ expression using the constructed GRNs
and the TF’s expressions, alongside an added Gaussian noise.
Specifically, for a given cell and state, the expression of the jth
target gene yj is generated as ∑iWi,jxi+ ni, where Wi,j represents
the GRN of the considered state, xi represents the expression of the
ith TF (for the same cell), and ni is modeled as Gaussian random
noise (Fig. 3a, see “Methods”).

We ran SimiC and SINCERITIES on the generated synthetic
data and, to showcase the importance of the state separation in
fitting the data, we also ran LASSO on all states combined. Note
that in the latter case only one GRN was generated. For each
method, we computed the micro-F1 score and the Cohen’s kappa
coefficient of the inferred networks. The micro-F1 score assesses
the quality of multi-label binary problems and measures the
F1 score of the aggregated contributions of all classes. The
Cohen’s kappa coefficient is more robust in multi-class prediction
and provides an insight into how well the model performs when
compared to a random guess. Since the constructed GRNs only
contain edges equal to 0,+1, or −1, we set a threshold (0.5 by
default) such that all weights below−0.5 are converted −1, all
weights above 0.5 to+1, and the rest to 0.

SimiC obtained the highest micro-F1 score for all states as
compared to SINCERITIES and LASSO (Fig. 3b). The difference
in performance is more pronounced with SINCERITIES.
Whereas SimiC obtains micro-F1 scores close to 1, SINCERITIES
obtains micro-F1 scores around 0.8. Due to the sparsity of the
GRNs, the micro-F1 score is highly biased towards the F1 score of
predicting ‘no edges’ (0 weight) and does not accurately reflect
the capability of the method to predict the other two types of
edges (+1 or−1). The Cohen’s kappa coefficient does not suffer

from this, as it measures the gain of the model when compared to
a random guess based on the support of each type of edges.
Whereas SimiC achieved Cohen’s kappa coefficients around 0.8,
SINCERITIES’s scores oscillate around 0 and did not surpass
0.075 (Fig. 3c). With respect to LASSO, we observed that it
produced Cohen’s kappa coefficients below 0.8 in all states. We
also observed that the Cohen’s kappa coefficient for SimiC was
stable with the threshold used to convert the weights into+1,−1,
and 0, similar to what is observed with LASSO (Supplementary
Fig. 1a, b). However, this was not the case for SINCERITIES
(Supplementary Fig. 1c). These results demonstrate that when
SimiC’s assumptions are met, SimiC better captures the states’
network dynamics, as it infers more accurate GRNs than
SINCERITIES and LASSO. We also observed that, as expected,
the GRNs inferred by SimiC do not change abruptly across
consecutive states, reproducing the simulated GRNs (Fig. 3d, e).

To assess the goodness of fit of SimiC and evaluate the effect of
λ2 (λ2 represents the weight assigned to the similarity constraint
in SimiC’s optimization problem, see Methods), we computed the
adjusted R2 coefficient for values of λ2 ranging from 10−5 to 1,
while the rest of the hyperparameters are kept constant. We
observed that the average adjusted R2 for SimiC ranged from
about 0.8, achieved with the smallest value of λ2, to about 0.85,
achieved with the largest value of λ2 (Fig. 3f). Hence, in this case,
putting more weight in the similarity constraint produced more
accurate GRNs, which led to more accurate expression for the
target genes. Note that this was expected, as the synthetic dataset
satisfies SimiC’s assumptions in regards to similarity across GRNs
of consecutive states. As a comparison, removing the similarity
constraint (i.e., setting λ2= 0, which corresponds to LASSO run
independently in each state) yielded an adjusted R2 of about
0.835, which corresponds to a reduction of about 2%. On the
other hand, running LASSO on the combined data yielded an
adjusted R2 of approximately 0.49. Overall, these results show
that jointly inferring a GRN per state while introducing a
similarity constraint better captures the underlying network
dynamics when a smooth transition between states exist.

In terms of running time, SimiC employed 4 min to infer the
GRNs and 3 min to compute the regulon activity scores, while
SINCERITIES employed 2 min to infer the GRNs (see
“Methods”).

ChIP-Seq data validate a high proportion of the TF-target
connections inferred by SimiC. To assess the performance of
SimiC on real datasets, we first evaluated the correctness of the
association between the TFs and their corresponding target genes.
Two scRNA-Seq datasets (GEO accession ID GSE139369) were
considered for the analysis: (i) a scRNA-Seq dataset composed of
monocyte cells coming from either bone marrow (BM, 2681 cells)
or peripherial blood (PB, 3610 cells)38; and (ii) a scRNA-Seq
dataset composed of CD4+ T-lymphocytes cells also coming
from either BM (5297 cells) or PB (7563 cells)38. For both
datasets, after pre-processing the data (see “Methods”), we
selected the 100 most variant TFs and the 1000 most variant
target genes, where the variation was measured as the mean
absolute deviation (MAD).

On the dataset composed of monocyte cells, running SimiC
resulted in two GRNs, each representing the regulatory landscape
of monocytes in PB or BM. SimiC obtained a median adjusted R2

on test data of 0.861 (Supplementary Fig. 2a), while yielding a
median of 7 TFs regulating each target gene (Supplementary
Fig. 2f). Next, we analyzed in more detail the regulatory
relationships inferred by SimiC between TFs and target genes
using ChIP-Seq data. For each TF, we sought empirical evidence
of TF binding sites up to 5 Kbp upstream of its target genes. We
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extracted the TF binding sites information from the ReMap2020
database39. Out of the 100 considered TFs, 7 were dropped as no
target genes were assigned to them (due to potential colinearities
with other TFs) and 28 lacked ChIP-Seq experiment data, and
hence they were also excluded from the analysis. Out of the
remaining 65 TFs, 47 had their set of target genes heavily
enriched in the corresponding set of TF binding sites (odds ratio

[OR] > 2, p-value < 0.05, see “Methods”), while the remaining
TFs showed partial ChIP-Seq evidence (Supplementary Table 1
and Supplementary Data 1). Note that SimiC infers regulons
based solely on the gene expression profiles from the input
scRNA-Seq data. Therefore, some edges inferred by SimiC may be
due to an indirect regulation between the TF and the target gene.
In such cases, as the TF is likely not binding in the proximity of

Fig. 3 SimiC accurately infers network dynamics on synthetic data. a Workflow for generating the synthetic data. First, we generate the regulatory
network of each state such that no abrupt changes occur between the networks of two consecutive states. We then generate the TF’s expression data by
sampling from a negative binomial (nBin) distribution36, 37. Finally, we generate the target genes' expression data using the generated networks and the
expression of the TFs. In particular, the expression of the jth target gene yj is generated as ∑

i
Wi;jxi þ ni, where Wi,j is extracted from the generated

incidence matrix, xi represents the expression of the ith TF, and ni is modeled as Gaussian random noise (independent and identically distributed across
samples). b Micro-F1 score and c Cohen’s kappa coefficient on edge prediction obtained by SimiC, c.LASSO (LASSO run in all states combined), and
SINCERITIES. State-of-the-art GRN inference methods SCENIC and ICAnet were left out of the analysis as they need additional information not available for
synthetic data. d Obtained incidence matrices (GRNs) for SimiC and e simulated (true) incidence matrices. f Effect of λ2 on the adjusted R2 obtained with
SimiC. The adjusted R2 obtained with independent LASSO (i.LASSO) is included for comparison (note that λ2= 0 in this case).
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the target gene, it may not be possible to validate the regulatory
interactions via the performed ChIP-Seq analysis.

When focusing on the differences in the composition of the
weighted regulons across tissues (i.e., BM vs PB), we observed, for
example, a change in the composition of the regulon of KLF4, a
well-known transcription factor involved in essential monocyte
development from the monocyte-dendritic cell progenitors40.
Thus, as expected by its importance in monocyte development,
the regulon of KLF4 had larger weights on the BM than on PB
(Supplementary Fig. 3a). In addition, KLF4 had, exclusively on
BM, connections to target genes MGST1, ICAM3, and S100A12,
all playing a crucial role during monocyte differentiation and
maturation41–43.

We performed a similar analysis on the CD4+ T-lymphocytes
cells coming from either BM or PB38. SimiC also generated two
GRNs in this case, which exhibited a median adjusted R2 of 0.840
on test data (Supplementary Fig. 2b) while yielding a median of 6
TFs regulating each target gene (Supplementary Fig. 2g). The
ChIP-Seq analysis revealed that out of the 63 TFs with ChIP-Seq
evidence, 34 had their associated target genes enriched (OR > 2,
p-value < 0.05, Supplementary Table 2, Supplementary Data 1),
while the other 29 presented partial ChIP-Seq evidence
(Supplementary Table 2, Supplementary Data 1). When delving
into specific regulons, we found that RUNX3, a TF involved in the
activation of naive CD4+ T cells during immune response44, was
positively associated with target genes HLA-F, PTPN6,
GADD45B, SFRS9, and SEMA4D, all key genes on the stimulation
and activation of CD4+ T cells45–49 (Supplementary Fig. 3b).

SimiC unravels complex regulatory dynamics of CD8+ CAR
T cells during immunotherapy of non-Hodgkin lymphoma
patients. We assessed the capabilities of SimiC to uncover com-
plex gene regulatory dynamics of engineered CD8+ T lympho-
cytes during immunotherapy of non-Hodgkin lymphoma
patients. The development of adoptive cell therapy approaches
based on T lymphocytes engineered with chimeric antigen
receptors (CAR T cells) has been a breakthrough for cancer
immunotherapy strategies50,51. CAR T cells generated by current
technologies are enriched in different types of long-lived memory
cells that can quickly expand to large numbers of terminally
differentiated effector T cells upon exposure to their antigen.
However, after long-term antigen stimulation CAR T cells can
become exhausted, leading to a defective or insufficient anti-
tumoral function. As functionality of CAR T cells depends on an
orchestrated activation of specific signaling pathways, under-
standing the changes in gene regulatory dynamics suffered by the
infused CAR T cells after exposure to their cognate antigen is of
utmost importance for the efficient design and application of this
immunotherapy strategy.

In this context, Sheih et al.52 generated a single-cell
transcriptome dataset of CD8+ CAR T cells isolated from the
infusion product (IP), as well as from peripheral blood at the
expansion peak after treatment (days 7–14; termed D12) of
patients with relapsed and refractory non-Hodgkin lymphoma
(GEO accession ID GSE125881). This dataset contains 7616 cells
for the IP phenotype and 8576 cells for the D12 phenotype, and
we selected the most variant 100 TFs and 1000 target genes for
the analysis. We applied SimiC on the scRNA-Seq data to infer
two akin GRNs governing the CAR T cell function at IP and D12
timepoints (median adjusted R2 of 0.834 on test data, Supple-
mentary Fig. 2c; median of 5 TFs regulating each target gene,
Supplementary Fig. 2h).

To understand the changes in the overall regulatory changes
between IP and D12, we computed the Kleinberg authority
score53 for each target gene of each GRN (see “Methods”). In

brief, an authority represents a target gene that is regulated by
many different TFs, which, at the same time regulate many target
genes. SimiC was able to capture a shift in the overall authority
scores after tumor recognition by CAR T cells, indicating an
increment in the regulatory activity (Fig. 4a, Wilcoxon rank test,
FDR < 0.05). Specifically, we observed that the authority score of
key genes in tumor recognition, such as GZMB, NOSIP and
multiple HLA family genes, were significantly incremented in
D12. These genes have been widely studied as effectors of the
acute response of the immune system54,55.

A specific example of such regulatory shifts between IP and
D12 arose on the network spanned from antagonist regulons
MYC56 and RUNX357. We observed that their shared targets had
opposite weights, such as GZMB, which at IP was regulated
positively by RUNX3 and negatively by MYC (Fig. 4b). Further,
at the expansion peak (D12), the negative regulation from MYC
was lost, while the positive one from RUNX3 was maintained.
Another example of such reversed regulation between MYC and
RUNX3 is the target gene SELL, which controls the proliferation
of memory cells and was positively regulated by MYC and
negatively by RUNX358. Finally, we note that these shifts in
connectivity between the different timepoints were shared across
most regulons as the authority scores of target genes were
generally increased on D12 (Fig. 4a).

In order to delve into the regulatory dynamics of individual
TFs across cell phenotypes, we computed the distribution, across
all cells, of the regulon activity scores (see Methods). Recall that,
for a given TF, this score measures the relative activity of the set
of target genes connected to the TF on a given cell. Due to their
special relevance at different stages of the immune response, we
first focused on the TFs MYC, RUNX3, and EOMES, genes with
an antagonist behavior56,57,59. The regulon of the proto-oncogene
MYC showed its regulatory peak activity at the IP, where different
peaks could be observed yielding a multimodal distribution, while
it showed an overall lack of activity at the expansion peak (D12)
(Fig. 4c). This was expected due to the MYC role in cellular
proliferation, a process that is partially halted on cells carrying
out an increased effector role in the immune response60. The
regulon of the RUNX3 gene, which is required to maintain a lytic
activity once the cells have met the antigens44, showed a
multimodal distribution with a heavy tail at D12, as majority of
cells showed little activity of the RUNX3 regulon while other cells
showed high activity (Fig. 4d). As we will show in the next
section, this multimodality and heavy tail arose primarily due to
the different levels of exhaustion reached by the CAR T cells at
D12. The EOMES regulon showed, at D12, high activity on
majority of cells, while, similar to RUNX3, EOMES is innactive at
IP (Fig. 4e). Note that a heavy tail on the distribution at D12 is
also observed for EOMES, where some cells at D12 showed little
activity. This behavior is explained as EOMES progressively
promotes exhaustion on anti-tumor CD8+ cells61.

To examine in more detail the activity of these regulons at
single-cell level, we colored the input single-cell data by their
respective regulon activity scores and visualized it in a tSNE plot
(Fig. 4f–h). For the MYC regulon, we observed a cluster of MYC-
active cells at IP at the bottom right side, and a bottom-up
gradient along which the regulon activity decreased progressively
(Fig. 4f, top). On the other hand, almost all cells at D12 were
MYC-innactive, with the exception of a small cluster of cells at
the top-left-most edge (Fig. 4f, bottom). Interestingly, these cells
happened to be a specific subtype of CAR T cells which were
transitioning from memory CAR T cells to exhausted CAR
T cells, as further described in the following section. When
focusing on the RUNX3 regulon, cells were mostly RUNX3-
innactive at IP (Fig. 4g, top), while we observed a clear left-to-
right gradient of RUNX3 activity on D12 (Fig. 4g, bottom). For
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Fig. 4 SimiC captures complex regulatory dynamics within CAR T cells (CD8+ CAR T cell dataset52). a Comparison of the authority scores for each
target gene in the two phenotypes IP and D12. We observe an increment of the authority score in D12 as compared to IP (Wilcoxon rank test, FDR < 0.05).
b Network representing the weighted regulons of the transcription factors MYC and RUNX3 for the considered phenotypes IP and D12. The color of the
edges linking the TFs with their corresponding target genes indicates whether the regulation is positive (yellow) or negative (blue), and the width of the
edge corresponds to its strength (i.e., the inferred weight). Regulon activity score distribution for the two different phenotypes IP and D12 for MYC (c),
RUNX3 (d), and EOMES (e) regulons. tSNE plots showing the CAR T cells at IP (top) and D12 (bottom) colored by their MYC (f), RUNX3 (g), and EOMES
(h) regulon activity score. The peak of activity of the MYC regulon is observed at IP, while at D12 it gets progressively turned off. The RUNX3 regulon has
its peak of activity after tumor recognition at D12, while its activity gets turned off once cells get exhausted at D12. Finally, the EOMES regulon gets more
active once CAR T cells get exhausted after tumor recognition on D12.
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the EOMES regulon we observed, at IP, a behavior similar to that
of the RUNX3 (Fig. 4h, top). However, at D12, we observed a
nearly-opposite behavior to RUNX3, where cells got progressively
activated following the same left-to-right gradient (Fig. 4h,
bottom). These gradients were explained by the progressive
exhaustion suffered by the CAR T cells, as T cell exhaustion is
promoted by EOMES while inactivates RUNX3 (see next section).

Next, we compared the capacity of SimiC to uncover
phenotype-specific regulatory activity to that of SCENIC and
ICAnet. SINCERITIES was left out of the analysis as it needs at
least four states (phenotypes) to run. Since both methods
(SCENIC and ICAnet) infer a unique GRN for a given input,
we ran them on the whole dataset, as well as on the IP and D12
cells independently. Note that in the first case only one GRN was
inferred for all cells, while in the latter case two GRNs were
inferred, each capturing the regulatory dynamics of the IP or D12
cells. One of the difficulties we encountered is that some of the
analyzed TFs (MYC, EOMES, and RUNX3) were not retained by
these methods. Furthermore, when run on each phenotype
independently, there is no guarantee that the same set of TFs will
be retained in both cases. For example, when run on the whole
data, SCENIC retained MYC and EOMES, but not RUNX3. The
same occurred when run independently on each phenotype,
except that EOMES was not retained in D12. With ICAnet, the
comparison becomes even more complicated, as it generates
several modules of related genes, and a given TF can be contained
in several modules simultaneously. With ICAnet, only RUNX3
was retained, and when run independently on each phenotype,
RUNX3 was contained in 39 modules for IP and in none for D12.

The scores computed by SCENIC and ICAnet did not show
phenotype-specific regulatory dynamics when run jointly on IP
and D12 or independently (Supplementary Fig. 4). In particular,
contrary to the regulon activity score distributions obtained by
SimiC for the MYC regulon (Fig. 4c), the AUC distributions
obtained by SCENIC showed a large overlap, resulting in no clear
distinction between the cells on each phenotype (Supplementary
Fig. 4a, b). Note also that, contrary to SimiC, no gradient was
observed across the cells of neither of the phenotypes. For the
EOMES regulon, when run jointly, almost no differences were
observed in the AUC scores between the cells of the two
phenotypes (Supplementary Fig. 4c), contrary to SimiC, which
captured the expected dynamics (Fig. 4h). Running SCENIC on
IP independently produced similar AUC scores as when run
jointly (Supplementary Fig. 4d).

When running ICAnet jointly on the data, we found one
module containing TF RUNX3. However, the produced scores
did not show any notable differences across the cells belonging to
the IP and D12 phenotypes (Supplementary Fig. 4e). When run
independently, there were 39 modules containing TF RUNX3 on
IP, and none on D12 (Supplementary Fig. 4f). Most of the 39
modules produced scores showing a gradient from top to bottom
on the cells at IP, with the bottom cells being more active. This
gradient was more pronounced on some modules (Supplemen-
tary Fig. 5), and only few modules showed all cells being mainly
inactive, similarly to the scores produced by SimiC (Fig. 4g, top).

In terms of running time, SimiC employed 32 min to infer the
GRNs, SCENIC 9min, and ICAnet 132 min (see “Methods”).
The reported time for SCENIC and ICAnet is when run on the
whole data.

SimiC captures differences in regulatory activity within the
different CD8+ CAR T cell sub-populations through tumor
recognition. While GRNs are generally computed on cells com-
ing from similar lineages or phenotypes24,26, specific regulons of
these networks may be differently activated depending on the

current state of the cell. For example, differential activation of
regulons has been shown to play a key role on differentiating
cells27,38.

In what follows, we show, using the dataset from the previous
section, that SimiC is able to capture the underlying regulatory
activity within the different CAR T cell subpopulations and
unravel the differences in their activity after tumor recognition.
Further, we show that SCENIC and ICAnet were not able to
properly capture these dynamics. In addition, SimiC yielded
improved clustering performance of cell states, as measured by
the adjusted rand index (ARI) scores62.

Once the GRNs for phenotypes IP and D12 using the whole
CAR T cell population were inferred by SimiC (see previous
section), and the regulon activity score computed for each cell, we
grouped cells by their state; namely, CD8+ memory, CD8+
effector and CD8+ exhausted cells. To annotate each cell, cells
were first clustered using Seurat10, yielding 8 cell clusters that
were then merged into three clusters using a curated set of marker
genes associated to each of the above-mentioned cell states
(Supplementary Data 2). We then computed for each cell state
and each TF the distribution of regulon activity score, which
yielded two empirical distributions, one for each phenotype (IP
and D12). Finally, we computed the distance between these
distributions and denoted it as the regulatory dissimilarity score
(see “Methods”), which measures, for each TF and cell state, the
differences in overall regulon activity between phenotypes IP and
D12 (Fig. 5a).

The multimodal distributions observed in the regulon activity
of RUNX3 and MYC (Fig. 4c, d) are also reflected in the heatmap
of Fig. 5a, where RUNX3 and MYC (among others) show
different levels of regulatory dissimilarity scores for different cell
populations. Specifically, a low regulatory dissimilarity score was
observed on exhausted CAR T cells for RUNX3 while high
dissimilarity can be observed in the same population for MYC.
We were also able to uncover a set of TFs showing high
regulatory dissimilarity between IP and D12 across all CAR T cell
subpopulations (Fig. 5a, yellow cluster). TFs yielding such high
regulatory dissimilarity scores regardless of the cell subtype are
expected to modulate the general activity of the immune response
after tumor recognition. Example of such TFs are ID2 and BATF
genes, key transcriptional regulators essential in the immune
response of the CD8+ T cells63,64. These TFs presented lower
values of regulon activity on the IP cells, and a clear increment on
their regulon activity after tumor recognition (D12) (Supplemen-
tary Fig. 3c, d).

We next show that SimiC, contrary to SCENIC and ICAnet,
was able to recapitulate key CAR T cell regulatory dynamics at
cell-state resolution. Using SimiC, we observed that MYC, a
proliferation marker, had its highest regulon activity on the
memory cells, due to the proliferation potential of these cells,
while EOMES, an exhaustion promoter, was highly inactive
(Fig. 5b, f). As the immune activity progressed, the cells gradually
became effector-like carrying the immune response (CD8+
effector cells). Hence, the proliferation is gradually halted
diminishing the activity of the MYC regulon and progressively
increasing the activity of RUNX3, which is required to maintain
lytic activity once cells have met the antigens (Fig. 5b, d). Once
the effector cells transitioned towards the exhaustion state,
the activity of the MYC and RUNX3 regulons got halted, as the
proliferative and effector capabilities of cells were being lost,
reaching their lowest values on the CD8+ exhausted cells (Fig. 5b,
d). On the other hand, the activity of EOMES got progressively
increased, reaching its peak at fully exhausted cells (Fig. 5f). These
subtle, albeit important, dynamics of regulon activities were
recapitulated by neither the SCENIC AUC scores nor ICAnet
module scores (Fig. 5c, e, g).
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Fig. 5 SimiC’s proposed scores capture cell-state specific regulatory dynamics on the CD8+ CAR T cell dataset52. a Heatmap depicting the regulatory
dissimilarity between the two cell phenotypes (IP and D12) for different regulons for CD8+ exhausted, CD8+ effector, and CD8+ memory cells. Violin
plots of the activity scores for the different cell states, as well as the tSNE plots showing the CAR T cells of different cell states colored by their activity
score for the MYC regulon as calculated by SimiC (b) and SCENIC (c); for the RUNX3 regulon as calculated by SimiC (d) and ICANet (e); and for the
EOMES regulon as calculated by SimiC (f) and SCENIC (g). h Cell state clustering performance as measured by the ARI score. For SCENIC we consider the
binarized and non-binarized scores. A larger ARI indicates a better clustering performance. SINCERITIES was left out of the analysis as it needs at least four
phenotypes to run.
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To quantify the state-specific clustering capabilities of the three
considered methods, we compared the clustering capabilities of
SCENIC and ICAnet (when run on the whole data) when using
their dedicated clustering methods, to that of SimiC when its
activity scores are clustered using k-means. For SCENIC, we
considered both the binarized and non-binarized AUC scores.
For reference, we also considered directly clustering the
expression data using Seurat. In all cases, three clusters were
generated. SimiC yielded the highest ARI score among all
considered scenarios (Fig. 5h), meaning that SimiC’s activity
scores captured better the differences between the cell states
CD8+ memory, CD8+ effector, and CD8+ exhausted. Finally,
we analyzed the capacity of the non-binarized AUC and module
scores from SCENIC and ICANet, respectively, to uncover
phenotype- or state-specific regulatory activity (via hierarchical
clustering). Neither of them (SCENIC and ICAnet) showed clear
phenotype-specific clusters when run jointly on IP and D12, nor
state-specific clusters when run jointly or on each phenotype
independently (Supplementary Fig. 6a–d). This is in contrast to
SimiC, whose regulon activity scores clustered cells by phenotype,
and showed partial clustering by cell-states (Supplementary
Fig. 6e), manifesting the capacity of SimiC to uncover activity
scores related to the phenotype at hand.

To further validate the ability of SimiC to cluster cells based on
the generated activity scores, and compare it to that of SCENIC
and ICAnet, we performed an additional experiment with the
CD4+ T-lymphocytes dataset38. Specifically, we selected five
known trajectories related to cell-types, namely: (i) HSC -> Early
Erythrocyte -> Late Erythrocyte, (ii) HSC -> CLP -> NK, (iii)
HSC -> CLP -> B, (iv) HSC -> CLP -> CD8+ CD4+, and (v)
HSC -> GMP -> Monocytes CD14+. We applied SimiC to the
cells of each trajectory (using the corresponding ordering), and
then clustered the cells with k-means (k= 3) using the generated
regulon activity scores. Given the resulting clustering (rand idex
(RI) scores close to 1 in all cases), we conclude that SimiC’s
inferred GRNs and their corresponding regulon activity scores
can reliably differentiate cells (Supplementary Fig. 7). We
performed a similar analysis using SCENIC and ICAnet, when
run independently on each cell type and when run on the whole
dataset. The results show that SCENIC’s computed regulons and
corresponding scores are able to capture the cell-states (in four
out of the five trajectories) when run independently on each state,
but not when run jointly (Supplementary Fig. 7). The metrics
generated by ICAnet, in both considered cases, are not able to
differentiate cells by their state (Supplementary Fig. 7).

SimiC uncovers key regulatory mechanisms of a regenerating
liver across several time-points at cell-state resolution. We next
show how SimiC was able to model complex regulatory dynamics
on datasets with multiple sequential cell phenotypes (i.e., time-
points). To this end, we used an scRNA-Seq dataset (GEO
accession ID GSE151309) generated from regenerating mouse
livers, which contains timed gene expression profiles of around
12K hepatocytes65. Specifically, 2/3rd partial hepatectomy was
performed and cells were sequenced at different timepoints (24h,
48h, and 96h) post-surgery. Healthy adult mouse liver cells were
also sequenced, yielding a total of four timepoints, termed adult,
PHx24, PHx48, and PHx96. Non-hepatocyte cells were identified
and removed from the dataset. The cells were annotated by their
functional state as quiescent, proliferative, metabolically hyper-
active, or transitioning65.

Running SimiC on this dataset generated four akin GRNs, each
representing the regulatory landscape at a given timepoint
(median adjusted R2 of 0.885 on test data, Supplementary Fig. 2d;
median of 7 TFs regulating each target gene, Supplementary

Fig. 2i). When the number of cell phenotypes is larger than two,
we define the regulatory dissimilarity score to be proportional to
the area between the largest and the smallest densities at each
regulon activity value (see “Methods”). This score therefore yields
a dissimilarity score of 1 for non-overlapping distributions and a
score of 0 for completely overlapping distributions. For example,
TF YBX1 presented highly overlapping regulon activity densities,
yielding a dissimilarity score of 0.41 on proliferating cells; while
the densities of the TF CEBPB were mostly non-overlapping
across all cell types, notably yielding a dissimilarity score of 1 for
proliferating cells (Fig. 6a, b).

Two important regulatory patterns arise in the modeling, via
GRNs, of the regenerating liver65. On the one hand, regulons
following an initiation-progression pattern typically show low
activity values in adult hepatocytes, while after hepatectomy there
is a peak of activity (PHx24 and PHx48); then, the original value
is regained again at PHx96. On the other hand, regulons
following a termination-rematuration pattern show high activity
in adult hepatocytes, while post-hepatectomy there is a
consistently less activity (PHx24 and PHx48); and the activity
rises again at PHx96. Two well known representatives of these
patterns are the key hepatocyte TFs CEBPB (initiation-progres-
sion pattern) and CEBPA (termination-rematuration pattern),
transcription factors that bind to similar DNA sequences66 and
play divergent but key roles in liver regeneration65,67. These
activity patterns were clearly represented by the distribution of
the CEBPA and CEBPB regulon activity scores across the
different timepoints (Fig. 6c). Specifically, CEBPB had its activity
peak at the first stages of liver regeneration after the hepatectomy
(PHx24 and PHx48), and was then progressively being reduced
towards the values of the adult cells. Opposite to this drift, the
maximum activity of CEBPA was on the adult cells, and dropped
to its minimum just when the regeneration of the tissue starts
(PHx24), and later recovered its activity when the tissue
converges to a mature state.

Next, we split the activity scores at each timepoint by the
different cell states (Fig. 6d). We observed that almost no
transitioning or proliferating cells were present in the adult liver,
likely due to its mature state. Interestingly, we observed that on
the course of liver regeneration, the activity of regulon CEBPA
was similarly distributed on both transitioning and proliferating
cells while its activity was regained faster on quiecent cells
(Fig. 6d, top). On metabolically hyperactive cells, the activity
density of CEBPA was bimodal, with some cells regaining
CDBPA activity at faster pace than others (Fig. 6d, top). In the
process of recovering the intermediate metabolic functions,
metabolically hyperactive cells activated CEBPA at different
paces, as activation of metabolic routes on hepatocytes depend,
among other things, in the complex crosstalk between CEBPA
and other important TFs such as FOXA1 and HNF4A68,69, which
led to bimodalities in the CEBPA regulon activity density.
Similarly, other regulons following a termination-rematuration
pattern such as HNF4A and ONECUT2, which have more
mature functionalities68, were more active during the quiescent
and metabolically hyperactive states65,68 (Supplementary Fig. 8b).

An analogous behavior was observed on the regulon activity
distribution of CEBPB, as well as on other regulons with an
initiation-progression pattern like YBX1 and FOXA365,69,
although following the opposite pattern (Fig. 6d, bottom, and
Supplementary Fig. 8a), as they showed higher activity during
proliferation compared to other states. Importantly, the regula-
tory dissimilarity score correctly captured the observed differ-
ences in activity across timepoints in a single score, allowing the
clustering of TFs that have similar regulatory dynamics (Fig. 6a).

Further, we identified a correlation between the regulon
activity and the pseudo-temporal transition of the hepatic cells
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at single-cell resolution (Fig. 6e). Specifically, we observed a clear
gradient of regulon activity for CEBPA, which had very low
activity at early stages of regeneration (PHx24 and PHx48) and its
activity progressively increased while cells progressed towards
adult liver cells (Fig. 6e, top). The opposite behavior could be
observed for the activity of regulon CEBPB, whose activity
progressively decreased as the liver regenerated (Fig. 6e, bottom).

These results show that SimiC is able to capture the regulatory
dynamics of a regenerating liver at single-cell resolution.

Note that a similar analysis was performed by Chembazhi
et al.65 using SCENIC. However, SCENIC cannot jointly compute
different GRNs for all timepoints, and therefore, a unique GRN
was computed using all data points. In the original analysis, while
SCENIC was able to capture similar patterns, the activity
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differences captured by SCENIC across the different timepoints
yielded smooth and unimodal distributions (Fig. 4 of Chembazhi
et al.65). The smooth distributions yielded by SCENIC are a
consequence of computing a unique GRN for all cells and
timepoints, which intrinsically averages out the different
regulatory patterns across timepoints. On the other hand, the
distributions yielded by SimiC across all cells were generally
multimodal, which showcases the capability of SimiC to capture
the differences in regulatory behavior across cell types. In
addition, the AUC scores from SCENIC or SINCERITIES were
not able to recapitulate the mentioned patterns at single-cell
resolution as accurately as SimiC (Fig. 6f, g). We also run ICAnet
on this dataset, but none of the generated modules contained any
of the analyzed TFs (YBX1, CEBPA, or CEBPB).

Finally, when clustering the activity scores across all cells, we
showed that SimiC captured the cell states better than
SINCERITIES, SCENIC, and ICAnet (the latter two when run
on the whole data rather than on each phenotype separately), as
measured by the ARI score (Fig. 6h). As in the analysis of the
CAR T cells, we used their dedicated clustering methods for
SCENIC and ICAnet, and k-means for SimiC and SINCERITIES.
Four clusters were generated in all cases, since there are four cell
states (quiescent, transitioning, proliferating, and metabolically-
hyperactive). In addition, when applying hierarchical clustering to
SimiC’s activity scores of all cells within a given timepoint, the
cells belonging to the same state generally clustered together
(Supplementary Fig. 8c). Thus, SimiC was able to uncover the
main differences in regulatory dynamics across timepoints for
different cell states, offering deeper biological insights than
previously available.

SimiC relates a key honeybee transcription factor to aggres-
siveness and associates it to Glia cells. We examined the per-
formance of SimiC on non-model organism lacking highly
curated annotations. Some of the previously proposed methods
for scRNA-Seq GRN inference, such as SCENIC26 or ICANet28,
rely on additional annotations of the transcriptome (such as
motifs or TF-binding site coordinates in SCENIC or Protein-
Protein interaction networks in ICANet) to perform the GRN
inference, and hence they are not suitable for non-model
organisms.

We applied SimiC to an existing dataset that provides single-
cell brain transcriptomic data generated in western honey bees
(Apis mellifera, GEO accession ID GSE130785). In the accom-
panying study, Traniello et al.70 performed scRNA-Seq on a
whole-brain (WB) and mushroom body (MB) sample collected
from two female honey bees. The whole-brain sample contained
all brain structures, including sensory neuropils like the antennal
lobe (AL), optic lobe (OL), and mushroom bodies (MB), a higher-
order sensory processing region composing roughly 1/3rd of the
bee brain71 (Fig. 7a). In contrast, for the MB sample, all brain

regions except the MB were removed prior to sequencing.
Further, cells were clustered using Seurat10, yielding 11 cell
clusters70 (Fig. 7b). Transcription factors were obtained from5,72.
We utilized these data to see if SimiC could identify regulatory
activity that is unique to cell types captured in the whole-brain
but not in the mushroom body sample. After generating the two
GRNs with SimiC (one for MB and one for WB, median adjusted
R2 on test data of 0.834, Supplementary Fig. 2e; median of 3 TFs
regulating each target gene, Supplementary Fig. 2j), we computed
the regulatory dissimilarity score between MB and WB cells, for
the different cell clusters.

The cell clusters coming from the OL, the primary visual
neuropil of the honey bee brain and also one of the largest and
most molecularly diverse regions73, clustered together by the
dissimilarity score across TFs (Fig. 7c, right-hand side). These cell
clusters were identified by the expression of OL-specific markers
like scr, gad1, drgx, and SoxN74–76, and others (Supplementary
Data 3), and represent neuronal subtypes exclusive to the insect
visual system. Furthermore, OL neurons 3, the OL cell cluster
specifically annotated as lobular T4/T5 neurons based on the
expression of drgx, SoxN, and slo75–78, yielded one of the highest
overall dissimilarity scores. Besides, MB-specific neuronal sub-
types, identified by expression of Mblk-179,80 and CaMKii81, also
clustered together (Fig. 7c, left-hand side).

Further, we found that the Drosophila melanogaster ortholo-
gue of the immune signaling gene Deaf1 (LOC412296) had more
regulatory activity in the MB compared to WB (Fig. 7d). In
support of our findings, Deaf1 has been specifically identified in
the honey bee MB as a regulator of aggression72. Furthermore, we
found higher Deaf1 activity in glia compared to the rest of the
clusters (Fig. 7e). Glia makes up only a small fraction of the insect
brain but have been hypothesized to play a role in regulating the
neurometabolic state underlying aggression82. Therefore, our
analysis adds to previous findings72 by implicating a specific cell
type—glial cells—in the generation of distinct behavioral states.

Taken together, these results offer important ground-truthing
for the comparison of regulatory networks jointly inferred across
samples and, more generally, demonstrate the applicability of
SimiC to non-model organisms.

Discussion
In this work we introduced SimiC, a gene regulatory network
(GRN) inference method for single-cell RNA-Sequencing
(scRNA-Seq) data. SimiC expects as input the linear ordering
between different cell phenotypes (only if more than two phe-
notypes are considered). SimiC infers a GRN per phenotype while
imposing a similarity constraint that forces a smooth transition
between GRNs of consecutive states. This allows us to compare
GRN architectures between distinct phenotypic states, with far-
reaching implications for systems biology. In contrast, other GRN
inference methods such as SINCERITIES24, ICAnet28 or SCENIC26

Fig. 6 SimiC’s inferred GRNs across timepoints on a regenerating liver (hepatocyte dataset65) capture regulatory dynamics of hepatocytes in different
functional states. a Heatmap of the regulatory dissimilarity score of quiescent, proliferating, metabolically hyperactive, and transitioning cell types across
the four sequential timepoints for the different regulons, showing cell and time dependent variation. b Density plots showing the regulatory activity for the
regulon YBX1 on the proliferating cell population and for the regulon CEBPB on the quiescent and proliferating cell populations, for the four considered
timepoints. Violin plots showing the distribution of the regulatory dissimilarity scores for regulons CEBPA (top) and CEBPB (bottom) across timepoints (c)
and across cellular states of the liver regeneration, for the four considered timepoints (d). tSNE plot showing the hepatocyte cells, colored by their
regulatory activity score as computed by SimiC (e), SCENIC (f), and SINCERITIES (g) for the regulons CEBPB (top) and CEBPA (bottom). No results for
CEBPA with SINCERITIES are shown as this TF did not appear in the inferred GRN. Similarly, ICAnet did not generate any modules with the CEBPA or
CEBPB TFs. Timepoint to which each cell belongs is also specified. h Cell state clustering performance as measured by the ARI score. For SCENIC we
consider the binarized and non-binarized scores. A larger ARI indicates a better clustering performance.
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Fig. 7 Additional results of SimiC on the bee brain dataset containing cells coming from either whole-brain (WB) or mushroom body (MB)70. a Scheme
depicting the base anatomy of the bee brain, and the line (dashed red) marking the surgical separation of the MB. b tSNE visualization of the cells colored
by cell state and shaped by the phenotype. c Heatmap depicting the regulatory dissimilarity score across the whole brain and the mushroom body, for each
cell state. d Violin plots showing the regulatory activity of the regulon LOC412296 on the different cell states, on the mushroom body, and whole brain.
e tSNE visualization of the bee brain cells colored by the regulatory activity score of the regulon LOC412296. Shapes correspond to the two studied
phenotypes and the size highligths the cells belonging to the glia.
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do not impose any similarity constraints, and are therefore either
applied to the whole scRNA-Seq dataset, generating a single GRN
for all cell phenotypes, or to each phenotype independently,
potentially missing relationships between cells from different phe-
notypes. We showed that jointly inferring phenotypically distinct
GRNs can uncover regulatory relationships (or dissimilarities) that
would have otherwise been missed, thus establishing a new
approach to quantitating differences or dissimilarities between the
GRNs of distinct cellular phenotypes. Another advantage of SimiC
with respect to SCENIC and ICAnet is that the inferred regulatory
relationships between target and driver genes are accompanied by a
weight, indicating the strength and direction of the regulation, and
hence providing an extra layer of resolution. For example, factoring
in the weights allowed us to recapitulate known activators and
repressors of key target genes on CAR T cell therapy. In addition,
we showed that SimiC’s computed scores uncover phenotype- or
state-specific clusters, unlike those of SCENIC and ICAnet. Finally,
SimiC works well across a range of systems, both model and non-
model alike, and does not require detailed annotations to the
transcriptome, whereas other methods rely on prior knowledge of
specific features like TF-binding motifs.

In summary, we provided significant evidence to show that SimiC
has the potential to reveal complex gene regulatory relationships
across different phenotypes or timepoints, for model and non-model
organisms. Furthermore, we anticipate that SimiC will be applicable
to advancing our understanding of the relationship between brain
transcriptomic state and behavioral variation, and GRNs have been
shown to be a reliable surrogate of complex behavioral phenotypes5,6.
SimiC builds on these previous studies by allowing for a direct,
quantitative comparison of GRN structure between behavioral states.
The key of SimiC is its optimization function that jointly infers the
GRNs that model each phenotype.

Methods
In what follows we describe SimiC in more detail, both the method and the
evaluation metrics, and provide details on the considered datasets, including any
pre-processing steps to generate the input data needed by SimiC.

Notation. scRNA-Seq data are expressed as a matrix of dimension number of
sequenced cells by number of measured genes. We further classify genes as driver or
target genes, and use notation X and Y to represent their expression matrices,
respectively. If there are c cells, m driver genes, and n target genes, X 2 Rc ´m and
Y 2 Rc ´ n . We use upper case notation Xi 2 Rc (Yi 2 Rc) to represent the expression
of driver (target) gene i across cells, and lower case notation xi 2 Rn (yi 2 Rm) to
represent the expression of cell i across target (driver) genes. That is, Xi is the ith
column of matrix X (analogously for Y), and xi is the transpose of the ith row of matrix
X (analogously for Y).

Feature selection. In order to apply the algorithm more efficiently and filter out
the least informative genes for better robustness, we first perform a feature selection
on the gene space. Specifically, we select separately the driver and target genes with
the highest median absolute deviation (MAD) from their mean expressions. The
MAD value is a measure of the variability across samples that is robust to outliers.
Specifically, for a given gene expression profile Xi (or Yi), its MAD value is given by
MAD(Xi) = median ðjXi � �XijÞ, where �Xi is the average value of Xi. The expres-
sion of a gene is more scattered if its MAD is larger and vice versa. Note that this
type of filtering is typically performed in single-cell data analysis, where sometimes
other metrics such as variance are used instead of the MAD value.

GRN inference background. In the general setting of bipartite GRN inference, given
a set ofm driver genes and a desire set of n target genes, the goal is to find a weighted
bipartite graph between these two sets, where the weights describe the regulation
activity of gene pairs. The common assumption is that the expression of the target
genes of a cell i, denoted as yi 2 Rn , can be approximated by a linear combination of
its driver genes, denoted as xi 2 Rm , under a Gaussian noise assumption, i.e., yi=
WTxi+ b+ ϵi. Here the matrix W 2 Rm´ n is the incidence matrix between driver
and target genes, with the jth column Wj being the connectivity strength between
target gene j and the set of driver genes. For ease of notation, we include the bias term
b 2 Rn into W by extending xi to ½xi; 1� 2 Rmþ1. It should be noted that assuming
linear dependencies for the inference of GRNs is quite established in the field3,7,29. In

addition, methods relying on more complex non-linear modelings are computa-
tionally intensive and cannot generally handle more than 1000 genes29.

Given a group of independent and identically distributed (i.i.d.) expression profiles,
the common approach7 is to minimize the approximation error 1

2 jY � XWj2. The
solution to such least squares problem usually results in a dense incidence matrix W.
Yet, in practice, it is believed that only a subset of driver genes regulate a given target,
and hence the connection in the graph should be sparse3,7. In order to have a more
robust model and sparse incidence matrices, the most common optimization problem
for GRN inference is expressed as:

min
W2Rm ´ n

f ðWÞ ¼ min
W2Rm´ n

1
2
jY � XWj2 þ λjWj1 ð1Þ

This is a LASSO formulation, where Y is the target expression matrix and X is the
driver expression matrix83. Such approach is effective when the expression matrix is
composed of different samples of bulk sequencing profiles, which can be treated as i.i.d.
samples. However, in the case of single-cell RNA sequencing, this assumption is no
longer true. In addition, different cell states are expected to be governed by different
GRNs, which correspond to different incidence matrices. To account for this, one
approach would be to apply LASSO independently on each cell type. However, we
would lose the information from the other cell states, which might be useful given that
the cells generally come from the same region (or tissue) and a linear ordering may
exist between them. In other words, in most scenarios the underlying regulatory
networks of the different cell types are expected to share some common functions due
to the asynchronous cell progression, which translates into some level of similarity
between the corresponding incidence matrices.

Data imputation. Due to the limitations of current single-cell sequencing tech-
nologies, the raw scRNA-Seq datasets (i.e., the raw expression matrices) are often
extremely sparse12. However, it is possible to impute the missing expression values
by using combined information from all the sequenced cells. Thus, SimiC uses
imputed data for the inference of GRNs. We use MAGIC12 for this purpose.
MAGIC was chosen as it has been shown to be the imputation method that most
consistently outperforms the other ones84. Nevertheless, SimiC can be used with
data imputed with any available imputation method (Supplementary Fig. 9). It
should be noted also that imputation methods generate imputed data of varying
levels of sparsity (Supplementary Table 3 and Fig. 9). The conducted experiments
suggest that SimiC is more affected by the chosen imputation method than by the
resulting sparsity level.

SimiC optimization algorithm. With the imputed scRNA-Seq expression data, the
cell state labels for each cell, and the associated ordering, our optimization problem
for GRN inference is defined as:

min
Wk ;k2½1:K�

f ðW1;W2; � � � ;WK Þ ¼ min
Wk ;k2½1:K�

∑
K

k¼1

1
2
jYk � XkWkj2 þ ∑

K

k¼1
λ1jWkj1 þ ∑

K�1

k¼1
λ2 Wk �Wðkþ1Þ�� ��2

2; ð2Þ

where Wk is the incidence matrix of the GRN that we want to infer for cell state k,
K is the number of states, Yk is the target expression matrix of cells in state k, and
Xk is the corresponding driver expression matrix. Assuming n target genes and m
drivers, and sk cells under cell state k, the dimensions of Yk, Xk, and Wk are sk × n,
sk ×m, and m × n, respectively. Note that the dimension of Xk and Yk may change
across different states, but the dimension of the incidence matrices is always the
same. The reason is that the GRNs for different cell states share the same set of
nodes (driver and target genes), and only differ in the edge weights. The first
summation in our objective with the ℓ1 regularization term, ∑K

k¼1 λ1jWkj1, serves
the same purpose as in LASSO, i.e., it controls the sparsity of the incidence
matrices. With or without the cell states ordering, minimizing the first part (i.e.,
setting λ2 to zero) is equivalent to solving LASSO for every state independently.

The second regularization term, ∑K�1
k¼1 λ2 Wk �Wðkþ1Þ�� ��2

2
, is the similarity

constraint. As mentioned above, we would like to smooth the GRNs transition process
(we assume in the formulation that the cell states [1:K] are linearly ordered). With the
order of cell states given, it is reasonable to assume that two consecutive states should
share common edges. This translates into minimizing the pairwise difference of the
corresponding GRNs, so as to maintain the common graph structure among them.
Note that adding a second order regularization term will tend to make the incidence
matrices denser. The trade-off between adding the sparsity constraint and the
similarity constraint is controlled through the values of λ1 and λ2. For example, in
cases in which the cell states are well separated, the smoothness assumption of the
GRNs is weaker and hence λ2 should be smaller, and vice versa.

Algorithmic implementation. Note that our objective function is convex on
[W1,…,WK], but not smooth due to the existence of the ℓ1 norm regularization term.
To solve the optimization problem, we use a random block coordinate descent (RCD)
algorithm, summarized in Algorithm 1, whereW(t) indicates the incidence matrixW at

iteration t and γk is chosen to be the largest eigenvalue of XkTXk for each cell state.
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The hyper-parameter λ1 controls the sparsity of the Wk matrices, whereas λ2
controls the inter-matrix dependencies and thus can be tuned based on the
underlying structure of the cell states. We choose them from the polynomial set
{10−5, 10−4, 10−3, 10−2, 10−1}. Specifically, λ1 and λ2 are chosen using five-fold
cross validation, where the dataset is randomly split into training and validation
sets in a proportion of 80:20. We evaluate the approximation performance by the
average adjusted R2 value on the left out validation sets. This process is done in
each pair of combination of λ1 and λ2 from the pre-selected polynomial set and the
ones resulting in the highest average adjusted R2 are chosen as the final values of λ1
and λ2. The output of Algorithm 1 is a group of incidence matrices [W1,…,WK],
each corresponding to the GRN of one state. The W matrices all have the same
dimension m × n (number of driver genes by number of target genes) and the same
column/row index for the corresponding driver-target pairs, i.e., entry Wi,j is the
weight between the ith driver and the jth target genes.

Activity score. To better understand how the activity changes in the cell popu-
lation, we propose to use a new metric: the activity score. Similar to26, we compute
one activity score per driver gene and per cell. The input to the activity score
workflow is the expression profile of the cell and the regulon (i.e., the target genes
connected to the given driver gene along the weights for each edge), and the output
is the relative activity of this regulon in the cell. Note that in the objective of Eq. 2,
the weights are directly comparable across drivers for a given target gene, but not
across targets for a given driver since the expression for different targets may vary.
Hence, we first normalize the incidence matrices W for each driver gene (i.e., each
row) by dividing each element by the norm of the corresponding target expression.
Next, for each cell, we order the normalized weights by the expression of the target
genes in the cell. We denote the resulting normalized and ordered weight matrix bybW. We then compute the cumulative sum of the ordered weights. The activity score
of the considered driver gene in the cell is then defined by the normalized area
under the cumulative sum curve, which can be expressed as:

Activity Score (driver gene i ) ¼
∑T

t¼1 ∑n ≤ t
1
T
bWi;n

� �
∑
T

t¼1
bWi;t

;

where T is the number of target genes in the regulon i. Note that the activity score
is a score between 0 and 1. When the larger weights are ranked higher (i.e., the
corresponding target genes are highly expressed in the cell), the numerator is larger
and the activity score will be closer to 1, which shows that the driver gene under
consideration is more active in that particular cell. On the contrary, when the larger
weights are ranked lower, the numerator gets smaller and the activity score gets
closer to 0. The activity score is hence a comprehensive measure that takes into
account both the gene expression and the weighted regulon structure information.
More importantly, it can be computed for every cell and every driver gene, which
gives a higher precision measure of a driver’s activity within the cell population.
The activity scores are stored in a matrix A 2 Rc ´m , where c is the number of cells
and m is the number of driver genes. We compute the activity score matrix Ak for
each cell state k∈ [1: K] based only on the expression of the cells in that state and
the corresponding incidence matrix Wk.

Regulatory dissimilarity computation. Given a driver gene i of interest and the
activity score matrix for state k, Ak, we can compute the distribution of activity
scores for all cells in state k. We can repeat this process for all K states, generating a
set of K distributions for a given driver gene. Then, by analyzing the changes in
distribution across two states, we can infer whether the driver gene in question
plays a role in the state transition. On one hand, when the two distributions are
“separated” (e.g., they have a non-overlapping support), the activity of the weighted
regulon has shifted between states. This suggests that the driver gene may be highly
correlated with the state transition. On the other hand, when the two distributions
are similar, the regulon activity remains unchanged in both states. This suggests

that the driver gene is less likely to have an influence in the state transition. To
formally define the variation of the weighted regulon activity across multiple states,
we use the total variation (TV) distance. The TV of two probability measures P and
Q on a countable sample space Ω is defined as:

δðP;QÞ ¼ 1
2
∑
ω2Ω

jPðωÞ � QðωÞj ð3Þ

Let {P1,…, PK} denote the set of activity score distributions. We then consider the
following minmax version of total variation for multiple distributions:

δminmaxðfP1; ¼ ; PK gÞ ¼
1
K

∑
ω2Ω

max
Pi

PiðωÞ �min
Pj

PjðωÞ
� �

ð4Þ

It can be easily verified that this metric has values between 0 and 1, with values
closer to 0 when the group of distributions is more similar to each other, and closer
to 1 when the group of distributions is more divergent. The proposed minmax TV
focuses on the outline of all distributions jointly, and it takes a higher value when
the distributions are more disjoined than when they overlap with each other. Note
that when K= 2, this metric degenerates back to the original definition of the total
variation.

Filtering of regulons. In order to remove driver genes with very little weight
assigned to target genes (due to numerical imprecisions on the optimization
algorithm), we apply a filtering based on the bayesian information criterion (BIC).
Specifically, SimiC only keeps the smaller set of driver genes needed to model at
least 90% of its expression variance.

Thus, for each target gene, we order the driver genes by their associated weight
and compute the squared sum of all the driver genes’ weights. We then select the
driver genes with larger weight until the squared sum of their weight is greater than
the 90% of all the weights squared. Mathematically, for target gene j, we define the
score Sij as:

Sij ¼
∑i

k¼1 W
2
kj

∑L
l¼1 W

2
lj

;

where L is the number of driver genes connected to target gene j. We then find the
smallest i that satisfies Sij ≤ 0.9, and select the first ith driver genes (ordered by
decreasing weight).

In addition, for each target gene, we measure the adjusted R2 between its true
gene expression and the inferred expression using the driver genes’ expression and
the inferred GRN. If the adjusted R2 is below 0.7, we consider that the target gene
did not obtain a good fit, and it is therefore discarded. This step is performed to
account for false positives in the inference process.

Generation of synthetic GRNs and the corresponding scRNA-Seq data. We
generated a synthetic dataset with 5 states. The GRN for the first state is generated
randomly, with the weight of an edge being equal to+1 with probability 0.1, to −1
with probability 0.1, and to 0 with probability 0.8. To generate the GRN of the next
state, we start with the GRN of the previous state and randomly modify each of the
edges with a conditional probability that depends on the previous state’s network.
Specifically, for a nonzero value edge, we change its sign with probability 0.3 and
we set the weight to 0 with probability 0.7. For zero-value edges, we keep the same
value with probability 0.5 and change it to +/−1 with an equal probability of 0.25.
Note that this scheme keeps consecutive incidence matrices at similar sparsity
levels. We do this procedure for each state, sequentially. Finally, the target gene’s
expression is generated by sampling from a negative binomial distribution with
n= 5 and p= 0.5.

Computation environment. For all performed experiments, the SimiC framework,
including the computation of the regulon activity scores, was run on a Linux server
with a 80 cores Intel Xeon CPU and 512GB of memory.
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On the synthetic dataset, the whole SimiC framework took 7 min to run using
16 cores and 5GB of RAM. More specifically, the optimization problem was solved
in 4 min, and the regulon activity scores were computed in 3 min. Note that the
running time of SimiC grows roughly linearly with the number of cells, number of
driver genes, and number of target genes. For comparison, SINCERITIES took
around 2 min to infer the GRNs for the same dataset.

For the CAR T cell dataset, which contains a total of 16K cells, the inference of
the GRNs (with 100 driver genes and 1000 target genes) took 32 min. On the other
hand, SCENIC took around 9 min and ICAnet 132 min, both run on the
whole data.

Authority and hub scores. To better understand how the genes are modulated, we
represent them as a weighted network. This network is created with the R library
iGraph, where the nodes are genes and the edges are the weights computed by
SimiC. These weights represent the strength of the modulation, while the sign
represents the polarity. To represent the changes over the different phenotypes, we
compute the Kleinberg’s authority and hub centrality scores53 for each node on
each phenotype, and the statistical comparison was assessed by a Wilcoxon signed-
rank test.

ChIP-Seq analysis. In order to asses the goodness of the driver-target genes
connectivity, we validate these connections with empirical binding data. To per-
form this analysis, we used the database provided by “Integrative ChIP-Seq analysis
of regulatory regions (ReMap2020)”39, which contains transcriptional regulators
peaks derived from curated experiments coming from Human samples. The peaks
were annotated using the R library ChIPpeakAnno.

The odds ratio and hypergeometric test were calculated for each driver gene, by
locating on the database all driver genes’ binding sites and annotating them to
target genes being located at most 5Kbps upstream the binding site.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The simulated data generated in this study is available at https://doi.org/10.13012/
B2IDB-4996748_V1. The analyzed scRNA-Seq data composed of monocyte cells and
CD4+ T-lymphocytes have GEO accession ID GSE139369. The analyzed scRNA-Seq
data of CAR T cells have GEO accession ID GSE125881. The analyzed scRNA-Seq data
of hepatocytes have GEO accession ID GSE151309. The analyzed scRNA-Seq data of
honey bees have GEO accession ID GSE130785. A description of the datasets is provided
in Supplementary Table 3.

Code availability
SimiC is open source (MIT license) and available at https://github.com/jianhao2016/
SimiC, together with installation instructions and scripts to run it either from Python or
R. In addition, we have made available the data needed to run the tutorial at https://
doi.org/10.13012/B2IDB-3975180_V1. The code used to run the different methods is
described in Supplementary Notes 1–4.
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