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Particulate suspensions occur in situations from
blood flow to slurries in drilling applications.
Existing investigations of these suspensions generally
concentrate on the impact of particle volume fraction
for suspensions in Newtonian fluids under free-
flow conditions. Recently, particulate-polymer
composites have been used in additive manufacturing
(AM). Here, the polymer becomes a shear-thinning
non-Newtonian fluid during extrusion, creating a
particulate suspension. Motivated by the challenges in
AM of particulate composites, this study investigates
the rheology of suspensions of micrometre-sized
particles in shear-thinning silicone while extruded
through AM-scaled nozzles (millimetre-scale
diameters). The suspensions were observed to
follow a power-law behaviour and their rheology was
investigated through the measured flow consistency
(K) and behaviour (n) indices. The impact of the
particle volume fraction (φ) and the ratio (ω) of the
capillary inside diameter to the particle diameter on
both indices were measured. n was found to be only
impacted by the suspension fluid type and φ. K was
found to be constant at large ω, but decreased and
then increased to infinity with ω decreasing. Based on
its behaviour, K was categorized into two conditions
and analysed separately with semi-empirical models.
The impact of particle size distribution was also
investigated.

1. Introduction
Particulate composites are the composites made of
particles embedded in a matrix material. They are widely
used in multi-functional additive manufacturing (AM),
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Table 1. Significant viscosity models for particulate suspensionsa

authors type equation

Einstein linear μ = μ0(1 + 2.5φ)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Guth, Eugene & Simha polynomial μ = μ0(1 + 2.5φ + 14.1φ2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vand exponential μ = μ0 exp ((2.5φ + 2.7φ2)/(1 − 0.609φ))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mooney exponential μ = μ0 exp (2.5φ/(1 + kφ))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Simha polynomial μ = μ0(1 + 1.5φ(1 + (1 + 25/4f 3) · · · ))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Brinkman power law μ = μ0(1 − φ)−[μ]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Krieger & Dougherty power law μ = μ0(1 − (φ/φM))−[μ]φM

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ford polynomial μ = μ0(1 + 2.5φ + 11φ5 − 11.5φ7)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Thomas mixed μ = μ0(1 + 2.5φ + 10.5φ2 + 0.00273 e16.6φ )
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bournonville & Nzihou power law μ = μ0(1 + (D/γ̇ E )(φv/φM/(1 − φv/φM)))G
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Senapati power law μ = μ0(10Cu/d50)(1 + ([μ]/γ̇ 0.4)(φ/(φM − φ)))3.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Blissett mixed μ = μ0(1 − (φ/φM))−[μ]φM + m(φ)γ n(φ)−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aIn the table, φ is the particle volume fraction, [μ]= limφ→0((μ − μ0)/φμ0) is the intrinsic viscosity, φM is the maximum particle
volume fraction (capacity of the suspension fluid for accepting particles) and the other parameters are described in the text.

particularly with polymer matrix materials, as the particles can provide different functionalities
while the matrix material maintains the overall extrudability of the composite. In experiments
with extrusion-based AM of particulate composites [1], it was discovered that the extruding
nozzles may be blocked by the particles and the extrusion force varied dramatically with different
extruding conditions. As the composites can be regarded as micrometre-scale particles suspended
in shear-thinning fluid under extrusion conditions, they can be treated as a particulate suspension
flowing through a millimetre-scale capillary. Hence, the rheology of the suspension governs its
extrusion behaviour, which is important for extrusion deposition in AM [2,3]. Motivated by an
interest in improving the AM of particulate composites, this work seeks to investigate and model
the rheology of particulate suspensions based on shear-thinning fluids flowing in capillaries.

Existing background in this area is sparse as there is currently no specific model describing the
rheology of particulate suspensions in capillaries. Most investigations of particulate suspension
rheology focus on the particles suspended in Newtonian fluids and the effect of particle volume
fraction on fluid viscosity under free-flowing conditions (negligible impact of boundaries on
particle behaviour). A summary of various models developed to describe the behaviour of the
suspension viscosity under these conditions is presented in table 1. The first viscosity model was
developed by Einstein in 1906 [4] (as cited in [5]) and has a linear dependence of viscosity on the
particle volume fraction, φ. The linear equation only considers the no-slip boundary condition
over the particle sphere in purely laminar flow. The allowable particle diameter (d) and volume
fraction range are very limited. Since Einstein, various methods have been employed to increase
the accuracy and applicable range of these models.

In 1936, Guth et al. [6] (as cited in [5]) increased the range of applicability up to φ = 0.2 using
a second-order polynomial expression. The coefficient of the second-order term was determined
from a method of successive reflection, which assumed that the disturbance of flow around a first
sphere was compensated by an additional flow around a second sphere to fulfil the continuity
equation and no-slip boundary condition at the sphere’s surface. Simha [5] increased the accuracy
further in 1952 by including more terms and adding the semi-empirical parameter f to fit dilute
suspensions. Ford [7] worked on low/moderate concentration suspensions in 1960 and developed
a seventh-order polynomial model.

Taking a different approach, in 1948, Vand [8] derived an exponential function from the
Navier–Stokes equations considering the effect of adding an incremental volume fraction of
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spheres, dφ, and accounting for the interactions of particles using the same method of successive
reflection as Guth et al. [6]. In 1951, Mooney [9] developed a similar model by considering
two successive additions of monodisperse spheres to a pure fluid, accounting for possible
hydrodynamic interactions and the mutual crowding effects of the two-sphere populations on
each other using an experimentally determined parameter k (crowding factor) where 1.35 < k <

1.91.
In 1952, Brinkman [10] developed a power law model; however, the original model is limited

to the special case of infinite polydispersity (meaning the maximum particle volume fraction, φM,
is equal to 1). Krieger & Dougherty [11] improved this model by limiting the maximum particle
fraction using Mooney’s concept of a ‘crowding factor’. In 1984, Wildemuth [12] introduced a
parameter considering shear-rate dependent maximum volume fraction. (When the particles are
not spherical, the particle orientation is impacted by the shear, resulting in a different maximum
volume fraction.) In 2002, Bournonville & Nzihou [13] introduced three adjustable empirical
constants, D, E and G to allow for the applicability at very high (∼106 s−1) and low (∼0.01 s−1)
shear rate. In 2009, Senapati [14] introduced two adjustable empirical constants Cu and d50 to
account for the separate effects of median particle diameter and particle diameter distribution.
Additional approaches involve empirical modifications such as the addition of an exponential
term to a polynomial as modelled by Thomas [15] (but with no theoretical explanation given
for the additional term) and the addition of a second term with two empirical constants to the
power-law model of Krieger & Dougherty [11] by Blissett [16].

All models described in table 1 are based on suspensions in Newtonian fluids, which means
the adjustable parameters are determined by the particles. However, when the fluid used in the
suspension is non-Newtonian, the viscosity can be affected by both the fluid properties and
the particles, and these may interact with each other. The coupled factors may add additional
complexity.

A few recent investigations consider particulate suspensions in shear-thinning polymer melts
[17–22]. Kataoka et al. [19–21] applied Mooney’s model to polymer melt suspensions to calculate
the relative viscosity of the suspension and suspension fluid under the same shear stress and
modified it with another adjustable parameter to apply to polymer melts containing a suspension
of short fibres [18]. The applicable range of φ in their model was limited (only φ = 10% was
investigated) and a rotational rheometer was used for the empirical data, which may have
provided unreliable results as described below.

The observations of suspensions in both Newtonian and non-Newtonian fluids relate that with
higher φ, the materials change from a fluid-like to a solid-like state with an observable yield
stress, which is a phase change called the jamming transition [23]. The jamming transition occurs
at a characteristic volume fraction (φM) [24], which in general may depend on the nature of the
particles and the flow state (e.g. shear rate) of the suspension [25–27]. As φ → φM, lubrication
layers between particles begin disappearing and the number of frictional contacts per particle
increases [25]. At φM, the suspension reaches the ‘maximum packing fraction possible for a given
suspension composition and packing arrangement’ [24].

Much of the work on jamming behaviour focuses on modelling the mechanics of the jamming
process and on determining the jamming transition using generic shear flows [25–29]. In AM
applications, a significant factor impacting jamming includes confinement effects from the
capillary inner diameter (D) in relation to the particle mean diameter (d) and its distribution, but
this has not been considered to date. Additionally, most of the work uses particle-induced shear
thickening material (particle suspensions in a Newtonian fluid that become shear thickening after
adding particles) [28,30,31] or viscoelastic materials in a squeeze geometry [32], but most of the
polymer materials used in AM are shear thinning.

Prior work in AM has also considered the flow behaviour of particulate composites. Some
studies have investigated the rheology of carbon fibre (CF) reinforced polymer composites
showing general shear-thinning behaviour and that the addition of CF can increase the shear-
thinning characteristics of the polymer melt [33,34], but the range of φ investigated was limited
and confinement effects were not considered. Wang and Smith [35,36] used computational
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Figure 1. Particle diameter distributions for (a) FG 22 and (b) A3000. (Online version in colour.)

methods to simulate the flow behaviour of fibre-based polymer composites inside a nozzle,
including model rheology effects. The emphasis in these studies, however, was on fibre
orientation following printing and the resulting mechanical properties of the solid printed
material.

The objective of this investigation is to investigate the rheology of particulate suspensions in
shear-thinning non-Newtonian fluids, including the jamming effects associated with extrusion
through confined channels (capillaries), and provide a model for describing the observed
behaviour. Such information will be helpful in understanding the behaviour of particulate
composites under different processing conditions, particularly those relevant for AM where a
range of particle loading may be used and the confining effects of the small extrusion nozzles can
make extruding these materials challenging.

In this work, §2 presents the design of the rheometer used to investigate the particulate
suspensions and the range of conditions investigated. Section 3 presents the measured rheology
of the suspensions in terms of the flow consistency index (K) and flow behaviour index (n) for
the observed power-law behaviour of the suspensions. Section 4 develops models describing
measured trends in K and n. Section 5 presents the conclusions.

2. Experiment design and set-up
The suspensions formulated for this investigation used Momentive UV-Electro 225-1 Base silicone
(K = 93 Pan · s and n = 0.816 [−], referred to as UV 225-1 throughout) and a corn syrup mixture
(K = 62 Pan · s and n = 1.00 [−], 95% ADM corn syrup 42/43 and 5% water (volume fraction),
referred to as ‘ADM’ throughout) as the suspension fluids. The UV 225-1 is a shear-thinning liquid
that was used in place of polymer melts to avoid dealing with high temperatures and the corn
syrup mixture provided a Newtonian suspension fluid for comparison purposes. Two types of
particles were used in the suspensions: Fibre Glast Microspheres 22 (d = 0.0420 mm, referred to as
FG22 throughout) and Spheriglass® Solid Glass Microspheres A3000 (d = 0.0299 mm, referred
to as A3000 throughout). The mean diameters and size distribution of both particles were
measured by imaging over 2000 of each type with a microscope (OLYMPUS BX60F-3 10 × 20) and
extracting the particle sizes from the images using MATLAB (with an accuracy of ±0.0014 mm).
Their particle diameter distributions are shown in figure 1.

Suspensions were prepared by mixing the particles and suspension fluids at the desired weight
ratio with an orbital mixer (Flacktek Speedmixer DAC 150.1 FVZ-K) for around 5 min at a
speed of 3000 r.p.m. (to make the suspension uniform and eliminate air bubbles). The weights
of the materials were measured with a scale (Cole-Parmer Symmetry UX-20000-34). The required
weight of each component was calculated according to their density and required particle volume
fraction (accurate to within 0.5%).

To quantify the rheology of the prepared suspensions, a capillary rheometer was designed and
built as illustrated in figure 2. A capillary rheometer was used as opposed to other rheometer
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(a) (b)

Figure 2. (a) Rheometer schematic and (b) the actual system. (Online version in colour.)

configurations as particles may migrate in a rotary rheometer (affecting the local material
properties) and the capillaries introduce a confinement effect similar to AM extrusion nozzles that
can be investigated by using capillaries with different D. A motorized linear stage (OpenBuild
C-Beam Linear Actuator Bundle and NEMA 23HS22-2804S-PG47 Stepper) with a linear accuracy
of 0.091 mm was used to actuate the syringes and drive the flow. The capillaries were seamless
steel tubing with D of 0.3302, 0.4064, 0.6096, 0.8382, 1.36, 1.73, 2.01, 3.05, 3.861 and 4.572 mm
and different lengths. Omega Engineering PX61V1-1KGI (accuracy of 690 Pa) and PX61v1-100GI
(accuracy of 69 Pa) pressure transducers were used for measuring the pressure required to drive
the flow through the capillaries. Within the rheometer, the flow rate Q was controlled to keep the
wall shear rate of the flow in the range of 0.5–50 s−1 (see equations (2.1)–(2.3)) using the motorized
stage. When the flow arrived at steady state, the pressure drop in the capillary from the pressure
transducer was recorded.

To avoid pressure measurement inaccuracy because of the contraction and developing region
at the capillary entrance, tests were done on the capillaries with two different lengths for the
same D as illustrated in figure 3. Lengths of the capillaries were determined to guarantee the
flow in the region L was (hydrodynamically) fully developed and laminar based on the related
theories [37]. (The particle distribution remained uniform throughout as will be discussed in §4b,
so no entrance length for this property was considered.) Then the pressure drop �P in the region
L was obtained from the difference in pressure drop for the two different length tubes (with
the same radius R = D/2) at the same flow rate. By testing with different flow rates, the wall
shear stress τw, wall shear rate γw and effective viscosity μ were calculated from the following
results [38]:

τw = R
2L

�P, (2.1)

n = d(ln(Q/πR3))
d(ln(τw))

, (2.2)

γ̇w = 4Q
πR3

(
1
4

n + 3
4

)
(2.3)

and μ = τw

γ̇w
. (2.4)

For the suspensions tested, it was found that n in equation (2.2) was constant for the same
suspension in a capillary with the same D. Thus, it was concluded that the suspensions follow a
power law model in which the shear stress can be described as

τ = Kγ̇ n. (2.5)

Here, K is the flow consistency index and n is the flow behaviour index. τ and γ̇ are the shear
stress and rate.
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Figure 3. (a) Schematic diagram and (b) image of the capillaries with length L1 and L2. (Online version in colour.)

To quantify the impacts of particle volume fraction φ, particle mean diameter d and capillary
inside diameter D on the particulate suspension rheology in the capillary, the flow consistency
index K and flow behaviour index n were obtained for the suspensions made of UV 225-1 and
FG 22/A3000 (φ = 10%, 20%, 30%, 40%) separately. Suspensions with ADM and FG 22 (φ = 30%)
were also tested for comparison.

3. Experiment results
Results for K and n as a function of ω = D/d for the φ investigated are shown in figure 4.
Suspensions with different formulations are indicated by symbols with different colours and
shapes. The error bars represent the standard deviation of the results over five tests at each
condition.

The results in figure 4 show that the UV 225-1 suspensions exhibit non-Newtonian, shear-
thinning behaviour (n<1) for all φ investigated with a weak dependence of n on φ, while the ADM
suspension exhibited Newtonian behaviour (n ≈ 1). Interestingly, a similar shape in the trend
for K (dotted lines) was observed for all cases tested. The trend line shape stays the same with
varied particle volume fraction, suspension fluid and particle diameter, but seems to be shifted
and scaled depending on particle type and volume fraction. A sharp rise in K was observed as
ω decreased, corresponding to the approach to the jamming transition as the capillary diameter
approached the particle mean diameter.

Despite the flow contraction entering the capillary tube in the rheometer (figure 2), there
did not appear to be self-filtration due to intermittent jamming at the contraction as reported
in Haw [39]. For example, UV 225-1 suspensions with A3000 particles for φ = 30% at ω = 43.0
and a volume flow rate of 0.1 ml min−1 gave mass flow rates of 0.150 ± 0.001 g min−1 leaving
the capillary tube. Based on the density of the suspension fluid and particles, the expected
mass flow rate was 0.150 g min−1, indicating the suspension fluid and particles were exiting the
capillary in the same volume ratio at which they entered because the density of the particles was
approximately 2.5 times larger than that of the fluid. The reason no self-filtration was observed
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mean diameterω: (a) and (b) results for UV225-based suspensions with legend labels following the format: [particle volume
fraction] – [particle type], (c) and (d) results for the ADM-based suspensions. (Online version in colour.)

could be because the critical φ to observe this behaviour was not reached, or because of differences
in the suspension fluid, which in this case was both shear thinning and approximately 104 times
more viscous than the suspension fluid used in Haw [39]. Likely, a combination of these factors
was at play.

4. Data analysis and modelling
In this section, models describing the behaviour of K and n in terms of ω and φ will be developed.

(a) Flow behaviour index
As presented in figure 4b,d, ω had minimal effect on the flow behaviour index n, but it exhibited
a weak dependence on φ. Specifically, n decreased with increasing φ for the shear-thinning
suspension fluid investigated and was equal to 1 regardless of φ for the particulate suspension
with a Newtonian suspension fluid, which is also the case for all the models in table 1. That is,
over the range of conditions studied, for a suspension of particles in a Newtonian suspension
fluid at fixed φ, the suspension remained Newtonian, whereas the suspension became more shear
thinning when particles were added to a shear-thinning suspension fluid.

A model for the flow behaviour index is described as

n = nf (1 + aφ), (4.1)

where nf is the flow behaviour index of the suspension fluid and a is an adjustable parameter.
For the UV 225-1-based experiments, a least-square fit of equation (4.1) to the results gives a =
−0.23 ± 0.01 as shown in figure 5. For a Newtonian fluid, a = 0, and in general, a may depend on
the suspension fluid.
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(b) Flow consistency index
The flow consistency index shows a strong dependence on ω. For large ω, K is approximately
constant, but it initially decreases with decreasing ω and then increases as ω is decreased further
toward zero. When ω is small enough, the capillary becomes blocked and the flow consistency
index increases sharply towards infinity.

The general trend observed for K at fixed φ is illustrated schematically in figure 6. The
minimum in K occurs at a boundary defined by ωpic, below which the rheology is dominated
by increasing particle-to-particle and particle-to-wall frictional contacts as ω is decreased until
sufficient contacts per particle are achieved to effect jamming at ωjc. The ‘particle interaction’
condition governs the flow for ωjc < ω < ωpic, due to the strong contact interactions in this region.
Conversely, the ‘free flow’ condition occurs for ω > ωpic, where the rheology is dominated by an
intervening lubrication layer of suspension fluid between the particles that allows for smooth
suspension flow for the range of φ tested (φ < φM). This region includes both the constant K
behaviour as ω → ∞ and the dip in K as ω decreases toward ωpic. The decrease in K is not treated as
separate behaviour as measurements [1] (discussed below) showed that in this region the particles
were still uniformly distributed in the capillary cross section similar to larger ω behaviour.
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Figure 7. (a) Cross section of a micro-CT scan of a particulate suspension (φ = 10%), (b) Average grey scale of micro-CT scans
versus radial position (φ = 10%).

The observed uniformity of the particle distribution in the capillary cross section deserves
further discussion. Generally, the inhomogeneous shear experienced by the particles in these
flows is known to induce a non-uniform particle distribution sufficiently far downstream in
the tubes, even for shear-thinning suspension fluids [24,40,41]. This behaviour, however, was
not observed in the present investigation. To confirm this, particle distributions inside the
capillary at the entrance and (hydrodynamically) fully developed region were visualized via a
micro-CT (SkyScan 1172 high-resolution desktop scanner at a resolution of 2.00 µm). For these
measurements, samples were fabricated by extruding the suspension (with the addition of a
curing agent) into transparent tubing (D = 1.286 mm) and then curing the silicone polymer with
a UV light to create a solid sample that could be further analysed. Three samples were fabricated
including samples cured during and after extrusion in the (hydrodynamically) fully developed
region, and a sample cured after extrusion in the entrance region. A sample cross section obtained
from the micro-CT scans is shown in figure 7a for φ = 10% (UV 225-1 with A3000 particles). The
lighter regions are the particles and the darker regions are the silicone. Hence, the radial particle
density distribution can be obtained by calculating the average of grey scale of the sample at
different radial positions for all axial cross sections in a given region. The result for this sample is
shown in figure 7b, which shows the particle volume fraction is uniform in the tube cross section
from the entrance to the fully developed region. Similar results were obtained for φ = 30%.

This difference between the present results and other studies showing particle migration and
non-uniform particle distributions in particulate suspensions extruded through tubes is likely
related to the differences in flow geometry and fluid properties. Tehrani [40] indicates the radial
migration velocity (Vr) of particles in non-Newtonian fluids is determined by

Vr ∝ d2We
∂γ̇

∂r
, (4.2)

where We is the Weissenberg number given by the ratio of the first normal stress difference to the
shear stress (N1/τ ). Then the entrance length for the particle distribution scales like Lep ∼ UD/Vr

where U is the average velocity in the tube. Using γ̇ ∼ U/D and ∂γ̇ /∂r ∼ γ̇ /D gives

Lep

D
∼ ω2

We
. (4.3)

Considering a typical shear rate of 50 s−1, We for the ‘fluid like’ samples used in Tehrani [40]
were in the range 2.2 ∼ 36, whereas We ≈ 0.47 for UV 225-1 using correlations in Steller [42]. For
the free-flow condition, ω > 30, indicating that Lep/D for this investigation would be �102 times
larger than that in Tehrani [40], leading to Lep/D > 1000 for the present results. Higher φ would
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likely influence these predictions (Tehrani [40] used φ = 5% and 12%), but increasing φ makes the
suspensions investigated here more shear thinning (as noted above), which can produce more
plug-like flow and slow particle migration (increase Lep). So, while measurable particle migration
might appear for extremely long capillary lengths, such behaviour would be unrealistic for the
target application of AM (where flow paths tend to be relatively short) and uniform particle
distributions will be assumed in the following.

Using the assumption of uniform particle distribution in the free-flow condition, mathematical
models for the observed trends in K are developed in the following based on the governing
behaviour (free flow versus particle interaction) for each condition.

(i) Model of the free-flow condition

The total shear force F on the capillary wall can be described as

F = τwAc = Kγ̇ n
wAc, (4.4)

where τw and γ̇w are the shear stress and shear rate at the capillary wall; K and n are the particulate
suspension consistency and behaviour indices (respectively); and Ac is the capillary surface area
in contact with the suspension. The total shear force is the result of the contributions from the
individual suspension components. Specifically, particles near the capillary wall influence the
fluid flow near the wall by diverting flow between the wall and the particles as illustrated in
figure 8.

The total flow is the combination of the effects from regions (Ai) where particles are influencing
the flow near the wall and the rest of the capillary wall region where the fluid flow effects
dominate. Hence, the total force on the capillary wall can also be obtained as

F =
∑

Fim + Fun, (4.5)

where Fim are the wall forces generated under the influence of particles near the wall and Fun are
the forces generated without particle influence.

To describe the characteristics of wall flow with and without particle influence, the distance
between a particle and the centreline of the capillary is defined as q. The radius of the inner
boundary of the region where the particles may influence the wall shear rate is defined as q0. For
any particle where q < q0, the wall shear rate will not be influenced by the particle and the shear
rate is defined as γ̇w,0. For a particle where q > q0, the wall shear rate will be influenced by the
particle, and the particle is defined as a wall particle. The average wall shear rate influenced by
the ith wall particle is defined as γ̇ w,i, and the area on the wall where the shear rate is influenced
is defined as Ai, as illustrated in figure 8.
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Based on the above description of the flow, the force on the capillary wall can be derived as

F =
Nw∑
i=1

Kf (γ̇ w,i)
nf Ai + Kf γ̇

nf

w,0

⎛
⎝1 −

Nw∑
i=1

Ai

⎞
⎠ , (4.6)

where Kf and nf are the flow consistency and behaviour indices (respectively) for the fluid, and
Nw is the number of particles near the wall (q > q0). Since the total force on the capillary wall is
the same in equations (4.4) and (4.6), the relationship between K and Kf can be derived as

K
Kf

=
⎛
⎝1 +

Nw∑
i=1

((
γ̇ w,i

γ̇w,0

)nf

− 1

)
Ai

Ac

⎞
⎠ γ̇

nf

w,0

γ̇ n
w

. (4.7)

Hence, K/Kf is determined by the four terms: γ̇
nf

w,0/γ̇
n
w , γ̇ w,i/γ̇w,0, Ai/Ac and Nw. To analyse the

relation between K/Kf and properties of the particles, properties of the suspension fluid, and D,
these four terms will be discussed separately below.

Analysis for γ̇
nf

w,0/γ̇
n
w : as noted in §b, the fully developed suspension can be regarded as uniform

at the free-flow condition, so the velocity profile is expected to have a universal shape for different
D. Hence, γ̇w,0 and γ̇w are also constants at the free-flow condition after non-dimensionalizing.
Since n with the same suspension fluid is a function of φ only as discussed above, it can be
concluded that γ̇

nf

w,0/γ̇
n
w is a function only of φ, denoted as G(φ). Using equation (4.1), G(φ) can

be represented as

G(φ) =
γ̇

nf

w,0

γ̇ n
w

=
γ̇

nf

w,0

γ̇
nf (1+aφ)
w

=
γ̇

nf

w,0

γ̇
nf
w

γ̇
−nf aφ
w =

γ̇
nf

w,0

γ̇
nf
w

eln(γ̇
−nf aφ
w ) =

γ̇
nf

w,0

γ̇
nf
w

e−nf aφ ln(γ̇w) = C1eb1φ , (4.8)

where C1 and b1 = −nf a ln(γ̇w) are constants. Combining equations (4.7) and (4.8) gives

K
Kf

= G(φ)fs, (4.9)

with

fs = 1 +
Nw∑
i=1

((
γ̇ w,i

γ̇w,0

)nf

− 1

)
Ai

Ac
. (4.10)

Analysis for γ̇ w,i/γ̇w,0: the term γ̇ w,i/γ̇w,0 is the ratio of wall shear rates for the cases with and
without particles near the capillary wall. As the fluid in the capillary is the same with only the
radial position of the particles relative to the wall changing, the boundary flow profile shape near
the capillary wall can be assumed ‘similar’ for the two cases. That is, the velocity profile near the
wall is modelled as

u = UH
(

y
ym

)
, (4.11)

for 0 < y < ym where y = R − q and ym is the radial distance from the capillary wall at which the
flow reaches the centerline velocity U, and H is a function describing the velocity profile shape.
Then the shear rate of the boundary layer can be expressed as

γ̇ = ∂u
∂y

= H′(0)
U
ym

. (4.12)

Assuming the particle influence on the shear rate scales with particle size gives

(ym)0 ≡ R − q0 = ε0r (4.13)

and

(ym)i ≡ R − qi = εir, (4.14)



12

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210615

..........................................................

q R

R

r

r

x

qi

qi

si,2

si,1

b

b

(a) (b)

Figure 9. Schematic diagram of the ith wall particle and its geometrical relation with the capillary and influenced area in the
(a) axial direction and (b) radial direction. (Online version in colour.)

where r is the particle radius, and ε0 and εi are determined by the flow conditions. Then using
equation (4.12), the term γ̇ w,i/γ̇w,0 can be expressed as

γ̇ w,i

γ̇w,0
= ε0

εi
. (4.15)

Model for Ai/Ac: for the region of particle influence, the ith wall particle can affect wall shear
within the area of Ai on the wall as illustrated in figure 9.

Based on the geometrical relations shown in figure 9 and the approximation β ≈ tan β = r/qi
for D/d > 20, the following geometrical relations and approximations can be found.

Ai

Ac
= (π/4)si,1si,2

2πRL
= (π/4)(2βR)(2R tan β)

2πRL
= R

2L

(
r
qi

)2
= R

2L

(
r

R − εir

)2
. (4.16)

This construction emphasizes that the dominant influence of the particle narrows to the region
just between the particle and the wall as particles approach the wall, where the effect on the wall
shear stress is greatest.

Model for Nw: as the value of εi can vary with particle location within the capillary and the total
number of wall particles (Nw) is large, using ε̄ as the average of εi in the above results gives

fs = 1 +
Nw∑
i=1

((
ε0

εi

)nf

− 1
)

R
2L

(
r

R − εir

)2
= 1 + Nw

(( ε0

ε̄

)nf − 1
) R

2L

(
r

R − ε̄r

)2
. (4.17)

Based on the geometry of the capillary and particles, the total number of particles in the
capillary, Np, the total number of wall particles can be expressed as

Nw = NpPw = 3
4
φL

R2

r3 = 3φL
4R

ω3Pw, (4.18)

where Pw is the probability that a particle is in the region influencing the wall shear rate (q > q0).
As the particles are uniformly distributed inside the capillary on average, Pw can be calculated

based on geometrical considerations. Calculation of Pw in the actual three-dimensional case can
be simplified to the calculation of the probability for an equivalent two-dimensional projection
onto the capillary cross section as illustrated in figure 10a. The probability that a particle is in the
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Figure 10. (a) Schematic diagram of particles randomly distributed in a ring area and dimensions related to different regions
thatmay contain particles. (b) Schematic diagramof particles and their interaction spheres under dense packing. (Online version
in colour.)

ring area between the radii of R1 and R2 can be determined as the ratio of the total accessible area
in the ring to that of the capillary, namely,

PR1↔R2 = (R2 − r2D)2 − (R1 + r2D)2

(R − r2D)2 , (4.19)

where R is the radius of the capillary, and r2D is the adjusted particle radius for the two-
dimensional case. (For behaviour with a non-uniform particle distribution, equation (4.19) can
be modified accordingly.) For the two-dimensional case, the particles are treated as cylinders of
length 2r, so the equivalent radius is determined as r2D = √

2/3r by matching particle volume,
namely, (2r)πr2

2D = 4
3 πr3. Hence, Nw can be derived as

Nw = NpPw = 3φL
4R

ω3 (2ω − ε0)
(
ε0 − 2

√
2/3

)
(
ω − √

2/3
) . (4.20)

Using the above results, fs for the free-flow condition (ω > ωpic) can be modelled as

fs = 1 + 3φ

8

(
ε0 − 2

√
2
3

)(( ε0

ε̄

)nf − 1
) ω3(2ω − ε0)

(ω − ε̄)2
(

ω −
√

2
3

)2 , (4.21)

where ε0, ε̄ and ωpic are determined by the suspension properties.
Determination of ωpic, ε0 and ε̄: particles begin interfering with each other to increase K under

the particle interaction condition (ω < ωpic). The interaction comes from the forces generated
between adjacent particles by the flow between them when the separation distance is small
enough, resulting in rapid increasing of the flow consistency index. As the interaction is
perpendicular to the flow direction, the particle separation distance causing the interaction is in
the radial direction as illustrated in figure 10b. The fluid within the region of particle interaction
is represented by a sphere with the radius of rp−p. When the distance between two particles is
smaller than 2rp−p, they are considered to interact.

Based on these assumptions, when ω = ωpic (where particle interaction starts), the relationship
between rp−p and the capillary dimensions is given by

N2Dπr2
p−p = φSPπR2, (4.22)

where φSP is the sphere volume ratio for close packing in the capillary (cylinder) and N2D is the
number of particles in the capillary cross section. In this case (ω = ωpic), ω is large enough that the
boundary spheres around the particles can be regarded as densely packed inside the capillary.
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According to the geometrical relationship between the particle and capillary cross sections,
N2D can be derived as N2D = φπR2/πr2

2D = 3φR2/2r2 = (3φ/2)ω2. As the particles are constrained
in the capillary with the radius of R, it is reasonable to assume when αp−p ≡ R/rp−p arrives
at a characteristic value, αpic, the particle interaction condition is achieved. Hence, the relation
between ωpic and the particle volume fraction φ has the following form:

ωpic = C2√
φ

, where C2 = αpic

√
2
3
φSP. (4.23)

As the options of capillary and particle diameter were limited, ωpic could not be directly
detected from the experiments. Instead, ωpic was approximated by the intersection of linear best-
fit lines on both sides of the minimum in K. An example for φ = 10% is illustrated in figure 11a.
A least-square fit of equation (4.23) to the resulting values for ωpic in suspensions using UV
225-1 gives C2 = 18.5 ± 0.2. The uncertainties were calculated from the Jackknife method [43].
The results of this fit are shown in figure 11b.

The ε0r term is the largest distance from the capillary wall for which particles may affect the
wall shear rate. At the end of the free-flow condition (ω = ωpic), the flow has the largest number
of particles impacting the wall shear rate. To simplify the calculation, it can be assumed that all
the particles affect the wall shear rate at this point. Hence, the governing radius of the sphere is
the same as the capillary radius. That is, at ω = ωpic, ε0r = R. Hence,

ε0 = ωpic = C2φ
− 1

2 (4.24)

The average distance between particles and the capillary wall is given by ε̄r. For real flows,
many factors may impact on this value. To accommodate this complexity, ε̄ is determined
empirically using measurements of Kmin/Kinf where Kmin is the minimum value of K when
ω = ωpic for a given φ and Kinf is the value of K when ω → ∞, which can be regarded as a constant
for the same φ.

Values of Kinf at φ = 30% and 40% were directly measured from data in figure 4a. However,
Kinf could not be measured directly at φ = 10% and 20% since the data did not reach a constant
value in the range of ω tested. Instead, values of Kinf at φ = 10% and 20% were extrapolated from a
second-order polynomial model (an exponential model provided similar results). Determination
of Kmin was done simultaneously with ωpic following the method illustrated in figure 11a.

Kmin/Kinf can be expressed as a function of ε̄ and φ using equation (4.21). A least-square fit of
this result for the determined values of Kmin and Kinf at each φ was used to find ε̄. As ε̄ is closely
related with ε0, an empirical power law relationship is proposed for this parameter

ε̄ = C3φ
b3 , (4.25)
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where C3 and b3 are two adjustable constants. A least-square fit of equation (4.25) to the UV
225-1-based suspension gives C3 = 3.5 ± 0.4 and b3 = −0.34 ± 0.11 as shown in figure 12.

Using the model developed above, fs at ω = ∞ (constant K) can be calculated as 20.3, 24.1, 26.1
and 27.2 for φ = 10%, 20%, 30% and 40%, respectively. With measured K and Kf , the values of G
were obtained as 6.6, 7.2, 9.1 and 10.7 for φ = 10%, 20%, 30% and 40%, respectively. A least-square
fit of equation (4.8) gives C1 = 5.6 ± 0.4 and b1 = 1.6 ± 0.2.

Combining the above results, the complete model for K in the free-flow condition is given by

K
Kf

= C1 eb1φ

[
1 + 3φ

8

((
C2

C3
φ(1/2)−b3

)nf

− 1
)(

C2φ
1/2 − 2

√
2
3

)
ω3(2ω − C2φ

1/2)
(ω − C3φb3 )2

(
ω − √

2/3
)
]

.

(4.26)

A plot of this model with the experimental data is included in figure 14, which shows
that the model generally follows the trends in the data well for ω > ωpic. The possible reasons
for differences between the model and experiments (aside from experimental uncertainty and
uncertainty in the model-fitted parameters) are likely related to simplifications used to obtain
the model. Ignored relative positions among particles, such as particles located adjacent to or
sheltered by others, and their polydisperse character, may lead to complex packing density and
other effects and result in higher or lower flow consistency index on the wall.
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(ii) Model for the particle interaction condition

As shown in figure 4a, K increases with decreasing ω for the particle interaction condition
(ωjc < ω < ωpic). This behaviour results from the interaction of nearby particles as flow space
becomes restricted. The interaction becomes stronger with smaller distance between particles,
which is controlled by ω and φ. Given the likely complex nature of this interaction that is difficult
to visualize, the behaviour in the particle interaction condition is modelled using an empirical
relationship as

K = A
(ω − ωjc)b

, (4.27)

where ωjc is the value of ω when jamming occurs (K → ∞), and A and b are curve-fitting
parameters. As the equation is valid within ωjc < ω < ωpic, A can be derived as A = Kmin(ωpic −
ωjc)b in order to match the model for the free-flow condition at ωpic. Hence, equation (4.27) can be
expressed as

K
Kmin

=
(

ωpic − ωjc

ω − ωjc

)b

. (4.28)

Model for ωjc and b: the value of ωjc is difficult to determine directly, which was compounded by
limited options for capillary and particle diameters. So instead, it was determined, together with
b, by fitting equation (4.28) to the data for ω < ωpic. A least-square fit of equation (4.28) was used to
determine b and ωjc for each φ. The values for b were similar in all cases, so b is taken as the average
value of 0.21. The values for ωjc were obtained as 2.7, 3.0, 4.4 and 8.4 for φ = 10%, 20%, 30% and
40%, respectively, and are plotted in figure 13.

According to the experimental results, for constant φ jamming occurs at larger ω as φ is
increased. This behaviour is expected from behaviour at limiting conditions. For the limiting
case of only one particle in the suspension, φ = 0. However, jamming can still happen with
only one particle in the capillary if the particle is the same diameter as the capillary. That is,
ωjc → 1 as φ → 0. With more particles added into the suspension, φ increases and will approach
its maximum particle volume fraction, φM, for which each particle is in contact with multiple
other particles and the liquid matrix fills the voids. At this condition, the particle configuration
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is stable even under the action of finite loads and the suspension has become jammed even with
a very large capillary. For this condition, ωjc → ∞. The value of φM may be impacted by many
factors, including the flow state and polydispersity [25,26,44]. To simplify the analysis, it will be
assumed that φM ≈ 0.585, which is appropriate for monodisperse spheres [27] and is close to the
range of values for bidisperse spheres [26]. To capture the dependence of ωjc on φ (for a fixed φ),
it is represented as

ωjc = C4

(φM − φ)b4
, (4.29)

where C4 and b4 are two adjustable parameters. For UV 225-1-based suspensions, a least-square
fit of equation (4.29) to the results for ωjc gives the values of C4 = 0.55 ± 0.16 and b4 = 1.62 ± 0.28
with the resulting curve fit shown in figure 13.

Hence, from equations (4.28) and (4.29), K under the particle interaction condition is modelled
as

K
Kmin

=
(

C2φ
−1/2 − C4(φM − φ)−b4

ω − C4(φM − φ)−b4

)b

, (4.30)

where Kmin is calculated from equations (4.24) and (4.26). This equation is plotted in figure 14 for
ω < ωpic and follows the measured results well for this region.

Particle diameter distribution impact and jamming: besides φ and ω, there is another possible factor
influencing the suspension rheology under the particle interaction condition. As presented in
figure 4a, the K values may differ when ω is the same but the particles are different. This may
be caused by different particle diameter distributions. It is also noted that suspensions of the
same particle volume fraction with particles having a wider particle diameter distribution (A3000
particles) have a larger K for the same ω, especially for ω < ωpic. A possible explanation is that the
larger particles dominate the interaction. It is also found that this trend is more significant with
a higher particle volume fraction, as the interaction is stronger when there are more particles to
interact.

Jamming occurs when particles begin to cluster and span the entire capillary. The most
important parameter describing jamming is ωjc. An empirical model proposed in equation (4.29)
captures the basic behaviour. It shows ωjc increasing with φ increasing as expected, meaning
jamming tends to occur with a larger difference between the capillary diameter and the mean
particle diameter when the particle volume fraction is higher.

One key characteristic of jamming is that it does not always happen at ωjc. As ωjc is derived
from the semi-empirical process, the impact of the particle diameter distribution is ignored. In
the real situation, the particles at any given location within the flow have different diameters. The
particle clustering that spans the capillary cross section and halts the flow is dominated by the
larger particles. Hence, jamming has a higher probability of happening when the particle diameter
range is larger for the same ω and φ. For example, when ω was reduced, jamming happened in
three out of three tests at similar ω with the suspension made of UV 225-1 and φ = 30% using the
FG22 particles and happened in two out of three tests with the suspension made of UV 225-1 and
φ = 30% using the A3000 particles.

Finally, the impact of particle diameter distribution on jamming is stronger with larger φ. The
possibility of particle jamming was different for the φ = 30% suspensions as discussed above.
However, there was almost no difference in jamming with FG22 and A3000 at φ = 10%. This
behaviour is also expected following the trends observed for the particle interaction condition,
which has a much weaker interaction for smaller φ.

5. Conclusion
In this work, the rheology of particulate suspensions in shear-thinning fluids was investigated,
concentrating on the flow behaviour (n) and consistency (K) indices. Related theories and models
on viscosity were reviewed and compared. Experiments to investigate the indices in a confined
environment similar to extrusion through a small nozzle were designed and conducted. Particle
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volume fraction (φ) and the ratio of capillary inside diameter to the particle mean diameter (ω)
were found to be the key factors impacting the suspension rheology.

Based on the experimental results, the flow behaviour index n was found to be only dependent
on φ for a suspension with the same suspension fluid. A linear relation between n and φ

was observed and modelled with an empirical equation with acceptable accuracy. The primary
difference observed between suspensions with Newtonian and shear-thinning suspension fluids
was that adding particles to a shear-thinning suspension fluid made the suspension more shear
thinning while a suspension in a Newtonian suspension fluid remained Newtonian.

Experimental results showed that the behaviour of K for suspensions with different φ followed
similar trends with ω. The behaviour was classified into two categories: the free-flow condition
and the particle interaction condition. Analysis of the flow behaviour attributing differing effects
based on particle proximity with the wall in the free-flow condition produced a model for this
behaviour with few empirical parameters and a corresponding empirical model for the particle
interaction condition was constructed. With all the models together, the flow consistency index
of the particulate suspension with different φ and ω can be described with acceptable accuracy,
as illustrated in figure 14. Differences between the model and tested results were also discussed
in terms of the approximations made in the model. In particular, it was noted that flow with the
same φ and ω had a larger K when the particles had a wider diameter distribution. Such particle
diameter distribution effects likely had an effect on jamming as well, with some limited data
indicating a higher φ and a wider particle diameter distribution may result in a higher probability
of jamming occurring.

Using the obtained models in AM applications, the manufacturing process can be improved.
Based on the requirements of accuracy and the particle volume fraction of the particulate
composites, the extruder nozzle ID and particle mean diameter can be properly selected and
optimized. Jamming can be avoided by keeping the ratio of extruder nozzle ID to the particle
mean diameter larger than the jamming ratio, ωjc, for the chosen particle volume fraction.
Relatively small extruding force can be achieved by keeping ω close to the ratio of the intersection
of two flow conditions, ωpic. Minimizing repeated work caused by jamming and unsatisfactory
material properties can improve manufacturing efficiency and quality.

However, additional work is necessary to apply the models to AM situations. Temperature
effects were avoided in this investigation by using silicone, and the rheology of polymer melts
used in AM is strongly dependent on temperature [3,45]. Also, the extruder nozzle is shorter with
a more complex geometry compared with the capillaries used in this investigation. Additional
work considering appropriate temperature and geometry corrections would be necessary to
accurately apply these models to the range of conditions encountered in AM, but this work
provides the framework and establishes the key factors for consideration in these applications.

Data accessibility. The processed experimental data are available on the SMU research archive, SMU Scholar, at
https://scholar.smu.edu/engineering_mechanical_research/6/.
Authors’ contributions. B.X.: conceptualization, data curation, formal analysis, investigation, methodology,
software, validation, visualization, writing—original draft; P.K.: conceptualization, funding acquisition,
investigation, methodology, validation, writing—review and editing.

Both authors gave final approval for publication and agreed to be held accountable for the work performed
therein.
Conflict of interest declaration. We declare we have no competing interests.
Funding. This paper is based on the work supported by the National Science Foundation under grant no.
1317961. The first author, B.X., was supported by a Moody Dissertation Fellowship from the SMU Moody
Graduate School during the last year of this investigation.
Acknowledgements. Research was performed at the Department of Mechanical Engineering, Southern Methodist
University, Dallas, Texas. The authors also appreciate for their assistance: Prof. Xu Nie, Dr Qiran Sun, Dr Matt
Saari, Travis Mayberry and Gorkem Guclu.

References
1. Xia B. 2021 Rheology and electrical conductivity of particulate composites in additive manufacturing.

Phd dissertation, Southern Methodist University.

https://scholar.smu.edu/engineering_mechanical_research/6/


19

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210615

..........................................................

2. Liu Z, Bhandari B, Prakash S, Mantihal S, Zhang M. 2019 Linking rheology and printability
of a multicomponent gel system of carrageenan-xanthan-starch in extrusion based additive
manufacturing. Food Hydrocolloids 87, 413–424. (doi:10.1016/j.foodhyd.2018.08.026)

3. Das A, Gilmer EL, Biria S, Bortner MJ. 2021 Importance of polymer rheology on material
extrusion additive manufacturing: correlating process physics to print properties. ACS Appl.
Polymer Mater. 3, 1218–1249. (doi:10.1021/acsapm.0c01228)

4. Einstein A. 1906 Eine neue bestimmung der moleküldimensionen. Ann. Phys. 19, 289–306.
(doi:10.1002/andp.19063240204)

5. Simha R. 1952 A treatment of the viscosity of concentrated suspensions. J. Appl. Phys. 23,
1020–1024. (doi:10.1063/1.1702338)

6. Guth E, Simha R. 1936 Untersuchungen über die viskosität von suspensionen und
lösungen. 3. über die viskosität von kugelsuspensionen. Kolloid-Zeitschrift 74, 266–275.
(doi:10.1007/BF01428643)

7. Ford TF. 1960 Viscosity-concentration and fluidity-concentration relationships for
suspensions of spherical particles in newtonian liquids. J. Phys. Chem. 64, 1168–1174.
(doi:10.1021/j100838a015)

8. Vand V. 1948 Viscosity of solutions and suspensions. I. Theory. J. Phys. Chem. 52, 277–299.
(doi:10.1021/j150458a001)

9. Mooney M. 1951 The viscosity of a concentrated suspension of spherical particles. J. Colloid
Sci. 6, 162–170. (doi:10.1016/0095-8522(51)90036-0)

10. Brinkman HC. 1952 The viscosity of concentrated suspensions and solutions. J. Chem. Phys.
20, 571–571. (doi:10.1063/1.1700493)

11. Krieger IM, Dougherty TJ. 1959 A mechanism for non-newtonian flow in suspensions of rigid
spheres. Trans. Soc. Rheol. 3, 137–152. (doi:10.1122/1.548848)

12. Wildemuth CR, Williams MC. 1984 Viscosity of suspensions modeled with a shear-dependent
maximum packing fraction. Rheol. Acta 23, 627–635. (doi:10.1007/BF01438803)

13. Bournonville B, Nzihou A. 2002 Rheology of non-newtonian suspensions of fly ash: effect
of concentration, yield stress and hydrodynamic interactions. Powder Technol. 128, 148–158.
(doi:10.1016/S0032-5910(02)00192-4)

14. Senapati PK, Mishra BK, Parida A. 2010 Modeling of viscosity for power plant ash slurry
at higher concentrations: effect of solids volume fraction, particle size and hydrodynamic
interactions. Powder Technol. 197, 1–8. (doi:10.1016/j.powtec.2009.07.005)

15. Thomas DG. 1965 Transport characteristics of suspension: VIII. A note on the viscosity
of newtonian suspensions of uniform spherical particles. J. Colloid Sci. 20, 267–277.
(doi:10.1016/0095-8522(65)90016-4)

16. Blissett RS, Rowson NA. 2013 An empirical model for the prediction of the viscosity of slurries
of coal fly ash with varying concentration and shear rate at room temperature. Fuel 111,
555–563. (doi:10.1016/j.fuel.2013.03.003)

17. Cross MM. 1975 Viscosity-concentration-shear rate relations for suspensions. Rheol. Acta 14,
402–403. (doi:10.1007/BF01527133)

18. Hasegawa R, Aoki Y, Doi M. 1996 Optimum graft density for dispersing particles in polymer
melts. Macromolecules 29, 6656–6662. (doi:10.1021/ma960365x)

19. Kataoka T, Kitano T, Sasahara M, Nishijima K. 1978 Viscosity of particle filled polymer melts.
Rheol. Acta 17, 149–155. (doi:10.1007/BF01517705)

20. Kataoka T, Kitano T, Oyanagi Y, Sasahara M. 1979 Viscous properties of calcium carbonate
filled polymer melts. Rheol. Acta 18, 635–639. (doi:10.1007/BF01520361)

21. Kitano T, Kataoka T. 1980 The effect of the mixing methods on viscous properties of
polyethylene melts filled with fibers. Rheol. Acta 19, 753–763. (doi:10.1007/BF01521868)

22. Kitano T, Kataoka T, Shirota T. 1981 An empirical equation of the relative viscosity of polymer
melts filled with various inorganic fillers. Rheol. Acta 20, 207–209. (doi:10.1007/BF01513064)

23. Liu AJ, Nagel SR. 2001 Jamming and rheology: constrained dynamics on microscopic and macroscopic
scales. Boca Raton, FL: CRC Press.

24. Stickel JJ, Powell RL. 2005 Fluid mechanics and rheology of dense suspensions. Annu. Rev.
Fluid Mech. 37, 129–149. (doi:10.1146/annurev.fluid.36.050802.122132)

25. Wyart M, Cates ME. 2014 Discontinuous shear thickening without inertia in dense non-
Brownian suspensions. Phys. Rev. Lett. 112, 098302. (doi:10.1103/PhysRevLett.112.098302)

26. Guy BM, Ness C, Hermes M, Sawiak LJ, Sun J, Poon WCK. 2020 Testing the Wyart-Cates
model for non-Brownian shear thickening using bidisperse suspensions. Soft Matter 16,
229–237. (doi:10.1039/C9SM00041K)

http://dx.doi.org/10.1016/j.foodhyd.2018.08.026
http://dx.doi.org/10.1021/acsapm.0c01228
http://dx.doi.org/10.1002/andp.19063240204
http://dx.doi.org/10.1063/1.1702338
http://dx.doi.org/10.1007/BF01428643
http://dx.doi.org/10.1021/j100838a015
http://dx.doi.org/10.1021/j150458a001
http://dx.doi.org/10.1016/0095-8522(51)90036-0
http://dx.doi.org/10.1063/1.1700493
http://dx.doi.org/10.1122/1.548848
http://dx.doi.org/10.1007/BF01438803
http://dx.doi.org/10.1016/S0032-5910(02)00192-4
http://dx.doi.org/10.1016/j.powtec.2009.07.005
http://dx.doi.org/10.1016/0095-8522(65)90016-4
http://dx.doi.org/10.1016/j.fuel.2013.03.003
http://dx.doi.org/10.1007/BF01527133
http://dx.doi.org/10.1021/ma960365x
http://dx.doi.org/10.1007/BF01517705
http://dx.doi.org/10.1007/BF01520361
http://dx.doi.org/10.1007/BF01521868
http://dx.doi.org/10.1007/BF01513064
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122132
http://dx.doi.org/10.1103/PhysRevLett.112.098302
http://dx.doi.org/10.1039/C9SM00041K


20

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210615

..........................................................

27. Boyer F, Guazzelli É., Pouliquen O. 2011 Unifying suspension and granular rheology. Phys.
Rev. Lett. 107, 188301. (doi:10.1103/PhysRevLett.107.188301)

28. Haffner B, Khidas Y, Pitois O. 2014 Flow and jamming of granular suspensions in foams. Soft
Matter 10, 3277–3283. (doi:10.1039/c4sm00049h)

29. Gillissen JJJ, Ness C, Peterson JD, Wilson HJ, Cates ME. 2019 Constitutive model
for time-dependent flows of shear-thickening suspensions. Phys. Rev. Lett. 123, 214504.
(doi:10.1103/PhysRevLett.123.214504)

30. Lerner E, Düring G, Wyart M. 2012 A unified framework for non-Brownian
suspension flows and soft amorphous solids. Proc. Natl Acad. Sci. USA 109, 4798–4803.
(doi:10.1073/pnas.1120215109)

31. Mills P, Snabre P. 2009 Apparent viscosity and particle pressure of a concentrated suspension
of non-Brownian hard spheres near the jamming transition. Eur. Phys. J. E 30, 309–316.
(doi:10.1140/epje/i2009-10530-7)

32. Kaci A, Ouari N, Racineux G, Chaouche M. 2011 Flow and blockage of highly
concentrated granular suspensions in non-newtonian fluid. Eur. J. Mech.-B/Fluids 30, 129–134.
(doi:10.1016/j.euromechflu.2010.07.001)

33. Ajinjeru C, Kishore V, Lindahl J, Sudbury Z, Hassen AA, Post B, Love L, Kunc V, Duty C. 2018
The influence of dynamic rheological properties on carbon fiber-reinforced polyetherimide for
large-scale extrusion-based additive manufacturing. Int. J. Adv. Manuf. Technol. 99, 411–418.
(doi:10.1007/s00170-018-2510-z)

34. Das A, Etemadi M, Davis BA, McKnight SH, Williams CB, Case SW, Bortner MJ.
2021 Rheological investigation of nylon-carbon fiber composites fabricated using
material extrusion-based additive manufacturing. Polym. Compos. 42, 6010–6024.
(doi:10.1002/pc.26281)

35. Wang Z, Smith DE. 2018 Rheology effects on predicted fiber orientation and elastic
properties in large scale polymer composite additive manufacturing. J. Compos. Sci. 2, 10.
(doi:10.3390/jcs2010010)

36. Wang Z, Smith DE. 2021 Finite element modelling of fully-coupled flow/fiber-orientation
effects in polymer composite deposition additive manufacturing nozzle-extrudate flow.
Compos. Part B: Eng. 219, 108811. (doi:10.1016/j.compositesb.2021.108811)

37. Bergman TL, Incropera FP, Lavine AS, DeWitt DP. 2011 Introduction to heat transfer. New York,
NY: John Wiley & Sons.

38. Chhabra RP, Richardson JF. 2011 Non-Newtonian flow and applied rheology: engineering
applications. London, UK: Butterworth-Heinemann.

39. Haw MD. 2004 Jamming, two-fluid behavior, and ‘self-filtration’ in concentrated particulate
suspensions. Phys. Rev. Lett. 92, 185506. (doi:10.1103/PhysRevLett.92.185506)

40. Tehrani MA. 1996 An experimental study of particle migration in pipe flow of viscoelastic
fluids. J. Rheol. 40, 1057–1077. (doi:10.1122/1.550773)

41. Hampton RE, Mammoli AA, Graham AL, Tetlow N, Altobelli SA. 1997 Migration of
particles undergoing pressure-driven flow in a circular conduit. J. Rheol. 41, 621–640.
(doi:10.1122/1.550863)

42. Steller R. 2016 Determination of the first normal stress difference from viscometric data for
shear flows of polymer liquids. Rheol. Acta 55, 649–656. (doi:10.1007/s00397-016-0938-3)

43. Efron B, Stein C. 1981 The jackknife estimate of variance. Annal. Stat. 9, 586–596.
44. Donev A. 2006 Jammed packings of hard particles. Phd dissertation, Princeton, NJ: Princeton

University Press.
45. Cogswell FN. 1981 Polymer melt rheology: a guide for industrial practice. Cambridge, UK:

Woodhead Publishing Limited.

http://dx.doi.org/10.1103/PhysRevLett.107.188301
http://dx.doi.org/10.1039/c4sm00049h
http://dx.doi.org/10.1103/PhysRevLett.123.214504
http://dx.doi.org/10.1073/pnas.1120215109
http://dx.doi.org/10.1140/epje/i2009-10530-7
http://dx.doi.org/10.1016/j.euromechflu.2010.07.001
http://dx.doi.org/10.1007/s00170-018-2510-z
http://dx.doi.org/10.1002/pc.26281
http://dx.doi.org/10.3390/jcs2010010
http://dx.doi.org/10.1016/j.compositesb.2021.108811
http://dx.doi.org/10.1103/PhysRevLett.92.185506
http://dx.doi.org/10.1122/1.550773
http://dx.doi.org/10.1122/1.550863
http://dx.doi.org/10.1007/s00397-016-0938-3

	Introduction
	Experiment design and set-up
	Experiment results
	Data analysis and modelling
	Flow behaviour index
	Flow consistency index

	Conclusion
	References

