LETTER TO THE EDITORS

"Unconventional CD147-dependent platelet activation elicited by SARS-CoV-2 in COVID-19": Comment from Wada et al

Dear Editor.

We are very interested in the recently published report entitled "Unconventional CD147-platelet activation elicited by SARS-CoV-2 in COVID-19" by Maugeri et al. Authors reported that early and intense platelet activation was reproduced *in vitro* by stimulating platelets with SARS-CoV-2, and that this was dependent on the CD147 receptor. The authors reported that platelets released soluble P-selectin and HMGB1+ extracellular vesicles and that the early accumulation of platelet HMGB+ extracellular vesicles predicted worse clinical outcomes. Although these findings were markedly important, the methodology that they used to detect platelet activation was complicated for physicians. CD147 is a receptor for SARS-CoV-2 that is well-known to play an important role in COVID-19 infection.

Coronavirus disease 2019 (COVID-19), which sometimes causes acute respiratory distress syndrome, coagulopathy, and poor outcomes, has now spread worldwide. Thus, several mechanisms underlying the worsening of the condition of COVID-19 patients have been proposed.³ Soluble C-type lectin-like receptor 2 (sCLEC-2) has been introduced as a new biomarker of platelet activation⁴ and elevated plasma levels of sCLEC-2 have been reported in patients with thrombotic microangiopathy,⁵ disseminated intravascular coagulation,⁶ and acute cerebral infarction.⁷ Elevated plasma levels of sCLEC-2 were recently reported in patients with COVID-19 infection and those were correlated with the severity of COVID-19.⁸ Platelets in patients with COVID-19 infection may release large amounts of sCLEC-2 into the blood without microthrombus formation through CD147-dependent platelet activation.

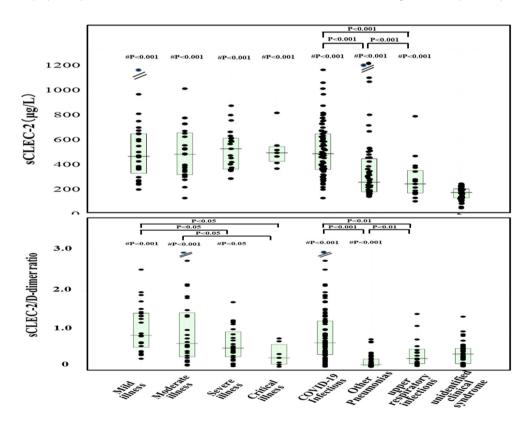


FIGURE 1 Plasma levels of sCLEC2 and sCLEC-2/D-dimer ratio in patients with COVID-19 infection and those with other infections. #p < .001, #p < .01 and #p < .05; p < .001, p < .01, and p < .05 in comparison to unidentified clinical syndrome, respectively.

Manuscript handled by: Matthew Rondina Final decision: Matthew Rondina, 11 Apr 2022

© 2022 International Society on Thrombosis and Haemostasis.

Regarding the further analysis, which included additional cases, plasma sCLEC-2 levels in patients with COVID-19 infection (median 25-75th percentile, 491 μ g/L; 363–651 μ g/L) were significantly higher (p<.001, respectively) in comparison to patients with other pneumonia (276 μ g/L; 183–459 μ g/L), upper respiratory infection (247 μ g/L; 173–355 μ g/L) and unidentified clinical syndrome (178 μ g/L; 134–207 μ g/L) (Figure 1). There was no significant difference in the plasma sCLEC-2 levels among COVID-19 patients with mild, moderate, severe, and critical illness. These findings suggest that elevated plasma sCLEC-2 levels may not be related to pneumonia.

The platelet counts of patients with COVID-19 infection, other pneumonia, upper respiratory infection, and unidentified clinical syndrome did not differ to a statistically significant extent. Plasma D-dimer levels in patients with other pneumonia (3.4 mg/L; 1.8-8.7 mg/L) were significantly higher (p < .001, respectively) in comparison to patients with COVID-19 infection (0.8 µg/L; 0.4-1.5 mg/L), upper respiratory infection (1.2 mg/L; 0.6-2.2 mg/L), and unidentified clinical syndrome (0.5 mg/L; 0.4-1.6 mg/L). These findings suggest that a hypercoagulable state is more predominant in patients with other pneumonia than in patients with COVID-19 infection. The sCLEC-2/D-dimer ratio in patients with COVID-19 (650/335-1274) was significantly higher in comparison to patients with other pneumonia (61.7; 36.1-210), upper respiratory infection (224; 87.8-472), and unidentified clinical syndrome (331; 87.7-490) (all p < .01). The sCLEC-2/D-dimer ratio in COVID-19 patients with critical illness (241/73.5-594) was significantly lower in comparison to COVID-19 patients with mild illness (837; 519-1423) or moderate illness (660; 284-1584) (Figure 1). These findings suggest that patients with early-stage COVID-19 infection shows only platelet activation, and that severe COVID-19 infection causes hypercoagulability. Low-dose aspirin was reported to be useful for managing COVID-19 infection.9 The administration of aspirin may be useful for patients with earlystage COVID-19.

In conclusion, the sCLEC-2 assay is an easy and rapid assay that can measure many samples, and is useful to measure platelet activation in patients with COVID-19 infection.

AUTHOR CONTRIBUTIONS

H.W. wrote the manuscript and K.S. and K.S.-I. discussed and revised the manuscript.

ACKNOWLEDGMENTS

This work was supported in part by a Grant-in-Aid from the Ministry of Health, Labour and Welfare of Japan.

FUNDING INFORMATION

the Ministry of Health, Labour and Welfare of Japan, Grant/Award Number: H30-015

CONFLICT OF INTEREST

The measurement of sCLEC-2 and D-dimer levels were partially supported by LSI Medience. The authors declare no other conflicts of interest in association with the present study.

ETHICAL APPROVAL

The study protocol (2020-S25) was approved by the Human Ethics Review committees of Mie Prefectural General Medical Center, and informed consent was obtained from each patient.

Hideo Wada^{1,2}

Katsuya Shiraki³ (D)

Katsue Suzuki-Inoue⁴

¹Department of General and Laboratory Medicine, Mie Prefectural General Medical Center, Yokkaichi, Japan ²Associated Department with Mie Graduate School of Medicine, Tsu, Japan

³Department of General and Laboratory Medicine, Mie Prefectural General Medical Center, Associated Department with Mie Graduate School of Medicine, Yokkaichi, Japan ⁴Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan

Correspondence

Hideo Wada, Department of General and Laboratory Medicine, Mie Prefectural General Medical Center, Associated Department with Mie Graduate School of Medicine, 5450-132 Ohaza Hinaga, Yokkaichi, Mie 510-8561

Email: wadahide@clin.medic.mie-u.ac.jp

ORCID

Hideo Wada https://orcid.org/0000-0001-9021-8633

Katsuya Shiraki https://orcid.org/0000-0002-5164-1866

Katsue Suzuki-Inoue https://orcid.org/0000-0001-9678-1451

REFERENCES

- Maugeri N, De Lorenzo R, Clementi N, et al. Unconventional CD147-dependent platelet activation elicited by SARS-CoV-2 in COVID-19. J Thromb Haemost. 2022;20(2):434-448.
- Evans JP, Liu SL. Role of host factors in SARS-CoV-2 entry. J Biol Chem. 2021;297:100847.
- Berlin DA, Gulick RM, Martinez FJ. Severe COVID-19. N Engl J Med. 2020:383:2451-2460.
- Suzuki-Inoue K, Fuller GL, Garcia A, et al. A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor sCLEC-2. Blood. 2006;107:542-549.
- Yamashita Y, Suzuki K, Mastumoto T, et al. Elevated plasma levels of soluble C-type lectin-like receptor 2 (CLEC2) in patients with thrombotic microangiopathy. Thromb Res. 2019;178:54-58.
- Yamamoto A, Wada H, Ichkawa Y, et al. Soluble C-type lectin-like receptor 2 is a biomarker for disseminated intravascular coagulation. J Clin Med. 2021;10(13):2860.
- Nishigaki A, Ichikawa Y, Ezaki E, et al. Soluble C-type lectin-like receptor 2 elevation in patients with acute cerebral infarction. J Clin Med. 2021:10:3408.
- 8. Wada H, Ichikawa Y, Ezaki M, et al. Elevated plasma soluble C-type lectin-like receptor 2 is associated with the worsening of coronavirus disease 2019. *J Clin Med*. 2022;11:985.
- Salah HM, Mehta JL. Meta-analysis of the effect of aspirin on mortality in COVID-19. Am J Cardiol. 2021;142:158-159.