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Most studies of the heart focus on cardiomyocytes (CM) at the exclusion of other cell
types such as myocardial endothelial cells (EC). Such mono-cellular approaches propagate
the presumption that EC provide a mere “passive lining” or supportive role. In fact, EC
contribute to a dynamic network regulating vascular tone, cardiac development, and repair.
Two distinct EC types, vascular EC and epicardial EC, possess important structural and
signaling properties within both the healthy and diseased myocardium. In this review,
we address EC-CM interactions in mature, healthy myocardium, followed by a discussion
of diseases characterized by EC dysfunction. Finally, we consider strategies to reverse
EC-CM “miscommunication” to improve patients’ outcomes in various cardiovascular
diseases.
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The human heart consists of a plurality of cell types, with fibrob-
lasts and other connective tissue cells being most abundant; the
remaining cell mass consists of cardiomyocytes (CM), endothelial
cell (EC), smooth muscle cells, mast cells, and immune-related
cells. Although CM mass is approximately 25 times that of EC
mass, the smaller EC outnumber CM by roughly 3:1 (Brutsaert,
2003). CM are surrounded by dense capillary network, which
is critical for maintaining constant blood flow (Brutsaert et al.,
1998); however, such intermingling of CM and EC also allows
for cell-to-cell signaling, which may be of even higher significance
during cellular stress (e.g., ischemia). Organized communication
among the various components of this syncytium is critical for
normal cardiac growth, contractile performance, and rhythmic-
ity, but also for adaptive and protective mechanisms to combat
against myocardial damage. Although cells other than CM and EC
contribute to cardiac homeostasis, we focus presently on potential
CM-EC interactions.

EC-CM INTERACTIONS IN THE ADULT HEART
Cardiac EC rely on diverse routes of communication. Endocardial
EC and capillary EC share an active blood-heart barrier and influ-
ence neighboring CM through juxtacrine and paracrine signaling,
whereas coronary vascular EC act indirectly on CM through
changes in coronary vasomotor tone and consequent alteration
of blood flow (Brutsaert, 2003). Interestingly, either cell can
initiate communication; CM can act as secretory cells and are
the source of many paracrine signals that affect EC. Among
these are endothelin-1 (ET1), fibroblast growth factors, adeno-
sine, and heme oxygenases—which regulate vascular tone—thus
coordinating myocardial metabolic requirements (Tirziu et al.,
2010). Additionally, CM paracrine signaling—namely vascular

endothelial growth factors—affects growth and development of
coronary vessels. Myocardial ischemia and heart failure (HF)
require vascular growth to match the increased energy demands
(Li et al., 1996), and failure of vascular adaption leads to progres-
sive cardiac dysfunction (Sellke et al., 1996). Likewise, EC play
pivotal roles in the bidirectional interactions between these two
major cell types. Because EC dysfunction, due to a multitude of
systemic diseases affecting the cardiovascular system has a major
impact on CM-EC interactions, it is important to discuss the
impact of EC dysfunction on EC derived factors.

IMPORTANT PARACRINE AND AUTOCRINE FACTORS FOR
EC-CM COMMUNICATION
EC act as sensors for shear stress to regulate vascular tone.
Cardiac EC can regulate contractile properties of CM. Several
autocrine and paracrine signaling molecules are responsible for
this important physiologic mechanism.

NITRIC OXIDE
Nitric oxide (NO), produced from L-arginine by three different
NO synthase isoenzymes, is a pivotal signaling molecule between
EC and CM. Under physiologic conditions, neuronal (nNOS)
and endothelial (eNOS) NO synthase produce the majority of
NO. During inflammation, inducible NO-synthase (iNOS) sig-
nificantly augments NO production (Andrew and Mayer, 1999).
Interestingly, oxygen free radicals produced during ischemia-
reperfusion limit NO bioavailability without significantly affect-
ing NOS activity (Paolocci et al., 2001). Similar to its effects on
smooth muscle, NO affects the onset of ventricular relaxation,
allowing for optimization of ventricular pump function (Paulus
et al., 1994). Although CM express both nNOS and eNOS, the
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vast majority of NO production comes from the EC, exceeding
that of CM by greater than 4:1 (Godecke et al., 2001). The role
of NO in healthy myocardium as well as the adaptive changes
during pathology have been widely published (Jones and Bolli,
2006). Furthermore, studies in mice have provided substantial
evidence that eNOS derived NO attenuates ischemia-reperfusion
injury (Jones et al., 1999, 2004), and ultimately improves survival
during HF (Jones et al., 2003a).

NO bioavailability is also necessary for a vast majority of
cardioprotective effects and interventions. Ischemic precondi-
tioning (Murry et al., 1986) perfectly exemplifies such an NO-
dependent cardioprotective intervention (Jones and Bolli, 2006).
Interestingly, several drugs used for the treatment of hypercholes-
terolemia (Jones et al., 2002, 2003b) or even erectile dysfunc-
tion (Salloum et al., 2003) improve NO bioavailability and are
cardioprotective.

ENDOTHELIN-1
ET-1 is a critical regulator of cardiac pathophysiology. ET-1 is
a 21-amino acid peptide produced and released by CM (Suzuki
et al., 1993), EC (Kedzierski and Yanagisawa, 2001), and fibrob-
lasts (Fujisaki et al., 1995) of the heart. In addition to its role
in cardiovascular development, ET-1 modulates coronary vascu-
lar tone. Moreover, ET-1 can directly modulate cardiac muscle
function by acting on its receptors [Endothelin receptor type A
(ETA)on CM and Endothelin receptor type B (ETB)on cardiac
EC] expressed in atrial and ventricular myocardium (Rich and
McLaughlin, 2003).

Acutely, ETB activation results in release of additional signaling
molecules, mainly NO and prostaglandin I2, whereas ETA stimu-
lation causes arteriolar constriction and can result in arrhythmias.
The opposing effects of ET receptor stimulation may imply that
a feedback mechanism exists between CM and EC for control
of vasoconstriction through the ET-1 system (Baltogiannis et al.,
2005). Chronically increased ET-1 production (days to weeks)
results in CM growth and is associated with maladaptive hyper-
trophic remodeling of the heart and progression to HF (Yorikane
et al., 1993). In addition, the circulating plasma level of ET-1
is positively correlated with severity of cardiac disease and thus
may be a reliable prognostic indicator of future HF (Zolk et al.,
2002).

NEUREGULIN-1
EC are capable of secreting factors that augment CM com-
pensatory reaction to hemodynamic stress. Neuregulins belong
to a family of growth factors that act through receptor tyro-
sine kinases in the epidermal growth factor receptor family.
Neuregulins mediate their actions through a set of ErbB tyro-
sine kinase receptors (ErbB2, ErbB3, ErbB4), which stimulate
cellular proliferation, differentiation, and survival of cells in sev-
eral tissues including the heart (Falls, 2003). In the adult heart,
Neuregulin-1 (NRG-1) expression is restricted to EC adjacent to
CM, whereas ErbB2 and ErbB4 are expressed on CM (Lemmens
et al., 2006).

The important role of NRG-1 in the adult heart was discovered
serendipitously (Slamon et al., 2001). Trastuzumab, an inhibitory
antibody to ErbB2 (human epidermal growth factor receptor 2

or HER2/neu) used in the treatment of breast cancer, can induce
cardiac dysfunction and HF, suggesting an important role for
ErbB2 in the heart. Indeed, numerous studies have shown that
ErbB2 and ErbB4 receptor signaling are essential for maintenance
of myocardial function in the adult heart because CM specific
deletion of functional receptors produces dilated cardiomyopa-
thy (Crone et al., 2002). Additionally, conditional ErbB2 deletion
or heterologous NRG-1 deficiency sensitizes mice to anthracy-
cline cardiotoxicity (Liu et al., 2005). Interestingly, increasing
NRG-1/ErbB4 signaling by NRG-1 injection or ErbB4 expression
induces CM proliferation and may promote myocardial repair
after MI (Bersell et al., 2009). These results emphasize the impor-
tant role of NRG-1/ErB4 signaling in the response of the heart to
injury, and the maintenance of normal myocardial structure and
function.

IMPACT OF DYSFUNCTIONAL ENDOTHELIUM ON EC-CM
CROSSTALK IN CARDIOVASCULAR DISEASES
Pump failure leading to congestive heart failure (CHF) is the
common endpoint of a spectrum of progressive cardiovascu-
lar diseases. Many compensatory mechanisms—such as myocar-
dial dilatation and hypertrophy, as well as neurohormonal,
cytokine, and endothelial activation—precede cardiac failure;
however, such myocardial (and extra-cardiac) adaptations even-
tually progress to a maladaptive response, and ultimately to
decompensation and CHF. Maladaptation manifests as hemody-
namic abnormalities, neurohormonal imbalance, cytokine over-
expression, and endothelial dysfunction.

Our understanding of endothelial function has slowly evolved
over recent decades. Previously, endothelial dysfunction was
thought to be limited to impaired endothelial NO production
and bioavailability in response to physiologic stimuli, thereby
resulting in impaired vasodilatation. Today, in addition to the
idea of primary impaired NO signaling pathways, the diagnosis
of endothelial dysfunction also takes into account dysfunc-
tion of many other autocrine and paracrine signaling path-
ways leading to EC-CM miscommunication. Numerous reviews
have summarized our knowledge on various diseases and stres-
sors, such as diabetes (Roberts and Porter, 2013), hyperlipi-
demia/atherosclerosis (Simionescu, 2007), hemodynamic stress
(shear stress) (Giles et al., 2012), inflammatory cytokines (Koh
et al., 2009), and ischemia/coronary artery disease (Gutierrez
et al., 2013), which can alter endothelial function and thereby
actively affect EC-CM communication and ultimately lead to
cardiac failure (Shantsila et al., 2012). Therapeutic intervention
to prevent the adverse outcomes of endothelial dysfunction and
EC-CM miscommunication, ultimately preventing HF, is sub-
ject of intense clinical investigation. Accordingly, the following
sections help clarify the relationships among various cardiovas-
cular diseases, endothelial dysfunction, and the resulting adverse
consequences on EC-CM communication, with emphasis on
aforementioned paracrine/autocrine factors.

DIABETES/INSULIN RESISTANCE
Diabetes mellitus (DM) type 2 significantly increases the risk of
cardiovascular disease, even in the presence of rigorous glycemic
control. Substantial clinical and experimental evidence suggest
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that both DM (Jansson, 2007) and insulin resistance (Versari
et al., 2009) cause endothelial dysfunction, which may diminish
the communication properties of the endothelium with other
cell types (e.g., CM) and promote susceptibility to cardiovascular
diseases.

Endothelial dysfunction is traditionally characterized as an
imbalance of vasodilation factors such as NO and prostacyclin,
and vasoconstricting factors including ET-1 and angiotensin-II
(Harrison, 1997; Mather et al., 2004). Several disease related fac-
tors in DM type2 (i.e., insulin resistance, hyperglycemia, hyper-
tension, dyslipidemia, abdominal obesity, and inflammation) are
associated with EC dysfunction (Calles-Escandon and Cipolla,
2001); however, looking beyond the traditional picture of imbal-
ance of vasodilation and vasoconstriction factors, there are several
other functions of paracrine/autocrine factors leading to impaired
EC-CM interaction.

ET-1 production is increased during hyperinsulinemia
(Potenza et al., 2005) through activation of alternative signaling
pathways including mitogen-activated protein kinase (MAPK)
(Gogg et al., 2009). Clinical observations indicate that the
plasma level of ET-1 is increased (Takahashi et al., 1990)—and
pathophysiological actions of ET-1 are enhanced—in DM type2
(Jansson, 2007). In addition, the expression of vascular ET-1
and both ETA and ETB receptors (ETA on CM and ETB on
cardiac EC) is increased in various experimental models of DM
(Matsumoto et al., 2004).

Studies in EC specific ET-1 knockout mice showed that
chronically elevated ET-1 led to DM-induced cardiac fibrosis
(Widyantoro et al., 2010). In addition, co-culture experiments
using human umbilical vein EC and neonatal rat CM showed that
hyperglycemia increases EC-derived ET-1 and thereby induced
CM hypertrophy (Majumdar et al., 2009). Thus, targeting
endothelial cell-derived ET-1 might be useful in the preven-
tion of diabetic cardiomyopathy (DCM) through re-institution of
physiological EC-CM communication.

Significant changes in the signaling in the diabetic heart,
including decreased EC protein expression of NRG1 in the
left ventricular myocardium, have been reported. Furthermore,
DM is associated with blunted mRNA expression of CM ErbB2
and ErbB4 receptors, and decreased phosphorylation (activa-
tion) of the ErbB2 and ErbB4 receptors (Gui et al., 2012). As
outlined above, NRG1/ErbB signaling plays a pivotal role in main-
taining normal cardiovascular function. Because disruption of
NRG1/ErbB signaling leads to dilated cardiomyopathy (Crone
et al., 2002), an imbalance in the EC (NRG1)-CM (ErbB2/4)
signaling may contribute to DCM.

Loss of NO bioactivity secondary to endothelial dysfunc-
tion is probably one of the most important events contributing
to DM type2 pathobiology (Brownlee, 2001; Du et al., 2001).
One of the proposed mechanisms of how hyperglycemia and
DM reduce NO bioavailability is through an increase in oxida-
tive stress. In short, tetrahydrobiopterin (BH4), an essential
co-factor for eNOS, is oxidized to enzymatically incompetent
dihydrobiopterin, which competes with BH4 for eNOS bind-
ing (Du et al., 2000). Insufficient BH4 uncouples eNOS and
generates superoxide, rather than NO (Vasquez-Vivar et al.,
2002).

ATHEROSCLEROSIS/CORONARY ARTERY DISEASE
Endothelial dysfunction is closely related to the progression of
atherosclerosis and associated risk factors, and it establishes a
transitional step in the progression to adverse events throughout
the natural history of coronary artery disease (CAD). Oxidative
stress underlies the progression of endothelial dysfunction to
atherosclerotic lesions (Sorescu et al., 2002). Studies have shown
that coronary endothelial function is impaired at an early stage
of atherosclerosis and is likely an early marker, yet not detected
by routine angiography (Vita et al., 1990). It is therefore not sur-
prising that in patients with either non-obstructive or established
CAD, impaired coronary vascular function coincided with car-
diovascular and cerebrovascular events (Targonski et al., 2003;
Lerman and Zeiher, 2005).

Diminished supply of vasodilatory agents such as NO and
prostacyclin represents an obvious potential mechanism of
endothelial dysfunction. In addition, vasoconstrictors, such as
ET-1, are increased in EC dysfunctional states. Because myocar-
dial oxygen extraction is effectively maximal at basal conditions,
any additional metabolic demand must be met by an increase in
myocardial blood flow, hence vasodilation of the coronary arter-
ies. Blunted coronary vasodilation results in inadequate blood
flow, especially during high demand, such as patients with acute
coronary syndromes (ACS).

ET-1 produced by ischemic CM and EC during ACS influ-
ences the myocardium; ET-1 binding to the ETA receptor pro-
motes catecholamine release from the adrenal glands (Nagayama
et al., 2000) and modulates norepinephrine release in sympa-
thetic nerve endings in the ventricular myocardium (Isaka et al.,
2007), resulting in marked adrenergic activity (Yamamoto et al.,
2005). In contrast, ETB activation suppresses early sympathetic
drive (Yamamoto et al., 2005). In addition, ET-1 contributes
to ventricular arrhythmogenesis, which is thought to be related
to increased activation of inositol 1,4,5-trisphosphate receptors
leading to altered calcium release (Proven et al., 2006). Studies
have shown that increased activation of these receptors during
certain disease states, e.g., ACS, HF or mitral valve disease may
contribute to increased arrhythmogenesis (Go et al., 1995).

In addition, several other mechanisms of endothelial dysfunc-
tion contributing to the pathogenesis of ACS have been proposed
(Libby, 2001). Dysfunctional EC, mostly through an increase in
local inflammatory status, leads to enhanced plaque vulnera-
bility, participates in the process of plaque rupture, and favors
thrombus formation (McGorisk and Treasure, 1996; Libby et al.,
2002). Thus, evaluating endothelial function in ACS may be
an important tool to assess cardiovascular risk of patients with
non-obstructive- or established CAD. Interventions that maintain
EC-CM integrity may prevent adverse effects of CAD.

ENDOTHELIAL DYSFUNCTION AND THE FAILING HEART
Coronary- and peripheral endothelial dysfunction are present in
both ischemic and non-ischemic HF (Treasure et al., 1990; Kubo
et al., 1991; Bitar et al., 2006). Independently of the initial under-
lying pathology of HF, EC dysfunction plays a major role in the
progression of the disease and has important prognostic value on
clinical outcomes (Fischer et al., 2005; Shechter et al., 2009; De
Berrazueta et al., 2010).
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During HF, EC dysfunction is not isolated to coronary EC. For
example in skeletal muscle, endothelial dysfunction may explain
early fatigue and exercise intolerance (Lejemtel et al., 1986)
and EC-mediated vasoconstriction contributes to the increased
peripheral vascular resistance in chronic HF (Katz et al., 1992). In
addition, dysfunctional endothelium has been observed in renal,
mesenteric, and pulmonary vasculature, which is consistent with
the notion that global EC dysfunction plays an important role in
HF (Ben Driss et al., 2000).

Both preclinical and human studies emphasize the importance
of coronary endothelial dysfunction during HF. In particular, the
identification of impaired vasodilatory responses supported the
notion that decreased NO impairs myocardial perfusion and indi-
rectly contributes to the progression of HF (Treasure et al., 1990;
Neglia et al., 1995). Yet, cardiac endothelial dysfunction, similar
to coronary vascular endothelial dysfunction, is an early event in
the progression to fulminant HF (Maccarthy and Shah, 2000).
Indeed, high concentrations of neurohormones cause selective
damage to cardiac EC, and depress mechanical performance
of the adjacent myocardium. Moreover, secretion of traditional
paracrine/autocrine factors is indispensable for EC-CM commu-
nication, and, such secretion is altered during acute, progressing,
and stable HF (Yorikane et al., 1993; Crone et al., 2002). For
example recent evidence has shown that activation of the β1-
adrenergic- protein kinase A pathway and the ET-1-protein kinase
C pathway is crucial in positively modulating full developed force-
frequency response (FFR) in cardiac muscle (Shen et al., 2013),
and dysregulation of FFR is a hallmark of HF (Ross, 1998). Thus,
our silo-style view of vascular vs. cardiomyocyte dysfunction
requires re-evaluation.

CLINICAL ASSESSMENT OF ENDOTHELIAL FUNCTION AND
IMPACT OF INTERVENTIONS
Endothelial vasodilator function is a surrogate for endothelial
health (Behrendt and Ganz, 2002). Endothelial function plays a
key role in vascular health and endothelial dysfunction is an early
event in atherogenesis, making endothelial function testing, as a
means for cardiovascular risk stratification, a valuable tool for
clinicians (Benjamin et al., 2004). Presently, there is no test to
evaluate directly the impact of EC-CM interactions on cardiovas-
cular health. Unfortunately, the goal of developing a non-invasive
and effective test for endothelial function has proven challeng-
ing (Vita and Keaney, 2002). Several investigational methods are
briefly mentioned here.

High frequency ultrasonographic imaging of the brachial
artery assesses endothelium-dependent flow-mediated vasodila-
tion, and can estimate the effectiveness of various interventions
(Corretti et al., 2002). A recent study used this method to test the
relative effectiveness of two different endothelial-directed drugs
and found that the technique was, indeed, effective (Liu et al.,
2009).

Several studies have assessed the impact of exercise on
endothelial function (Werner et al., 2009). Arterial-level shear
stress (>15 dyne/cm²) at the outer edges of vessel bifurcations
can stimulate the vasculature to produce factors ultimately pro-
moting an atheroprotective gene expression profile (Malek et al.,
1999). Non-invasive techniques to further assess the impact of

exercise on endothelial function are intensively studied, including
magnetic resonance imaging (Galizia et al., 2014).

Some have used positron emission tomography scanning to
identify increased vascular inflammation as another potential
non-invasive measurement of endothelial function (Kim et al.,
2010). Chronic inflammation is a well-known risk factor for car-
diovascular disease (Obel et al., 2007; Triant et al., 2007). Many
groups investigated the potential impact of anti-inflammatory
drugs (e.g., NSAIDs) on endothelial function. The salicylate,
salsalate, reduces vascular inflammation, and increases brachial
artery flow-mediated dilatation in overweight/obese patients in a
NFκB-dependent manner; (Pierce et al., 2009) however, concerns
have been raised about NSAIDs (Nohria et al., 2014). Further
studies to evaluate the safety of anti-inflammatory therapy on the
cardiovascular system are needed.

CLOSING REMARKS
Our understanding of the impact of EC-CM miscommunica-
tion on cardiovascular health is nascent. One area of continued
potential growth lies in our [in]ability to assess clinically such
cell-cell interactions. Current interventions target the endothe-
lium to reverse endothelial dysfunction and limit the impact of
cardiovascular risk factors. Several failed clinical studies target-
ing cell-cell interactions emphasize the need to understand the
molecular interactions among various cells in situ. Thus, efforts
should be directed at understanding such interactions and devel-
oping clinical tests to characterize EC-CM (et al.) communication
leading to meaningful interventions to improve cardiovascular
health. We predict it will.
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