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Abstract: In the era of combined antiretroviral therapy (cART), as infected individuals continue to
have longer lifespans, there is also an increased prevalence of HIV-associated neurocognitive disorders
(HAND). Inflammation is one of the underlying features of HAND, with the role of viral proteins
and antiretroviral drugs implicated in this process. Microglia are extremely sensitive to a plethora
of stimuli, including viral products and cART. The current study was undertaken to understand
the molecular mechanism(s) underlying cART-mediated activation of microglia. Herein we chose a
combination of three commonly used drugs, tenofovir disoproxil fumarate (TDF), emtricitabine (FTC),
and dolutegravir (DTG). We demonstrated that exposure of microglia to this cART cocktail induced
lysosomal membrane permeabilization (LMP), which subsequently resulted in impaired lysosomal
functioning involving elevated pH and decreased cathepsin D (CTSD) activity. cART exposure of
microglia resulted in increased formation of autophagosomes as demonstrated by a time-dependent
increase of autophagy markers, with a concomitant defect in the fusion of the lysosomes with the
autophagosome. Taken together, our findings suggest a novel mechanism by which cART impairs
lysosomal functioning, resulting in dysregulated autophagy and increased neuroinflammation.
Interventions aimed at lysosome protection could likely be envisioned as promising therapeutic
targets for abrogating cART-mediated microglia activation, which in turn, could thus be considered
as adjunctive therapeutics for the treatment of HAND pathogenesis.

Keywords: combined antiretroviral therapy; lysosome; autophagy; microglial activation;
neuroinflammation

1. Introduction

In the era of combined antiretroviral therapy (cART) as infected individuals continue to enjoy
longer lifespans, HIV infection has been transformed from a death sentence to a more chronic and
manageable disease [1–3]. Paradoxically, however, with increasing lifespans, these individuals also
have an increased prevalence of varying degrees of neurocognitive decline collectively termed as
HIV-associated neurocognitive disorders (HAND), which severely impacts quality of life. Almost
50% of infected individuals develop HAND, ranging from asymptomatic to mild cognitive-motor
disorders [3]. In fact, epidemiological studies have demonstrated “accelerated aging” in HIV+ individuals
on cART [4,5]. Inflammation, mediated by both viral proteins and cART, has been implicated as a
significant underlying factor for the pathogenesis of HAND [6,7]. Of note, there is evidence of persistent
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neuroinflammation in cART-treated HIV+ individuals; the precise mechanism(s) underlying increased
neuroinflammation, however, remain less understood [2,8,9].

Microglia, the resident macrophages of the CNS accounting for about 10% to 15% of all brain
cells, are tightly regulated and can dynamically alter their function in response to inflammatory
stimuli [10,11]. Following external stimulation, microglia undergo morphological changes and/or
proliferation resulting in the production and secretion of a plethora of cytokines, chemokines, and
neurotoxic factors. These secreted factors can, in turn, impact neighboring neurons, resulting in neuronal
excitotoxicity and damage [12,13]. Activation of microglia can yield two outcomes: Moderate activation,
which plays a role in CNS homeostasis via immunological surveillance, or prolonged activation-mediated
neuroinflammation, which can lead to significant neuronal dysfunction and cognitive impairment,
resulting in exacerbated damage within the CNS. While the activation of microglia by HIV-1 Tat has
been extensively studied [14–18], there are also reports on cART-mediated activation of microglia
in vitro [19,20]; however, very little is known in regards to mechanisms underlying cART-mediated
activation of microglia.

Lysosomes are specialized cellular organelles that mediate protein degradation via various
pathways, such as endocytosis, phagocytosis, or autophagy. Most of the damaged or misfolded proteins
are degraded by endogenous lysosomal enzymes followed by the recycling of their products to
provide nutrients/energy for cell survival and growth [21]. Autophagy is an evolutionarily conserved
process by which cytoplasmic components are sequestered in double membrane vesicles, known as
autophagosomes, which can fuse directly with lysosomes to form autolysosomes [22]. This enables
delivery of the autophagic cargo to the autolysosomes where these materials are degraded by acidic
lysosomal hydrolases. Functional lysosome is required for autophagy clearance [23–25]. Lysosome
storage disorders are caused by abnormal lysosomal function, leading, in turn, to accumulation of
undegraded metabolites [21,26]. Most lysosome storage disorders are characterized by underlying
inflammation and autophagy dysregulation. In the central nervous system, impairment of lysosomal
function has been shown to result in microglial activation and increased neuroinflammation [27,28].

Herein, we sought to explore cART-mediated activation of microglia and the possible involvement
of lysosomal dysfunction-mediated autophagy dysregulation as an underlying mechanism(s). We
acknowledge that there are several combinations of antiretroviral drugs or cART that are approved
clinically by the established guidelines for use in adults and adolescents living with HIV-1 [29]. In the
present study, we chose to use a combination of tenofovir disoproxil fumarate (TDF), emtricitabine
(FTC), and dolutegravir (DTG). The rationale for this combination is as follows. It is well-recognized that
the first-line therapy for HIV-1 infection comprises of two nucleoside reverse transcriptase inhibitors
(NRTIs) plus a boosted protease inhibitor or an integrase inhibitor [30]. This combinatorial therapy
achieves significant plasma viral suppression in the host (lower than 50 copies/mL). Based on this,
we chose to use two reverse transcriptase inhibitors (TDF and FTC) as well as an integrase inhibitor
(DTG) as the cART cocktail for our current study. This combination has also been effectively used in
the clinical setting [31–34].

In the present study, cART-mediated lysosomal dysfunction and its role in microglial activation
was assessed. Our data demonstrates the cART cocktail induced lysosomal membrane permeabilization
(LMP), impaired lysosomal functioning (elevated pH), decreased cathepsin D (CTSD) activity, and
increased formation of autophagosomes, with a concomitant defect in the fusion of the lysosomes with
the autophagosome. Thus, our findings establish a link between defective autophagy and lysosomal
dysfunction, which in turn, contributes to microglial activation in response to cART exposure and
strongly suggest that lysosomal dysfunction plays a critical role in the pathogenesis of HAND in
HIV-infected individuals on cART, and that lysosome protection could be considered as an adjunctive
therapeutic strategy for ameliorating/dampening some of the neurological complications of HAND.
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2. Materials and Methods

2.1. Reagents

Antiretroviral drugs TDF and FTC (Gilead Sciences, Foster City, CA, USA), and DTG (ViiV
Healthcare, Research Triangle Park, NC, USA). Rapamycin (R8781) and bafilomycin A1 (B1793) were
purchased from Sigma-Aldrich, St. Louis, MO, USA. Antibody resources: BECN1 (sc-11427) and CTSB
(sc-365558) were purchased from Santa Cruz Biotechnology, Dallas, TX, USA. LAMP2 (NB300-591)
and MAP1LC3B (NB100-2220) were purchased from Novus Biological Company, Centennial, CO,
USA. CTSD (ab75852) and M6PR (ab124767) were purchased from Abcam, Cambridge, MA, USA.
TFEB (A303-673A) was purchased from Bethyl Laboratories, Montgomery, TX, USA. SQSTM1 (MBL
PM045) was purchased from MBL International, Woburn, MA, USA. Goat anti-rabbit (sc-2004) and
goat anti-mouse (sc-2005) were purchased from Santa Cruz Biotechnology, Dallas, TX, USA.

2.2. Rat Primary Microglial Cell Isolation

Rat primary microglial cells (rPMs) from either sex were isolated from Sprague-Dawley newborn
pups (1–3 days). After digestion and dissociation of the dissected brain cortices in Hank’s buffered
salt solution (HBSS, Thermo Fisher Scientific Waltham, MA, USA, 14025076) supplemented with 0.25%
trypsin (Thermo Fisher Scientific Waltham, MA, USA, 25300-054), mixed glial cultures were prepared
by re-suspending the cell suspension in Dulbecco’s Modified Eagle Medium (DMEM, Thermo Fisher
Scientific Waltham, MA, USA, 11995-065) supplemented with 10% heated inactivated fetal bovine serum
(FBS, Thermo Fisher Scientific Waltham, MA, USA; 16000-044) with 100 U/mL penicillin, and 0.1 mg/mL
streptomycin. Cells were plated at a 20 × 106 cells/flask density onto 75-cm2 cell culture flasks. Cell
medium was replaced every 3 days, and after the first medium change, macrophage colony-stimulating
factor (Thermo Fisher Scientific Waltham, MA, USA, PHC9504) at 0.25 ng/mL was added to the flasks to
promote microglial proliferation. When confluent (7–10 days), mixed glial cultures were subjected to
shaking at 37 ◦C at 220 g for 2 h, to promote microglia detachment from the flasks. The cell medium,
containing the released microglia cells, was collected from each flask and centrifuged at 1000 g for 5 min
to collect cells, then plated on cell culture plates for all subsequent experiments. The purity of microglial
cultures was evaluated by immune-histochemical staining using the antibody specific for AIF1 (Wako
Pure Chemical Industries, Chuo-ku, Osaka, Japan, 019-19741) and was >95% pure.

2.3. Antiretroviral Treatment

Antiretroviral stock solutions were prepared by dissolving the drugs (TDF, FTC, and DTG) in
dimethyl sulfoxide (DMSO). Final concentrations of each antiretroviral drug (TDF, FTC, and DTG) in the
cART cocktail were 5 µM. The final concentration of DMSO was less than 0.01% (v/v) in the cAR-treated
and control groups.

2.4. Western Blotting

Treated cells were lysed using the mammalian Cell Lysis kit (Sigma-Aldrich, St. Louis, MO,
USA, MCL1-1KT). Equal amounts of the proteins were electrophoresed in a sodium dodecyl sulfate-
polyacrylamide gel (12%) under reducing conditions followed by transfer to polyvinylidene difluoride
(PVDF) membranes (Sigma-Aldrich, St. Louis, MO, USA, IPVH00010). The membranes were blocked
with 5% nonfat dry milk in 1× Tween-Tris-buffered saline (TTBS, 1.21 g Tris [Fisher Scientific, Hampton,
NH, USA, BP152-5], 8.77 g NaCl [Fisher Scientific, Hampton, NH, USA, BP358-212], 500 µL Tween-20
[Fisher Scientific, Hampton, NH, USA, BP337-500], pH 7.6 for 1 L). Western blots were then probed
with antibodies recognizing the indicated proteins. The loading protein amounts were normalized by
actin beta (ACTB, Sigma-Aldrich, St. Louis, MO, USA, A5441). The secondary antibodies were HRP
conjugated to goat anti-mouse/rabbit IgG.
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2.5. Immunocytochemistry

For immunocytochemistry, rPMs were plated on coverslips. The next day, cells were fixed with
4% paraformaldehyde for 15 min at room temperature, followed by permeabilization with 0.3%
Triton X-100 (Fisher Scientific, Hampton, NH, USA, BP151-500) in phosphate-buffered saline (PBS,
Fisher Scientific, Hampton, NH, USA, SH3025801). Cells were then incubated with a blocking buffer
containing 10% normal goat serum in PBS for 1 h at room temperature followed by addition of
primary antibodies and incubated overnight at 4 ◦C. Finally, the secondary antibodies were added
for 2 h. Next, cells were washed 3 times in PBS and mounted with Prolong gold antifade reagent
with 4,6-diamidino-2-phenylindole (DAPI, Thermo Fisher Scientific, Waltham, MA, USA, P36935).
Fluorescence images were taken with a Zeiss Observer using a Z1 inverted microscope (Carl Zeiss,
Thornwood, NY, USA), and the acquired images were analyzed using the Axio Vs 40 Version 4.8.0.0
software (Carl Zeiss, Thornwood, NY, USA).

2.6. Quantification of MAP1LC3B and LAMP2 Puncta

Fluorescence images were taken with a Zeiss Observer using a Z1 inverted microscope (Carl Zeiss,
Thornwood, NY, USA) and the acquired images were analyzed using Image J software. Firstly, the
region of interest or the cells to be analyzed were selected using the polygon selection tool. The green
channel was extracted to grayscale followed by photographic inversion (GFP fluorescence converted
to black pixels over a white background). The regions of interest to be measured were then analyzed
by the measure particles algorithm to record the GFP-LC3 puncta number, area, and size. Results were
displayed in the results window and were transferred to an excel spreadsheet using the functions
of ImageJ.

2.7. Real-Time qPCR

Total RNA was extracted using a Quick-RNA™Miniprep Kit (Zymo Research, Irvine, CA, USA,
R1055) as per the manufacturer’s protocol. Column purified total RNA was then reverse transcribed
into cDNA using a Verso cDNA Synthesis Kit (Thermo Fisher Scientific, Waltham, MA, USA, AB-1453/B),
according to the manufacturer’s instructions. Reverse transcribed RNA was then successively analyzed
by the 7500 Fast Real-Time PCR System (Applied Biosystems, Grand Island, NY, USA). Real-time PCR
was performed using the TaqMan Fast Advanced Master mix and TaqMan gene expression assays
(Applied Biosystems) with FAM-labeled probes using standard amplification protocol. Rat primers
for Tnf (Rn01525859_g1), Il6 (Rn01410330_m1), Il1b (Rn00580432_m1), Ccl2 (Rn00580555_m1), Il10
(Rn01483988_g1), Il4 (Rn01456866_m1), Lamp2 (Rn00567053_m1), Ctsd (Rn00592528_m1), and Gapgh
(Rn01775763_g1) were purchased from Applied Biosystems. Normalization was done with Gapdh, an
internal control. Each reaction was carried out in triplicate, and three independent experiments were
run. The fold change in expression was then obtained by the 2−∆∆CT method.

2.8. CTSD Activity Determination

CTSD activity was measured using the CTSD Activity Assay Kit (Fluorometric) from Abcam
Cambridge, MA, USA (ab65302). Cell lysates were collected for analysis. The cell lysate was incubated
with reaction buffer for 1 h at 37 ◦C. Fluorescence was measured (Ex/Em = 328/460 nm). Fold increases
in proteases activity were determined by comparing the relative fluorescence units (RFUs) against the
levels of the controls.

2.9. Lysosomal Membrane Permeability Assay

Acridine orange is a fluorescent dye that easily traverses the cell membrane. It is a weak base, which
reversibly accumulates into acidified membrane-bound compartments. The fluorescence emission of
acridine orange is concentration-dependent, from red at high concentrations (e.g., in lysosomes) to
green at low concentrations (e.g., in the cytosol), with yellow as intermediate (e.g., upon trapping in
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nucleoli). The shift in the red-to-green emission ratio in comparison to controls may thus either monitor
lysosomal leakage or change in lysosomal pH. In our fluorometric studies, cells were cultured in 96-well
culture plates. Cells were first exposed with acridine orange (5 µg/mL) at 37 ◦C for 15 min. Cells were
rinsed, then incubated in HBSS with or without cART for the indicated times. Cells were examined
at 1-h intervals using a Synergy™Mx Monochromator-Based Multi-Mode Microplate Reader (BioTek
Instruments, Inc. Winooski, VT, USA) with the excitation wavelength at 485 nm and emission recorded
at 530 and 620 nm.

2.10. Lysosomal pH Measurement

Lysosomal pH was measured using LysoSensor (Yellow/Blue DND-160) (Thermo Fisher Scientific,
Waltham, MA, USA)—a dual ratio-metric indicator dye that is used to measure the pH of acidic
organelles, such as lysosomes. Briefly, rPMs were incubated with 2 µM LysoSensor for 5 min at 37 ◦C
and fluoresecence intensity recorded at 340 and 380 nm, following which 340/380 nm ratios were
converted to pH units using a calibration curve established using 20 mM MES (+120 mM KCl, 20 mM
NaCl, 10 µM Monensin, 20 µM Nigericin) and the pH was adjusted between 3.0 and 7.0 using either
HCl or NaOH.

2.11. MAP1LC3B Turnover and SQSTM1 Degradation Assays

The methodology for MAP1LC3B turnover and SQSTM1 degradation assays has already been
published [16,35]. Briefly, rPMs were seeded at a density of 5× 105 cells/well in a 6-well plate. The plates
were then incubated in a humidified 5% CO2 incubator at 37 ◦C for attachment. Cells were then starved
overnight in the serum-free culture medium. rPMs were then exposed to either cART (5 µM each of
TDF, FTC, and DTG) for 24 h alone or the cells also exposed to 400 nM bafilomycin (BAF) in the last 4 h
of the 24 h cART treatment. At the end of the experiment, cells were harvested, and protein samples
were prepared for western blotting analysis.

2.12. Plasmids Transfection

The procedure for transfection of both plasmids; tandem fluorescent-tagged MAP1LC3B plasmid
(ptfLC3; a gift from Tamotsu Yoshimori; Addgene, 21074) [36] and pEGFP HSPA plasmid (a gift from
Lois Greene; Addgene, 15215) [37] were similar. Briefly, cells were maintained with 10% FBS DMEM
overnight. At 70% confluence, the culture medium was replaced with 250 µL of Opti-MEM® I Reduced
Serum Medium. Cells were transfected with the GFP-MAP1LC3B plasmid using Lipofectamine® 3000
Reagent, according to the manufacturer’s protocol, for 12 h, following which the culture medium was
replaced with the respective 10% heat-inactivated FBS-DMEM for 24 h. Then, cells were treated with
various reagents for the indicated time and processed for further analysis.

2.13. Statistical Analysis

The results are presented as means ± SEM and were evaluated using a one-way analysis of
variance followed by a Bonferroni (Dunn) comparison of groups using least squares-adjusted means.
Probability levels of <0.05 were considered statistically significant.

3. Results

3.1. cART-Mediated Impairment of Lysosomal Function in rPMs

The lysosome is a critical cellular organelle responsible for clearing cytosolic debris. It has
been shown that impairment of lysosomal function resulted in microglial activation and increased
neuroinflammation in the CNS [27,28]. We first sought to determine the effects of the three antiretrovirals
(DTG, TDF, FTC) individually and in every combination on lysosomal function. rPMs were exposed to
cART (TDF, FTC, DTG), each at 5 µM for 24 h. The rationale for choosing these concentrations of drugs
is based on several published reports [38–40]. Patient studies have reported levels of antiretrovirals
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in CSF to be 32 ng/mL for TDF, 386 ng/mL for FTC, and 23 ng/mL for DTG [38]. In a recent in vitro
study, differential accumulation of TDF, FTC, and DTG was reported in various CNS cells, including
microglia, when the cells were treated with 5 or 10 µM concentrations of these drugs [39]. In the current
study, adverse effects of TDF, FTC, and DTG (individual and in combinations) on lysosomal proteins
(decreased lysosomal-associated membrane protein 2 (LAMP2) and mature cathepsin D (mCTSD)
expression) as well as lysosomal functions (increased LMP and decreased CTSD activity) were observed
(Supplementary Figure S1A–D). Interestingly, the most adverse effects of cART on lysosomes were
observed in cells exposed to the combination of three antiretroviral drugs (often recommended as a
first-line therapy for HIV-1 infection) [30]. Moreover, we checked the toxicity of the cART cocktail by
analyzing cell survival. As shown in Supplementary Figure S1E, there is no significant difference in the
cell survival of the cART-treated and non-treated rPMs. Thus, the combination of three antiretrovirals
(cART), TDF, FTC, and DTG (each at 5 µM), was chosen for the subsequent experiments. Next, the
rPMs were exposed to cART for 3 to 24 h. The protein homogenates of the treated cells were assessed
for the expression of the lysosomal marker, LAMP2. As shown in Figure 1A, in rPMs exposed to cART,
there were significant downregulation of LAMP2 expression starting at 6 h, with a continued trend of
downregulation up to 24 h. As LAMP2 is the lysosome membrane protein, its downregulation could
affect membrane permeability. Furthermore, we checked cART-mediated LMP in rPMs. Exposure
of rPMs with cART for 24 h significantly increased LMP (Figure 1C). Next, we sought to examine
cART-mediated effects on the expression of lysosomal cathepsins. Cathepsins can be divided into three
groups: Cysteine, aspartic, and serine proteases. CTSD is an aspartic protease while CTSB is a cysteine
protease [41–43]. Interestingly, cART exposure resulted in decreased expression of mature cathepsin D
(mCTSD) at 24 h in rPMs exposed to cART (Figure 1D,E). Next, we also examined the expression of
yet another cathepsin—Cathepsin B (CTSB). As shown in Figure S2A, exposure of cART significantly
downregulated the expression of CTSB in rPMs at 24 h. We next sought to examine CTSD activity
to check the lysosomal functioning in the context of cART. There was a significant decrease in CTSD
activity in rPMs exposed to cART for 24 h (Figure 1F). Maturation of cathepsins and its activity is
dependent on the acidity of the lysosome (low pH) [41–43]. Next, we sought to determine the lysosome
pH in the rPMs treated with cART. Exposure of cART increased the lysosomal pH in rPMs (Figure 1G).
We also performed acridine orange staining in rPMs exposed to cART to further validate the findings
observed with LMP. Acridine orange is a fluorescent dye that easily traverses the cell membrane. Being
a weak base, acridine orange reversibly accumulates in acidified membrane-bound compartments,
such as the lysosomes. Furthermore, the fluorescent emission of acridine orange is concentration
dependent, being red at high concentrations (e.g., in lysosomes) to green at low concentrations (e.g., in
the cytosol), with yellow as an intermediate (e.g., upon trapping in nucleoli). Thus, either lysosomal
leakage or lysosomal pH change could be easily monitored by determining shifts in the red-to-green
emission ratio in comparison with the respective control cells. As shown in Figure 1H,I, rPMs exposed
to cART exhibited increased green emission.

Next, we also sought to determine cART-mediated transcriptional regulation and trafficking of
lysosomal proteins. CTSD as well as other soluble lysosomal proteins are transported to the lysosomes
via mannose-6-phosphate receptor (M6PR)-mediated trafficking [44]. There was no notable change
in the expression of M6PR in the rPMs treated with cART for varying time periods (Figure S2B).
Transcription factor EB (TFEB) plays key role in lysosome biogenesis [45]. rPMs were exposed to cART
for varying time periods (3, 6, 12, and 24 h), and the protein expression levels of TFEB were determined
by western blotting. As shown in Figure S2C, there was no significant change in the expression of TFEB
in cART-exposed rPMs. Next, we examined mRNA levels of Lamp2 and Ctsd in rPMs exposed to cART
for various time periods. As shown in Figure S2D,E, there were no significant changes in the mRNA
expression of TFEB target genes of the lysosome pathway (Lamp2 and Ctsd). The results suggest that
cART directly affects the lysosome and there are no effects on trafficking and transcriptional regulation
of lysosome-associated proteins.
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(DTG)) for the indicated time periods. (A,B) Exposure of microglia to cART resulted in a significant 
decrease in expression of lysosomal-associated membrane protein 2 (LAMP2) at 6 to 24 h post-
treatment. (C) Representative bar graph showing cART-mediated significantly increased lysosomal 
membrane permeabilization (LMP) (24 h). (D,E) Microglia exposed to cART demonstrated a 
significant decrease in levels of mature cathepsin D (mCTSD) at 24 h post-treatment. (F) 
Representative bar graph showing exposure of cART significantly reduced the CTSD activity in rPMs 
(24 h). (G) Representative bar graph showing cART-mediated increased lysosomal pH in rPMs. (H 
and I) Acridine orange staining showing increased green color and reduced red color in cART-treated 
rPMs. H2O2 was used as a positive control for lysosome damage. Data is from three independent 
experiments. Actin beta (ACTB) served as a protein loading control for western blots. Data are 
expressed as means ± SEM and were analyzed using student t-test or one-way ANOVA. *, p < 0.05 vs. 
control; N.S., non-significant. 
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misfolded proteins, we thus rationalized that impairment of lysosomal function could likely perturb 
this process, resulting in blockage of autophagic flux. We next sought to assess the effects of cART on 
autophagy mediators. We determined the expression of multiple autophagy-related proteins, 
including BECN1/Beclin1 (beclin 1, autophagy related), MAP1LC3B/LC3B (microtubule-associated 
protein 1 light chain 3 beta), and SQSTM1/p62 (sequestosome 1), in rPMs treated with cART. As 
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Figure 1. Exposure of rat primary microglial cells (rPMs) to combined antiretroviral therapy (cART)
cocktail resulted in impaired lysosomal function. rPMs were seeded into six-well plates and treated
with cART (5 µM each of tenofovir disoproxil fumarate (TDF), emtricitabine (FTC), and dolutegravir
(DTG)) for the indicated time periods. (A,B) Exposure of microglia to cART resulted in a significant
decrease in expression of lysosomal-associated membrane protein 2 (LAMP2) at 6 to 24 h post-treatment.
(C) Representative bar graph showing cART-mediated significantly increased lysosomal membrane
permeabilization (LMP) (24 h). (D,E) Microglia exposed to cART demonstrated a significant decrease
in levels of mature cathepsin D (mCTSD) at 24 h post-treatment. (F) Representative bar graph showing
exposure of cART significantly reduced the CTSD activity in rPMs (24 h). (G) Representative bar graph
showing cART-mediated increased lysosomal pH in rPMs. (H,I) Acridine orange staining showing
increased green color and reduced red color in cART-treated rPMs. H2O2 was used as a positive control
for lysosome damage. Data is from three independent experiments. Actin beta (ACTB) served as a
protein loading control for western blots. Data are expressed as means ± SEM and were analyzed using
student t-test or one-way ANOVA. *, p < 0.05 vs. control; N.S., non-significant.

3.2. cART-Mediated Dysregulated Autophagy in rPMs

Based on the premise that during normal physiological processes lysosomes fuse with
autophagosomes to form autolysosomes to ensure completion of autophagy and clearance of misfolded
proteins, we thus rationalized that impairment of lysosomal function could likely perturb this
process, resulting in blockage of autophagic flux. We next sought to assess the effects of cART on
autophagy mediators. We determined the expression of multiple autophagy-related proteins, including
BECN1/Beclin1 (beclin 1, autophagy related), MAP1LC3B/LC3B (microtubule-associated protein 1
light chain 3 beta), and SQSTM1/p62 (sequestosome 1), in rPMs treated with cART. As shown in
Figure 2A–C, expression of BECN1, MAP1LC3B, and SQSTM1 was significantly upregulated in a
time-dependent manner. These results thus implicated that the action of cART on the lysosomes
involved blockage of the autophagy maturation stage. To assess whether the increased quantity of
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MAP1LC3B was a result of enhanced autophagosome synthesis or reduced autophagosome turnover
(due to delayed trafficking or reduced fusion with the lysosomes), we assessed MAP1LC3B lipidation
and SQSTM1 expression in the presence of bafilomycin A1 (BAF—a known inhibitor of autophagosome
fusion) alone, cART alone, and a combination of BAF with cART. MAP1LC3B-II levels are thus
directly correlated with the number of autophagosomes [46]. It has been reported that impaired
degradation and accumulation of SQSTM1 protein is directly correlated with the rate of autophagic
vesicle degradation [47]. As shown in Figure 2D,E, western blot analysis showed no significant
difference in the accumulation of MAP1LC3B-II and SQSTM1 in rPMs exposed to cART in the presence
or absence of BAF. Immunofluorescence imaging also showed increased expression and number of
MAP1LC3B puncta in rPMs exposed to cART (Figure 2F–H). Overall, the result shows dysregulated
autophagy and accumulation of autophagosomes in the cART-treated rPMs.
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Figure 2. Exposure of rPMs to cART resulted in dysregulated autophagy. (A–C) Representative 
western blots and bar graphs showing cART-mediated increased expression levels of autophagy 
markers beclin 1 (BECN1), microtubule-associated protein 1 light chain 3 beta (MAP1LC3B), and 
sequestosome 1 (SQSTM1) in rPMs. (D,E) Representative western blots and bar graph showing 
MAP1LC3B lipidation and SQSTM1 accumulation in rPMs treated with cART, bafilomycin (BAF, 
autophagosome fusion inhibitor), and cART + BAF. (F) Representative fluorescent-microscopic image 
showing cART-mediated increased MAP1LC3B puncta (autophagosomes). (G,H) Representative bar 

Figure 2. Exposure of rPMs to cART resulted in dysregulated autophagy. (A–C) Representative western
blots and bar graphs showing cART-mediated increased expression levels of autophagy markers beclin 1
(BECN1), microtubule-associated protein 1 light chain 3 beta (MAP1LC3B), and sequestosome 1 (SQSTM1)
in rPMs. (D,E) Representative western blots and bar graph showing MAP1LC3B lipidation and SQSTM1
accumulation in rPMs treated with cART, bafilomycin (BAF, autophagosome fusion inhibitor), and cART
+ BAF. (F) Representative fluorescent-microscopic image showing cART-mediated increased MAP1LC3B
puncta (autophagosomes). (G,H) Representative bar graphs showing cART-mediated increased intensity
of MAP1LC3B and increased numbers of MAP1LC3B puncta. Data is from three independent experiments.
ACTB served as a protein loading control for western blots. Data are expressed as means ± SEM and
were analyzed using student t-test or one-way ANOVA. *, p < 0.05 vs. control; N.S., non-significant.
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3.3. cART-Mediated Impairment of Autophagosome–Lysosome Fusion

Based on our biochemical studies that cART interrupts the maturation stage of autophagy by
impairing lysosomal functioning, we next sought to validate this observation further. For this, rPMs
were first transfected with tandem fluorescent-tagged MAP1LC3B plasmid and then exposed to cART
followed by an assessment of the autophagic flux. The degree of autophagic flux in rPMs is reflected
by the distribution pattern (wide distribution or puncta formation) as well as by the fluorescent
color (yellow or red) [36]. Under basal conditions, both green and red signals are evenly distributed
throughout the cells. During autophagosome formation, there is increased formation of yellow puncta
due to colocalization of green and red fluorescence; in the maturation stage, on the other hand, GFP is
unstable in the autolysosomes due to the internal acidic environment, leading to quenching of the green
fluorescence with the presence of only the red puncta. As shown in Figure 3A–C, cART significantly
increased the yellow puncta in rPMs. This effect was analogous to the treatment of cells with BAF,
a well-known inhibitor of autophagosome–lysosome fusion and was used here as a positive control.
Exposure of transfected cells to rapamycin (RAP) on the other hand, a known autophagy inducer,
resulted in a strikingly increased presence of red puncta in rPMs, thereby indicating an increased
fusion of the autophagosome with the lysosome. Next, we sought to investigate the effect of cART on
endogenous autophagosome–lysosome fusion. For this, rPMs were exposed to cART for 24 h followed
by double staining of cells with MAP1LC3B as well as the lysosomal marker LAMP2. As shown in
Figure 3D–F, under basal conditions, MAP1LC3B (green signal) was evenly distributed throughout the
cells with some colocalization with lysosomes (yellow signal). Following cART exposure, however,
there was increased intensity of MAP1LC3B with a concomitant decrease of LAMP2 signal, thereby
indicating decreased lysosomal colocalization.Cells 2019, 8, x FOR PEER REVIEW 10 of 20 
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Figure 3. Exposure of microglia to cART resulted in blockade of autophagosome–lysosome fusion.
(A) rPMs were seeded into a 12-well plate followed by tandem fluorescent-tagged MAP1LC3B plasmid.
Next, cells were exposed to cART (5 µM each of TDF, FTC, and DTG) for an additional 24 h and observed
by confocal imaging. The results showed that cART exposure significantly increased the formation of
autophagosomes (yellow puncta). (B) Representative bar graph showing the number of autophagosome
(yellow puncta) per cell. (C) Representative bar graph showing the number of autolysosome (red
puncta) per cell. (D) rPMs were seeded into 12-well plates followed with cART exposure for 24 h.
Cells were then double immunostained with MAP1LC3B and LAMP2 antibody and observed by
immunofluorescent microscopy. (E,F) Representative bar graphs showing cART-mediated decreased
LAMP2 puncta and decreased colocalization of MAP1LC3B and LAMP2. BAF—autophagosome fusion
inhibitor, and rapamycin (RAP—autophagy inducer) were used as controls for autophagy flux. Data
is from three independent experiments and is expressed as means ± SEM and were analyzed using
one-way ANOVA. *, p < 0.05 vs. control.

3.4. cART-Mediated Activation of rPMs

Moderate activation of microglia plays a role in CNS homeostasis via immunological surveillance;
however, prolonged activation mediates neuroinflammation. To explore the effects of cART on microglial
activation, rPMs were either left untreated or were exposed to cART (TDF, FTC, DTG), each at 5 µM for 3
to 24 h. To determine cART-mediated microglial activation, we assessed proinflammatory cytokine levels
in rPMs. Increased levels of proinflammatory cytokines are the determinant of microglial activation. We
sought to determine the expression levels of various pro- and anti-inflammatory mediators in the control
and cART-treated rPMs. For that, total RNA was extracted from the cells for the detection of various pro-
and anti-inflammatory mediators by qPCR. Our findings demonstrated that cART time-dependently
increased the mRNA levels of Il1b (interleukin 1 beta), with a significant up-regulation at 6 and
12 h post-treatment (Figure 4A). A similar trend was observed for the expression of proinflammatory
cytokines, Il6 (interleukin 6; Figure 4B) and Tnf (tumor necrosis factor; Figure 4C). There was no notable
change in the expression of CCL2 (C-C motif chemokine ligand 2) expression in the presence of cART
(Figure 4D). Additionally, we also assessed the expression of two anti-inflammatory mediators in cells
treated with cART and found no significant difference in the expression of Il10 (interleukin 10) and Il4
(interleukin 4) in rPMs exposed to cART in a time-dependent manner (Figure 4E,F).
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Figure 4. Exposure of microglial cells to cART resulted in cellular activation. rPMs were seeded
into six-well plates and treated with cART (5 µM each of TDF, FTC, and DTG) for the indicated time
periods. Total RNAs were extracted for the detection of pro- and anti-inflammatory mediators. (A–C)
Representative bar graphs showing cART-mediated time-dependent increase in the mRNA expression
of pro-inflammatory cytokines interleukin 1 beta (Il1b), interleukin 6 (Il6), and tumor necrosis factor
(Tnf) in rPMs. (D–F) cART exposure had no effect on the expression of C-C motif chemokine ligand
2 (Ccl2) and anti-inflammatory cytokines (Il10 and Il4) in rPMs. Data is from three independent
experiments and is represented as means ± SEM using one-way ANOVA. *, p < 0.05 vs. control.

3.5. HSPA Overexpression Abrogated cART-Mediated Impairment of Lysosomal Function

Having determined the importance of LMP in cART-mediated lysosomal dysfunction, we next
sought to determine the protective role of HSPA (heat shock protein family A) in blocking LMP [48,49]
in cART-exposed microglial cells. First, we have checked the expression levels of HSPA in the rPMs
treated with cART in a time-dependent manner. As shown in Supplementary Figure S3A, there was no
significant difference in the expression of HSPA after cART exposure in rPMs. As it is well known that
HSPA protects the lysosome membrane in stress conditions [48,49], we next sought to investigate the
protective effects of HSPA overexpression in cART-treated rPMs. First, we overexpressed the HSPA
in rPMs (Figure S3B). Overexpression of HSPA in rPMs protected lysosomal function after cART
treatment. As shown in Figure 5, HSPA overexpression abrogated cART-mediated downregulation
of LAMP2 (Figure 5A) and mCTSD (Figure 5B) in rPMs. Along with this, we also checked the pH of
the lysosome. HSPA overexpression protected the acidity of the lysosome in the presence of cART
(Figure 5C). Additionally, as shown in Figure 5D,E, HSPA overexpression in rPMs significantly abrogated
cART-mediated upregulation of LMP with concomitant downregulation of CTSD activity.
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Figure 5. HSPA overexpression abrogated cART-mediated impairment of lysosomal function. Control
rPMs and heat shock protein family A (HSPA) overexpressing rPMs were seeded into six-well plates
subjected to various treatments for 24 h. Protein homogenates were prepared for the detection of
the indicated molecules. (A,B) Representative western blots showing overexpressing HSPA in rPMs
reversed cART-mediated downregulation of LAMP2 and mCTSD expression levels. (C) Representative
bar graph showing overexpression of HSPA in rPMs protected lysosomal pH. (D,E) Representative bar
graphs showing HSPA protected LMP (D), and CTSD activity (E) in cART-treated rPMs. For all western
blots, ACTB served as a protein loading control. Data is from three independent experiments and is
expressed as means ± SEM and were analyzed using student t-test or one-way ANOVA. *, p < 0.05 vs.
control; #, p < 0.05 vs. cART.

3.6. HSPA Overexpression Abrogated cART-Mediated Autophagy Dysregulation and Microglial Activation

The next step was to explore the protective effects of HSPA on cART-mediated dysregulation of
autophagy. As expected, and as shown in Figure 6A,B, HSPA overexpression in rPMs notably blocked
cART-mediated upregulation of MAP1LC3B and SQSTM1, thereby implying increased autophagosome–
lysosome fusion. To validate these findings and to decipher the ability of cART to regulate the
autophagosome–lysosome fusion efficiency, HSPA-overexpressing rPMs were transfected with a
plasmid-encoding tandem fluorescent-tagged MAP1LC3B followed by exposure of cells to cART for 24 h.
As shown in Figure 6C,D, HSPA-overexpressing rPMs transfected with the tandem fluorescent-tagged
MAP1LC3B reporter plasmid and exposed to cART exhibited a significant increase in the yellow puncta
with a concomitant decrease in the red puncta, thereby indicating incomplete autophagosome maturation.
However, HSPA overexpression in rPMs followed by cART exposure (24 h) demonstrated a significant
increase in the red puncta with moderate levels of yellow puncta compared with only cART-exposed
rPMs. We next sought to examine whether HSPA overexpression could also block cART-mediated
activation of microglia. As shown in Figure 6E–G, HSPA overexpression in rPMs significantly blocked
cART-mediated upregulation of pro-inflammatory cytokine (Il1β, Il6, and Tnf) mRNA.
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Figure 6. HSPA overexpression abrogated cART-mediated autophagy dysregulation and microglia
activation. (A,B) Representative western blots and bar graphs showing overexpression of HSPA
in rPMs reversed cART-mediated upregulation of autophagy markers MAP1LC3B and SQSTM1.
(C,D) HSPA-overexpressing rPMs were seeded into 12-well plates followed with the transfection
of tandem fluorescent-tagged MAP1LC3B plasmid. Then, cells were exposed to various treatments
for another 24 h and fluorescent intensity was assessed by confocal microscopy. HSPA reversed
cART-mediated induction of autophagosome formation. (E–G) Representative bar graphs showing
HSPA overexpression abrogated cART-mediated increase in the mRNA expression of pro-inflammatory
cytokines Il1b, Il6, and Tnf in rPMs. For all western blots, ACTB served as a protein loading control.
Data is from three independent experiments and is expressed as means ± SEM and was analyzed using
student t-test or one-way ANOVA. *, p < 0.05 vs. control; #, p < 0.05 vs. cART.

4. Discussion

Microglial activation and increased neuroinflammation are hallmark features of HAND pathogenesis
in HIV-infected individuals on cART [2,8,9]. The advent of cART has resulted in the successful
suppression of peripheral viremia; paradoxically, however, emerging evidence has suggested that
long-term use of cART could result in severe side effects, including oxidative stress, DNA and
mitochondrial damage, and disruption of phagocytosis in different cells [50–52]. As is well-recognized,
there are several combinations of antiretroviral drugs that are clinically used to treat HIV infection [29].
In the present study, we demonstrated that exposure of microglia to the combination of three commonly
used ARVs (TDF, FTC, DTG) mediated impaired lysosomal functioning, leading, in turn, to blockade
of autophagosome–lysosome fusion, ultimately resulting in microglial activation.

CNS inflammation is a common underlying feature in HIV-infected patients on cART [53]. Multiple
factors have been suggested to contribute to the increased neuroinflammation: (a) The persistent
expression of HIV proteins, such as Tat and gp120; (b) low levels of HIV replication in brain macrophages
owing to reduced penetrance of some cART regimens; (c) co-morbid conditions, including hepatitis C
co-infection and substance abuse; and (d) direct CNS toxicity of cART. While sufficient information is
present on viral protein-mediated inflammation, the role of cART as a contributor of neuroinflammation
specifically via its action on glial cells, such as microglia, is now garnering attention. Our findings
demonstrated that cART-mediated upregulation of pro-inflammatory mediators, such as Il6, Il1b, and
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Tnf mRNA levels. Furthermore, mRNA analysis of anti-inflammatory markers (Ccl2, Il10, and Il4)
showed no significant changes in rPMs exposed to cART, suggesting thereby cART mediated skewing
of the microglia towards a pro-inflammatory phenotype.

Autophagy dysregulation and neuroinflammation are closely related in the development of
neurodegeneration [54]. Autophagy dysregulation is a hallmark of HIV neuropathogenesis [55,56].
Previous reports have shown dysregulated autophagy in the prefrontal cortex of postmortem brains of
persons with HIV-1-associated encephalitis [57]. Another study also demonstrated disruption of neuronal
autophagy by SIV-infected microglia, which resulted in neurodegeneration [58]. Since dysregulated
autophagy and inflammation is believed to be a “driving force” underlying pathogenesis of HAND,
our results implied that cART could contribute to promotion and exaggeration of HAND. There are
few important studies demonstrating antiretroviral-mediated autophagy dysregulation in different
cell types. EFV has been shown to induce autophagy and aberrant differentiation in normal human
keratinocytes [59] and mitophagy in hepatic cells [60]. Zidovudine, another NRTI, has been shown
to adversely affect mitochondrial turnover in primary T cells [61]. Other protein inhibitors, such as
atazanavir, have also been shown to induce autophagy and mitophagy in human preadipocytes [62]
while saquinavir has been demonstrated to upregulate endoplasmic reticulum stress, autophagy, and
apoptosis in ovarian cancer cells [63]. Various etiologies have been suggested for antiretroviral-mediated
autophagy dysregulation and cellular damage; however, the mechanism(s) regulating autophagy
dysregulation have not been conclusively explored.

Our findings also demonstrated cART mediated dysregulation of autophagy as assessed by
increased expression of autophagy mediators BECN1, MAP1LC3B, and SQSTM1. The MAP1LC3B
turnover assay, as well as the SQSTM1 degradation assay, also indicated blockage of the autophagic flux
as evidenced by the accumulation of MAP1LC3B-II and SQSTM1 in cART-exposed rPMs. The addition
of BAF (autophagosome–lysosome fusion inhibitor) to cART-treated rPMs was unable to cause any
further increase in the expression of MAP1LC3B-II and SQSTM1, which confirms maximal accumulation
of MAP1LC3B-II and SQSTM1 by cART in rPMs. In vitro assessment of autophagic flux using tandem
fluorescent-tagged MAP1LC3B plasmid also demonstrated cART-mediated blockage of autophagy, by
increased accumulation of autophagosomes but not autolysosomes.

It is well known that lysosomal dysfunction causes autophagosome accumulation [21,23].
Lysosomes are specialized cellular organelles critical for the maturation stage of autophagy since
the fusion of autophagosomes with lysosomes to form the autolysosome is necessary for protein
degradation [64,65]. Lysosomes are a target of HIV proteins, and lysosomal dysfunction is inherently
involved in HAND pathogenesis [66]. The lysosomal membrane is composed of highly glycosylated
transmembrane proteins, such as LAMP, which are thought to protect the membrane from degradation
by lysosomal enzymes. LMP is the major cause of lysosomal pH elevation. Protons leak through
the destabilized membrane, resulting in a loss of the pH gradient [67,68]. Our results showed cART
mediated downregulation of LAMP2 expression levels and increased LMP. Cathepsins are stable and
active in the acidic environment (low pH) of the lysosomes [41–43]. Results from our data showed that
there is downregulation of mCTSD expression and decreased CTSD activity, with concomitant increase
in lysosomal pH in the rPMs treated with cART. Overall, cART-mediated LMP causes pH elevation,
which in turn leads to decreased CTSD activity. Additionally, the effects of cART on cathepsin regulation
and trafficking were also determined in this study. It is well documented that cathepsins, as well as
other soluble lysosomal proteins, are transported into the lysosomes via M6PR-mediated trafficking [44].
In this study, exposure of cART to rPMs failed to alter the expression levels of M6PR protein. Next, we
determined the expression of TFEB, a master regulator of the lysosome pathway. Interestingly, there was
no significant change in the expression of TFEB in cART-treated rPMs. Moreover, there was no change
in the mRNA expression levels of Lamp2 and Ctsd. Overall, this confirms that cART directly affect the
lysosome and there is no cART-mediated transcriptional regulation of lysosome-associated proteins.

Having determined the importance of LMP in cART-mediated lysosomal dysfunction in rPMs,
we next sought to protect the lysosome membrane to reverse cART-mediated lysosome and autophagy
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defects. It has been well documented that HSPA localizes to the luminal side of the endosomal-lysosomal
system and stabilizes the lysosome membrane to protect cells from LMP against various stimuli [48,49].
Our findings demonstrated that overexpression of HSPA in rPMs significantly abrogated cART-mediated
lysosomal dysfunction (evidenced by increased LAMP2, mCTSD, and pH, and decreased LMP),
autophagy dysregulation (evidenced by decreased MAPLC3BII and p62), and microglia activation
(evidenced by a significant reduction in pro-inflammatory cytokines). These observations thus imply
that LMP-mediated lysosomal dysfunction lies upstream of the autophagy dysregulation. These
results further suggested that strategies to protect lysosome could help to dampen cART-mediated
inflammation in HIV-infected individuals on cART.

In summary, our findings demonstrated that LMP-mediated lysosome dysfunction is central
in cART-mediated autophagy dysfunction and microglial activation and the lysosome membrane
protection reversed cART-mediated effects (Figure 7). Lysosomal protection agents could thus be
developed as future adjunctive treatment options for dampening cART-mediated inflammation in
HIV-infected individuals on cART.Cells 2019, 8, x FOR PEER REVIEW 16 of 20 
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