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Pharma GmbH & Co. KG, Biberach an der Riß, Germany

Restoration of b-cell mass through the induction of proliferation represents an attractive
therapeutic approach for the treatment of diabetes. However, intact and dispersed primary
islets suffer from rapidly deteriorating viability and function ex vivo, posing a significant
challenge for their experimental use in proliferation studies. Here, we describe a novel
method for the assessment of compound effects on b-cell proliferation and count using
reaggregated primary human islets, or islet microtissues (MTs), which display homogeneous
sizeand tissuearchitectureaswell as robust andstable functionality andviability for4weeks in
culture.Weutilized this platform to evaluate thedose-dependent short- and long-termeffects
of harmine on b-cell proliferation and function. Following compound treatment and EdU
incorporation, isletMTswerestainedandconfocal-imaged forDAPI (nuclearmarker),NKX6.1
(b-cell marker), and EdU (proliferation marker), allowing automated 3D-analysis of number of
total cells,b-cells, andproliferatingb- andnon-b-cellsper isletMT. Inparallel, insulin secretion,
intracellular insulin and ATP contents, and Caspase 3/7 activity were analyzed to obtain a
comprehensive overview of islet MT function and viability. We observed that 4-day harmine
treatment increased b- and non-b-cell proliferation, NKX6.1 expression, and basal and
stimulated insulin secretion in a dose-dependent manner, while fold-stimulation of secretion
peaked at intermediate harmine doses. Interestingly, 15-day harmine treatment led to a
general reduction in harmine’s proliferative effects as well as altered dose-dependent trends.
The described methodology provides a unique tool for in vitro high-throughput evaluation of
short- and long-term changes in human b-cell proliferation, count and fraction along with a
variety of functional parameters, in a representative 3D human islet model.
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INTRODUCTION

Both type 1 (T1D) and type 2 diabetes (T2D) pathophysiologies
involve a loss of functional b-cell mass through a combination of
b-cell apoptosis (1–3) and dedifferentiation (4–6). Autopsy
studies have reported deficits in b-cell mass of up to ~99% in
T1D patients, and up to ~65% in T2D patients. Importantly,
such studies have suggested that even decades after diagnosis,
T1D patients typically maintain a small number of residual b-
cells (3, 5, 7–11). Restoration of b-cell mass, through the
induction of proliferation of residual endogenous b-cells,
therefore represents a promising treatment strategy for the
recovery of glucose homeostasis in diabetic patients.

Human b-cell proliferation follows consistent patterns
according to developmental stage and age in humans. Ki67-
labeling analysis in postmortem pancreatic tissues has indicated
that the highest proliferative rates occur during the perinatal
period, with ~2-3.5% of b-cells proliferating, followed by a rapid
decline in proliferation during the first two years of life,
approaching a rate of <0.5% in adults that continues to
decrease with age (12–15). Epigenomic and transcriptomic
analyses have suggested this recalcitrance to replication in
adult b-cells to be correlated with repressive histone marks and
increased methylation in the promoter regions of cell-cycle
related genes, as well as increased expression of senescence
markers in adult vs. juvenile b-cells (10, 16–18).

Most studies investigating b-cell proliferation have been
performed in rodent models, leading to greater knowledge of
the signaling pathways controlling b-cell replication in mice than
in humans (19). Human and rodent islets, however, not only
exhibit intrinsic differences in structure, composition, and
function, but also in proliferative capacity (20–22). While
rodent b-cells follow similar development- and age-related
trends as in humans, rodent b-cells have much higher
proliferative rates (10-30% neonatally and 1% in adulthood)
(22–24). Intriguingly, during periods of high metabolic demand
in adulthood, including pregnancy and obesity, b-cell mass
increases significantly in both rodents and humans. While
rodent studies point to a mechanism of increased b-cell
proliferation (25, 26), robust data demonstrating increased
proliferation rather than neogenesis in humans during
pregnancy or obesity is still lacking (27, 28), and the precise
contribution of proliferation remains controversial (22, 29–31).
As a further illustration, human islets transplanted into mice fed
a high-fat diet do not proliferate whereas endogenous mouse
islets do (22, 31). These examples highlight potential
fundamental differences in b-cell proliferative capacity between
rodents and humans and emphasize the need to focus on human
islets for the study of b-cell proliferation. Interpretation of these
discrepancies is further obscured by the fact that most studies in
rodents are performed in juvenile animals, whereas human
studies are typically performed using material from older
adults. For these reasons and perhaps others, a majority of
agents that promote b-cell proliferation in rodents have proven
unsuccessful in human islets (10, 23). A promising exception is
the class of dual-specificity tyrosine phosphorylation-regulated
kinase 1A (DYRK1A) inhibitors, which have recently been
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identified as an effective strategy to induce b-cell-proliferation
in both rodent and human islets (32–36). Harmine, an orally
bioavailable, naturally occurring compound, is the best studied
and a highly potent DYRK1A-inhibitor (36), and has been found
to induce human b-cell-proliferation up to 3% (10, 37).

Due to the frequent lack of translatability of proliferative agents
identified in rodent studies to human, it is imperative that new
methods be developed to enable the study of b-cell proliferation
directly in human islets. Recent advances have led to the
development of EndoC-bH human b-cell lines that replicate
human b-cell function and gene expression patterns remarkably
well, as well as recapitulate low proliferation rates after excision of
immortalization transgenes (38–40). While representing important
tools for research, the EndoC-bH cell lines are derived from fetal
pancreas and may thus not model adult human b-cells and
proliferative capacity to a sufficiently translatable level. Isolated
human islets remain the gold standard for the study of human b-
cells; their experimental use, however, is remarkably challenging
due to the striking variation in islet size, cellular composition,
function, and purity (41), as well as low viability and functionality
in prolonged culture, especially of large islets (42). These challenges
can be addressed through enzymatic dispersal and 2D monolayer
culture, although the lack of organotypic cell-to-cell and cell-to-
extracellular matrix interactions can have profound effects on
proliferation: adult dispersed islets dedifferentiate and
hyperproliferate in culture (43), and the extracellular matrix used
for culture can also strongly influence b-cell proliferative capacity
(44). In contrast, human pseudoislets, or islet microtissues (MTs),
generated by gentle enzymatic dissociation and scaffold-free
reaggregation of human native islets, represent a uniform,
functionally robust and long-lived in vitro islet model. Islet MTs
preserve a native-like endocrine cell distribution and composition,
remain glucose-responsive for at least 28 days, and due to their
high standardization, are amenable to high-throughput screening
(45, 46).

In the current study, we describe the development of an
automated three-dimensional (3D) staining, high-content
imaging, and image analysis platform utilizing human islet
MTs for the assessment of changes in proliferation rates and
total numbers of b- and non-b-cells. We used the established
platform to evaluate harmine’s dose-dependent effects across
multiple donors and for different treatment durations. In parallel
we analyzed insulin secretion, intracellular insulin and ATP
contents, and Caspase 3/7 activity to understand harmine’s
effect on islet MT function and viability. The strength of the
described platform lies in our ability to evaluate short- and long-
term compound effects based on diverse microscopic and
functional endpoints, as well as the unique possibility for the
assessment of b- and non-b-cell count over time, all within a
highly standardized and relevant 3D primary human islet model.
MATERIALS AND METHODS

Human Islet Microtissues
Human islets were purchased from Prodo Laboratories Inc.
(Irvine, CA). All islets were obtained from deceased donors
July 2022 | Volume 13 | Article 854094
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following consent from next of kin. Donor information can be
found in Table 1. To generate 3D InSight™ Islet MTs (InSphero,
AG), human islets were dispersed in dissociation solution (1X
TrypLE™ Express solution - Thermo Fisher Scientific #12604013,
with 40 µg/ml DNase I - Sigma-Aldrich #10104159001) by gentle
pipetting for 10 min at 37°C. Remaining cell clumps were filtered
through a cell strainer of 70 mm pore size. Approximately 1700
dispersed live islet cells were reaggregated in each well of the
Akura™ PLUS Spheroid Hanging Drop System for 5 days
(InSphero AG, CS-06-001-02), to achieve a volume of roughly 1
islet equivalent (IEQ) per MT, which corresponds to an islet with
150 µm diameter. The reaggregated islets were transferred to and
cultured in Akura™ 96 Spheroid Microplates (InSphero AG, CS-
09-001-03) with 3D InSight™Human Islet Maintenance Medium
(InSphero AG, CS-07-005-01). Islet MT cultures were maintained
at 37°C in a humidified atmosphere containing 5% CO2, and cell
culture medium was exchanged every 2-3 days.

For each biospecimen collection, a donor consent form is
available that documents that the next-of-kin consented to
collection, transfer and use of human biospecimens and data
for research purposes, including the possible transfer of the
human biospecimens to pharmaceutical and biotech companies.

Harmine and 5-Ethynyl-2′-Deoxyuridine
Treatment
For the 4-day experiments, isletMTswere treatedwithharmineand
EdU for 4 days, and for the 15-day experiments, islet MTs were
treated with harmine for 15 days and EdU for the final 4 days. For
thewashout experiments, isletMTswere treated asdescribed for the
15-day experiment, followed by two washes with fresh media and
further incubationwithout harmine for 4 days.During the course of
the treatment, fresh medium was supplied every 2 to 3 days, and
plates were dosed using a Tecan D300e Digital Dispenser (Tecan)
with0–10µMharmine (Sigma, 286044)withorwithout 10µMEdU
(ThermoFisher, C10357), with DMSO normalization across all
wells (to the highest volume).

Immunofluorescence Staining
Islet MTs were fixed with 4% PFA, permeabilized with 0.5% Triton
X-100 (in PBS) and incubated in Click-It EdU reaction cocktail
(ThermoFisher, C10357) according tomanufacturer’s instructions.
Following blocking in 10% FCS, MTs were incubated with rabbit
anti-NKX6.1 (Abcam, ab221549) overnight and goat anti-Rabbit
Alexa Fluor 568 (ThermoFisher, A-11036) and DAPI (Sigma,
D9542) (1 mg/mL) for 4 hours in antibody incubation buffer (10%
FCS, 0.2%Triton X-100 in PBS). Nonspecific bindingwas removed
with repeated wash steps in 0.2% Triton X-100 in PBS after both
antibody incubations. Stained MTs were then transferred to
Akura™ 384 Spheroid Microplates (InSphero AG, CS-09-003-02)
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and cleared with ScaleS4 (40 w/v%D-(-) sorbitol, 10w/v% glycerol,
4M Urea, 0.2% w/v% Triton X-100, and 15 v/v% DMSO in MilliQ
water) (47).

Confocal Imaging
Cleared MTs were imaged in black-walled, thin-bottomed
Akura™ 384 Spheroid Microplates (InSphero AG, CS-09-003-
02). Imaging was performed on a Yokogawa CQ1 confocal
benchtop high-content analysis (HCA) system (Yokogawa
Electric Corp., Tokyo, Japan) using a 40x dry objective
(Olympus, Tokyo, Japan). Image stacks were acquired at a Z-
step size of 3 µm to encompass the whole MT. This step size was
selected to maximize the segmentation quality of the nuclear
markers and the reliability of colocalization analysis.

Image Analysis
The analysis of the confocal image stacks was performed using the
Yokogawa CellPathfinder software (version 3.04.03.02). Each image
was segmented and analyzed for nuclear count (DAPI), b-cell count
(NKX6.1), proliferating cell count (EdU), and proliferating b-cell
count (EdU colocalized with NKX6.1). The analysis algorithm
consisted of 4 steps. In the first step, the whole spheroid region
was determined based on the DAPI channel using Otsu
thresholding. In the second, third and fourth steps, nuclei, b-cells
and proliferating cells were segmented and labeled individually in
the DAPI, NKX6.1 and EdU channels, respectively, using a dynamic
thresholding method. In the final step, proliferating b-cells were
identified based on the colocalization of labels marking b-cells and
proliferating cells. Accuracy of counts was verified with manual
counting in a subset of islet MTs.

Analysis of ATP Content, Caspase-3/7
Activity, and Secreted and
Intracellular Insulin
Culture medium was collected from wells to determine chronic
insulin secretion over the course of 24–72 hours, depending on the
experiment.MTs were thenwashed twice with Krebs RingerHepes
Buffer (KRHB– 131mMNaCl, 4.8mMKCl, 1.3mMCaCl2, 25mM
Hepes, 1.2mMKH2PO4, 1.2mMMgSO4, 0.5%BSA) containing2.8
mMglucose and equilibrated for 1 hour at 37°C in this buffer. Basal
and stimulated insulin secretion were measured from the
supernatants collected after 2-hour incubation of MTs in KRHB
containing 2.8 mM glucose or 16.7 mM glucose, respectively. MTs
were then lysedusing theCellTiter-Glo®LuminescentCellViability
Assay (Promega, G9241) supplemented with protease inhibitor
cocktail (Promega, G6521) for total ATP and insulin content
measurement. Insulin concentrations were analyzed from the
harvested supernatants and lysates by using the Stellux Chemi
Human Insulin ELISA (Alpco, 80-INSHU-CH10) or the Insulin
TABLE 1 | Information from Donors used for MT production.

Donor number in paper UNOS ID # Donor Sex Donor age (years) Donor BMI (kg/m2) Donor HbA1c Islet Isolation Center Donor history of diabetes?

1 AIGQ368 Male 25 26.5 5.8% Prodo Laboratories No
2 AIIY018 Male 39 29 5.4% Prodo Laboratories No
3 AIIE165 Male 29 23.1 5.3% Prodo Laboratories No
July 2022
 | Volume 13 | Article 854094
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Ultra-Sensitive Assay kit (Cisbio, 62IN2PEG). Caspase 3/7 activity
wasmeasured froma separate set of harmine-treatedMTsusing the
Caspase-Glo® 3/7 Assay (Promega, G8090) according to
manufacturer’s instructions. As a positive control for this assay,
we treatedMTs for 4 days in parallel with cytokines: IL-1b (Sigma-
Aldrich #I17001, 20 ng/mL), IFNg (Sigma-Aldrich #I3265, 100 ng/
mL), and TNFa (Sigma-Aldrich #PHC3016, 100 ng/mL).
Luminescence was measured using a Tecan Spark 10M
Microplate Reader (Tecan).

Statistical Methods
Data are presented as mean ± standard error of the mean (SEM).
Outlier detection was performed using Robust regression and
outlier removal test (ROUT) with false discovery rate less than
5%. No outlier test was performed for proliferating cell fractions.
Statistical significance was determined by one-way ANOVA
followed by Dunnett’s post hoc analysis or by Student’s t-test,
rejecting the null hypothesis at p < 0.05. Statistical significance is
represented as * p < 0.05, ** p < 0.01, and *** p < 0.001.
RESULTS

Establishing a High-Throughput-
Compatible Platform for the Assessment
of Human Islet Cell Proliferation and b-Cell
Function in 3D
The goal of this study was to establish a high-throughput
platform for the identification and validation of b-cell
proliferative agents using a biologically relevant 3D human
islet model, based on 3D high-content imaging and analysis,
paired with functional endpoints. The experimental pipeline
(Figure 1) begins with the generation of islet MTs from
primary human islet cells by enzymatic dissociation and
reaggregation in hanging drops, leading to the generation of
human islet MTs with standardized size, composition, and
function (45). After 5 days of aggregation, islet MTs are
released into low attachment microwell plates and cultured for
a minimum of 2 days before compound treatment. Proliferating
cells are labelled with EdU (5-ethynyl-2′-deoxyuridine), a
thymidine analog that is incorporated into replicating DNA.
Since EdU can have adverse effects such as slowdown of cell cycle
progression, its incorporation is limited to the final 4 days of
long-term compound treatment to minimize EdU toxicity (48).
Following compound and EdU treatment, islet MTs are either
used for the assessment of islet function and viability through the
analysis of glucose-stimulated insulin secretion (GSIS),
intracellular insulin and ATP content, and Caspase 3/7 activity,
or for the assessment of cellular proliferation through 3D high-
content microscopy. For microscopic analysis, islet MTs are
stained and confocal-imaged for DAPI, EdU and NKX6.1 in
3D. NKX6.1, a key transcription factor for the development and
maintenance of b-cell identity, was selected as b-cell marker due
to its high b-cell-specificity (49) and its nuclear localization,
which facilitates downstream co-localization analysis with EdU
and DAPI. Stained MTs are then cleared and imaged in Z-stacks
Frontiers in Endocrinology | www.frontiersin.org 4
encompassing the whole MT. Finally, image analysis is carried
out to determine total cell number, b-cell count and b-cell
fraction, and percentage of proliferating b- and non-b-cells
through the quantification of DAPI, NKX6.1, and EdU signals.
The first step of our analysis pipeline is spheroid detection based
on the DAPI channel, enabling analysis throughout and limited
to the MT. Within the detected spheroid, DAPI-, NKX6.1- and
EdU-positive nuclei can be counted in a precise and automated
fashion. For the detection of proliferating b-cells, nuclei with co-
localized EdU and NKX6.1 signal are identified.

Harmine Treatment Exerts Dose- and
Donor-Dependent Effects on Proliferation
and b-Cell Fraction in Human Islet MTs
As a validation of our newly established b-cell proliferation
platform, we sought to determine the dose-dependency of
harmine-induced proliferation in human islet MTs generated
using islets from three different donors, with EdU incorporation
as a measure of cumulative proliferation over 4 days. Our goal
was thus to (1) provide proof-of-concept data utilizing our 3D b-
cell proliferation platform (2), gain further insights regarding
donor-to-donor variability in harmine-induced proliferative
response and (3) correlate proliferation data with functional
analysis. Islet MTs were treated with harmine at concentrations
of 0, 1, 3.3, 5, or 10 mM for a duration of 4 days for short-term or
15 days for long-term experiments, with 10 mM EdU included
during the final 4 days of treatment to label proliferating cells
(Figure 2A). MTs were stained with NKX6.1 and labeled
with DAPI and EdU, and Z-stacks were imaged throughout
the whole MT (Figures 2B–D). Representative videos of 3D
images encompassing the islet MTs are available in the
Supplementary Information and provide valuable spatial
information on NKX6.1 and EdU signal distribution with and
without harmine treatment (Supplementary Video S1).
Confocal images were then analyzed in 3D to perform
comprehensive quantification of b-cell and proliferating cell
populations (Figures 3A–H and Supplementary Videos S2,
S3). On average, 1405 DAPI-positive cells were quantified per
MT, thus representing a majority of the cells seeded in each islet
MT (Figure 3A). Analysis of NKX6.1-positive cells revealed a b-
cell fraction of 40-65% (Figures 2B, C, 3C).

In the short-term (4-day) treatment group, DMSO-treated
MTs exhibited little to no proliferation (on average, 2.7
proliferating cells per MT, constituting 0.2% total proliferation),
whereas harmine stimulated proliferation in all donors in a dose-
dependent manner, achieving total islet proliferation rates of up to
~6% (% EdU+/DAPI+) (Figures 2B, C, 3E). Reflecting this dose-
dependent increase in proliferation, total DAPI count tended to
increase slightly with harmine treatment compared to solvent
(Figure 3A). Proliferation of both b-cells (Figure 3F) and non-b-
cells (Figure 3G) was induced in a dose-dependent fashion. The
proliferative rate of non-b-cells under harmine treatment was 5- to
10-fold higher than that of b-cells in the 3 donors studied,
depending on the harmine dose. Intriguingly, b-cell number and
b-cell fraction increased mildly with elevated harmine
concentrations, with an observed increase in b-cell count (182
July 2022 | Volume 13 | Article 854094
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more b-cells for Donor 1 and 61 more b-cells for Donor 2 after 10
µM harmine treatment) that was significantly higher than the
number of proliferating b-cells (5 b-cells for Donor 1 and 10 b-
cells for Donor 2 after 10 µM harmine treatment) (Figures 3B, C).
Finally, we observed a consistent, dose-dependent increase in
mean NKX6.1 staining intensity with harmine treatment across
all donors, (Figures 2B–D, 3D). Of note, this increased intensity
Frontiers in Endocrinology | www.frontiersin.org 5
was likely restricted to non-proliferating b-cells as we observed
that NKX6.1 expression levels were generally reduced in EdU/
NKX6.1 double-positive cells (Figure 2D, white arrow vs.
purple arrows).

Human islet MTs retain function and viability for a minimum
of 21 days after aggregation, thus permitting longer treatment
schemes than those feasible with native islets (45). To explore the
FIGURE 1 | Establishing a high-throughput platform for evaluating b-cell proliferation and function in human islet MTs. Schematic representation of experimental
timeline and platform for 3D evaluation of b-cell proliferation and function in human islet MTs. Dispersed islets are reaggregated into islet MTs for 5 days, followed by
proliferative compound treatment for up to 21 days, including 5-ethynyl-2′-deoxyuridine (EdU) incorporation during the last 4 days of treatment. Islet MTs are then
used for functional endpoints such as glucose-stimulated insulin secretion (GSIS), total insulin content, ATP content, and Caspase 3/7 activity, or fixed with 4% PFA.
Fixed MTs are stained for DAPI, EdU, and NKX6.1, and imaged with a confocal, high-content imaging system. Image quantification is then performed to quantify
DAPI-, NKX6.1-, EdU and EdU/NKX6.1-positive nuclei.
July 2022 | Volume 13 | Article 854094
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effects of harmine during longer treatment periods, we also
exposed Donor 3 MTs to harmine for 15 days. We observed a
significant drop in both b- and non-b-cell proliferation rates
following 15-day continuous harmine treatment of islet MTs
from Donor 3 compared to the 4-day treatment. Furthermore, an
interesting change in proliferative pattern was observed: while 10
mM harmine induced the maximal rate of proliferation after 4
days of treatment, the proliferative peak was achieved with 5 mM
harmine after 15 days of treatment (Figures 2C, 3E–G). Total
DAPI count was similar in the solvent-treated MTs from Donor
3 after 4 and 15 days of treatment, illustrating the stability of islet
Frontiers in Endocrinology | www.frontiersin.org 6
MT size over time (Figure 3A). In conjunction with the higher
proliferation rates at mid-concentrations of harmine, we
observed a peak in DAPI count at 3.3 mM harmine after 15
days of treatment; in order to explore this further, we calculated
relative volume changes at 3–4 day intervals and confirmed a
correlation between moderate harmine dose and increased MT
volume (Figures 3A, H). Interestingly, a greater increase in b-cell
fraction was observed with 10 mM harmine after 15 days of
treatment than after 4 days of treatment for Donor 3
(Figure 3C). Of note, EdU was only included during the final
4 days of harmine treatment (Figure 2A), and it is thus likely that
the reduction in proliferation observed with 10 mM harmine
treatment after 15 days of treatment (Figures 2C, 3E) is not
reflective of proliferative rates throughout the whole treatment
period. Finally, long-term treatment with harmine led to
increased NKX6.1 intensity in a dose-dependent manner that
correlated well with 4-day treatment (Figures 2C, 3D).

In order to confirm that the observed reduction in proliferation
after 15 days of treatment was not due to the longer culture time of
the MTs, we performed an additional, independent experiment
with Donor 3 MTs, whereby we compared harmine treatments
performed for the first 4 days vs. the last 4 days of the 15-day
treatment period. This comparison revealed that proliferation
rates remained unchanged between these two 4-day treatments,
confirming that increased MT culture time was not the cause for
the reduced proliferation observed after 15 days of harmine
treatment (Figure S1).

Harmine Treatment Exerts Donor-
Dependent Effects on b-Cell Function but
Not on Human Islet MT Viability
The high reproducibility in size and composition of human islet
MTs enables complementing imaging analysis with functional
studies using islet MTs from the same production lot. In order to
determine the impact of harmine treatment on islet function and
viability, as well as evaluate donor-to-donor variability, we
subjected islet MTs generated from the same donors as those
utilized for the high-content imaging analysis above to additional
evaluation of insulin secretion, intracellular insulin and ATP
content, and apoptotic activity following 4- or 15-day
harmine treatment.

Functionally, short-term harmine treatment led to an
increase in basal insulin secretion in a loosely dose-dependent
manner, with the highest dose of 10 mM inducing near-
significant or s ignificant increases in al l 3 donors
(Figure 4A). In parallel, glucose-stimulated insulin secretion
was also increased with harmine treatment, although the
harmine concentration inducing the highest insulin
stimulation varied between 3.3, 5, and 10 mM depending on
the donor (Figure 4B). Interestingly, total insulin content per
MT tended to be higher at low doses of harmine (1, 3.3 mM)
compared to the solvent control, while this trend was reversed
at higher concentrations of harmine (10 mM) (Figure 4C). In
order to determine the source of insulin depletion with higher
harmine concentrations, we evaluated insulin secretion and
accumulation in the culture medium in 2 donors, which
revealed a dose-dependent increase in chronic insulin
A

B

D

C

FIGURE 2 | EdU and NKX6.1 labeling reveals dose and donor dependence
of harmine-induced proliferation in human islet MTs. (A) Schematic
representation of islet MT harmine treatment scheme. (B, C) Representative
immunofluorescence images of islet MTs generated from three different
donors, treated with DMSO or harmine at a concentration of 1, 3.3, 5, or 10
mM, for a duration of (B) 4 days for Donors 1 and 2 or (C) 4 days or 15 days
for Donor 3. Scale bar, 50 mm. (D) Representative immunofluorescence
image of a proliferating b-cell (white arrow) and proliferating non-b-cells
(yellow arrow). Purple arrows indicate non-proliferating b-cells for comparison.
(D) Scale bar, 15 mm. Images were generated from central Z-stacks and with
the same thresholding settings within each donor.
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secretion as evaluated during the final 24–72 hours of culture
(Figure 4D). The reduced insulin content can at least be
partially explained by the amount of insulin that accumulated
in the culture medium. Stimulated-to-basal fold stimulation
(16.7/2.8 mM glucose), a relevant marker of optimal b-cell
function, peaked at 1 or 3.3 mM harmine concentrations
depending on the donor (Figure 4E), and decreased after
treatment with 5 and 10 mM harmine, suggesting that higher
harmine concentrations may in fact reduce b-cell functionality
compared to lower doses.

Long-term (15-day) treatment with harmine in Donor 3 led
to similar functional effects as observed after 4 days of treatment:
increased basal and stimulated insulin secretion, increased
chronic secretion, and decreased total insulin content
(Figures 4A–D), although these trends were more pronounced
compared to short-term treatment. Interestingly, stimulated
Frontiers in Endocrinology | www.frontiersin.org 7
secretion followed a downward trend from 3.3 mM to 10 mM
(Figure 4B). Peak fold-stimulation was achieved with 3.3 mM
harmine after 15 days of proliferation (Figure 4E).

In order to determine whether functional changes induced by
harmine are maintained in the absence of the compound, we
performed 15-day treatment of MTs with harmine, followed by a
4-day washout period. Surprisingly, the observed increases in
basal and stimulated insulin secretion were greatly reduced
following the washout (Figures 4A–B), while chronic insulin
secretion was almost completely normalized (Figure 4D). The
trend of declining total insulin content with higher harmine
doses was maintained, although to a reduced extent compared to
15-day treatment without the washout period (Figure 4C).

Finally, to determine the effects of harmine on viability and
apoptosis, we analyzed ATP content and Caspase 3/7 activity.
Neither ATP content nor Caspase 3/7 activity was significantly
A B

D

E F

G H

C

FIGURE 3 | 3D microscopy image analysis of harmine-induced proliferation in human islet MTs generated from 3 donors. (A–F) Quantification of (A) total cell
number (DAPI-positive cell count), (B) total b-cell number (NKX6.1-positive cell count), (C) percent b-cell fraction (% NKX6.1/DAPI), (D) mean NKX6.1 intensity,
(E) percent total proliferating cells (% EdU/DAPI), (F) percent proliferating b-cells (% EdU+NKX6.1+/NKX6.1+), (G) percent proliferating non-b-cells (% EdU+NKX6.1-/
NKX6.1-), and (H) volume differences over time (Donor 3, 15-day treatment). (A–H) Data are represented as mean ± SEM, n = 6–12. Significance was determined by
one-way ANOVA followed by Dunnett’s multiple comparisons test vs. the respective DMSO control (*p < 0.05, **p < 0.01, ***p < 0.001), or by student’s t-test for
D15 vs. D4 comparisons between equal harmine doses (#p < 0.05, ##p < 0.01, ###p < 0.001).
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altered with harmine treatment after 4 or 15 days (Figures 4F,
S2A–C), suggesting that harmine has little effect on islet viability
and apoptosis.
DISCUSSION

Several b-cell proliferative compounds have been identified
based on studies in animal models and cell lines, yet the effects
of very few have been successfully translated to the primary
human b-cell (50). Whether the adult human b-cell can
proliferate in vitro is still under debate, as some studies failed
to detect any proliferation whereas others observed rates at
around 0.1% in a donor-dependent fashion (35, 44). It has also
been reported that the proliferative capacity of the b-cell can be
altered according to the extracellular matrix used for cell culture,
which may explain the discrepancies between various studies
(44). Therefore, in this study we strove to answer to the strong
need for a standardized, physiologically relevant and long-lived
3D islet model for the assessment of compound effects on human
b-cell proliferation and absolute count.

One of our principal goals was to establish an automated and
high-throughput-compatible analysis pipeline of b- and non-b-
Frontiers in Endocrinology | www.frontiersin.org 8
cell proliferation and fraction in 3D. To do so, we have dedicated
substantial resources in the optimization of 3D staining and tissue
clearing methodologies suitable for our islet MTs. Establishment
of 3D spheroid detection and automated DAPI and EdU
quantification was straightforward with built-in algorithms in
the CellPathfinder software. Quantification of NKX6.1-positive
nuclei, however, posed an additional challenge due to the broad
range in NKX6.1 expression in b-cells, and the observed
downregulation in NKX6.1 intensity in proliferating b-cells,
consistent with previous reports that describe lower expression
of b-cell identity factors during proliferation (43, 51). Costaining
with insulin would thus be beneficial in confirming the identity of
these cells. NKX6.1 quantification was further complicated by the
dose-dependent increase in intensity of NKX6.1 signal with
harmine treatment. In order to avoid discrepancies in analysis
between treatment groups, we truncated NKX6.1 signal to bring all
wells within a similar range of intensities before applying dynamic
thresholding for b-cell quantification. This thresholding approach
was instrumental in obtaining precise b-cell quantification among
different treatment groups and helped to reduce false positives and
negatives. We have confirmed the precision of the automated
detection of proliferating b-cells by manual count of proliferating
b-cells for many of the tested conditions. The detected b-cell
fraction (40-65%) fell within the expected range in humans (52).
A B

D

E F

C

FIGURE 4 | Evaluation of harmine dose-response on human islet MT function and viability. (A) Basal and (B) stimulated insulin secretion of islet MTs treated with
(A) 2.8 mM glucose or (B) 16.7 mM glucose for 2 hours (ng/MT). (C) Total insulin content of islet MTs after GSIS (ng/MT). (D) Chronic insulin secretion of islet MTs
over the course of 24–72 hours (ng/MT/day). (E) Stimulated-to-basal fold-stimulation (16.7/2.8mM glucose). “+”‘s indicate maximum fold-stimulation for each
dataset. (F) ATP content of islet MTs (pmol/MT). (A–D, F) Data are represented as mean ± SEM, n = 5–12. Significance was determined by one-way ANOVA
followed by Dunnett’s multiple comparisons test vs. the respective DMSO control (* p < 0.05, ** p < 0.01, *** p < 0.001).
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As a proof-of-concept study, we conducted harmine dose
response treatments to evaluate the performance of our platform
and gain more insights regarding human donor-to-donor
variability in proliferation and function in response to harmine.
Several previous studies have investigated the proliferative
potential of harmine in rodent and human islets. 10 mM
harmine treatment was found to induce b-cell proliferation rates
of ~0.25-2.5% (32, 33, 36, 37, 53, 54) in dispersed human islets in
vitro, and rates of 0.8-2% were observed in human islets
transplanted into immunodeficient mice treated with 10 mg/kg
harmine (32, 36, 37), with some of the variation accounted for by
differences in labeling method of proliferating cells (KI67, EdU)
and b-cells (PDX1, NKX6.1, Insulin, C-peptide). Harmine also
efficiently induced b-cell proliferation in our platform, with quite
low donor-to-donor variation. The observed proliferative rates
identified based on the quantification of EdU and NKX6.1 were
within a similar range to those previously reported (32, 33, 36, 37,
53, 54). Our data also confirmed the non-specificity of harmine:
we and others have found that harmine induces high levels of
proliferation of non-b-cells (32, 36, 37, 53), although this has been
suggested to be rectified through combinatorial treatment with
GLP-1 receptor agonists (32). Perplexingly, one of the most
interesting observations we made was the significantly increased
b-cell count and fraction with high harmine dose treatment,
despite low b-cell and high non-b-cell proliferation rates. The
observed increase in b-cell count can only be partially explained by
increased b-cell proliferation, pointing towards other mechanistic
underpinnings for this observed increase in Donors 1 and 2.

Reaggregated human islet MTs can be maintained in culture
for up to 4 weeks without loss of functionality, extending the
treatment window from a few days to a few weeks compared to
native human islets (45). Such a long treatment window could
provide the opportunity to study the long-term effects of
proliferative compounds, and even determine changes in MT
volume and b-cell mass over time. In this study, we also sought to
determine the effects of treating islet MTs with harmine over the
course of 2 weeks. Surprisingly, proliferative rates were lower
after 15 days of treatment compared to 4 days, and dose-related
trends were altered. Of note, both 4-day and 15-day harmine
treatment schemes included the same 4-day EdU incorporation
period, thus eliminating the possibility of these effects being due
to EdU-derived toxicity. These results suggest that long-term
treatment with the selected harmine doses could in fact be
detrimental towards proliferation. Interestingly, previously
published dose-response curves generated using five different
DYRK1A-inhibitors (harmine, INDY, Leu, 5-IT, and GNF)
formed a bell-shaped curve of b-cell proliferation (55),
indicating that excessive concentrations of such compounds do
indeed inhibit proliferation. It would thus be interesting to
determine whether a treatment scheme with intermittent
washout periods would be beneficial for sustaining the potency
of harmineor other DYRK1A-inhibitors. Finally, recent advances
in single-cell sequencing have revealed that b-cells are
heterogeneous and that certain subpopulations have a higher
propensity to proliferate (56–58). It is thus also conceivable that
proliferative rates were reduced after 15 days of treatment
Frontiers in Endocrinology | www.frontiersin.org 9
because the subpopulation of more readily proliferating b-cells
had already replicated in the initial days of treatment.

While evaluation of the proliferative capacity of compounds
such as harmine is crucial for determining their therapeutic
potential, the parallel evaluation of islet function is equally
important to ensure that the expanded b-cell population
remains functional after compound treatment. We thus also
investigated the dose-dependent effects of harmine on b-cell
function and viability. Interestingly, previous studies only
revealed maintenance of glucose-stimulated secretion in
healthy human islets treated with 10 mM harmine for 72–96
hours (32, 36, 37), with little indication of increased secretion,
although interpretation of results was often limited by the high
variabil ity associated with human islet experiments.
Promisingly, harmine was found to amplify the insulin
secretory response in islets isolated from T2D donors (32).
Furthermore, human islets transplanted into diabetic mouse
models treated with 10 mg/kg harmine led to improved
glucose tolerance (36), suggesting functional effects of harmine
in vivo.While the observed effects on b-cells likely contributed to
this improvement, it is conceivable that these effects were not
strictly islet-intrinsic, as harmine has also been found to induce
adipose tissue browning and promote insulin sensitivity in
adipose tissue (59, 60). In our isolated islet system, we were
able to assess direct effects of harmine on islet function. Harmine
induced increased basal, stimulated, and chronic insulin
secretion across all donors tested, whereas total insulin content
was reduced with higher harmine concentrations. Our data
suggest this reduction in insulin content to be partially due to
increased insulin secretion in non-stimulatory glucose
concentrations. The effect of harmine on stimulated insulin
secretion (up to a 3-fold increase) is intriguing, as it cannot be
attributed to the proliferating b-cell population, which was too
low in numbers (5-10 cells per MT) to account for the observed
functional effects. This indicates that other mechanisms are
likely involved. The increased overall NKX6.1 staining
intensity observed in our system, likely accompanied by
increased expression of other b-cell identity factors as
observed by others (10, 32), may account for at least some of
this improvement in b-cell function. However, at high
concentrations, harmine also increased basal insulin secretion,
an indicator of reduced b-cell maturity that has previously been
associated with a proliferative b-cell phenotype (43, 51, 58). Fold
stimulation of insulin secretion thus peaked at the lower doses (1
or 3.3 mM) of harmine, and the highest dose led to the lowest fold
stimulation, to a level even below that of DMSO-treated samples
for 2 out of 3 donors. These observations indicate that utilizing
lower harmine doses in a therapeutic setting may be more
advantageous and less likely to induce high levels of circulating
insulin under unstimulated conditions, which could contribute
to insulin resistance and b-cell exhaustion. Finally, based on the
discrepancy between low b-cell and high non-b-cell
proliferation rates and increased b-cell fraction upon harmine
treatment, itmay be that harmine also acts through yet unstudied
mechanisms such as transdifferentiation (37, 61). Further studies
involving insulin, glucagon, and somatostatin staining, in
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combination with FACS-sorting methods to generate MTs
composed of restricted cell types, would be required to
determine whether such transdifferentiation events indeed
occur upon harmine treatment.

Our results have led to interesting conclusions regarding the
influence of harmine dose on b-cell function and proliferation.
Although NKX6.1 staining intensity significantly increased in a
dose-dependent manner and showed similar trends after 4 and 15
days of treatment for Donor 3, proliferation and fold-stimulation
were reduced in the MTs that received the long-term treatment.
Although upon short-term treatment, the highest concentration of
harmine tested led to the highest proliferative rates and DAPI
counts, harmine’s effect on total cell count, islet volume, b-cell
proliferation and fold-stimulation of insulin secretion was
maximized at lower doses for long-term treatments, thus
supporting the use of lower doses to maximize therapeutic effects.

In summary, our platform enables the parallel evaluation of total
cell count, b-cell fraction and mass, b- and non-b-cell proliferation,
and b-cell function for the validation, identification, and evaluation
of novel b-cell proliferative agents using human islet MTs.
Additional multiplexing to include hormone stainings, a-cell
quantification, and analysis of a-cell function could be envisioned
to obtain even a broader scope of information. The high
reproducibility of human islet MTs enables robust assessment of
dosing schemes of compounds individually or synergistically and
can lead to valuable insights in determining optimal dosing while
considering proliferation, function, viability, and toxicity.
Furthermore, dissociated islets can be cryopreserved and thawed
to generate new islet MTs, permitting the banking and subsequent
reuse of the same donor for subsequent experiments. Due to the
numerous discrepancies between rodent and human b-cell
proliferative capacity as well as the challenges associated with
working with native human islets, such a platform should help
facilitate the development of novel therapies for both T1D and T2D.
Further studies investigatinghumanb-cell proliferationunder stress
models relevant forT1DandT2Dandover longer treatmentperiods
will beneeded to fullyunderstand the potential of harmine andother
proliferative compounds to regenerate b-cells in diabetic patients.
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