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Abstract: Hepatitis Delta virus (HDV) is a satellite of the Hepatitis B virus (HBV) and causes
severe liver disease. The estimated prevalence of 15–20 million infected people worldwide may be
underestimated as international diagnostic guidelines are not routinely followed. Possible reasons
for this include the limited awareness among healthcare providers, the requirement for costly
equipment and specialized training, and a lack of access to reliable tests in regions with poor medical
infrastructure. In this study, we developed an HDV rapid test for the detection of antibodies against
the hepatitis delta antigen (anti-HDV) in serum and plasma. The test is based on a novel recombinant
large hepatitis delta antigen that can detect anti-HDV in a concentration-dependent manner with
pan-genotypic activity across all known HDV genotypes. We evaluated the performance of this
test on a cohort of 474 patient samples and found that it has a sensitivity of 94.6% (314/332) and a
specificity of 100% (142/142) when compared to a diagnostic gold-standard ELISA. It also works
robustly for a broad range of anti-HDV titers. We anticipate this novel HDV rapid test to be an
important tool for epidemiological studies and clinical diagnostics, especially in regions that currently
lack access to reliable HDV testing.

Keywords: hepatitis delta virus; recombinant HDAg; pan-genotypic detection; anti-HDV; diagnos-
tics; rapid test; lateral flow assay; point-of-care

1. Introduction

Hepatitis delta virus (HDV) infections present the most severe health burden among
viral liver diseases. As a satellite virus of the Hepatitis B virus (HBV), transmission takes
place via co-infection with HBV or super-infection of patients with chronic hepatitis B
(CHB). Persisting infection leads to the establishment of chronic hepatitis D (CHD), which
significantly increases the risk of cirrhosis, hepatocellular carcinoma, and acute liver failure,
leading to a reduced life expectancy [1–4]. HDV is a circular, single-stranded, negative-
sense RNA virus composed of 1679 nucleotides that codes for two isoforms of a single
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protein called the hepatitis delta antigen (large: L-HDAg, small: S-HDAg) [5–9]. For viral
entry into hepatocytes, HDV requires the integration of the Hepatitis B virus S-antigen
(HBsAg) into its envelope [10–12]. Antibodies against HDAg (anti-HDV), including IgM
and IgG, are not neutralizing but arise in most infected patients [13,14]. Up until recently,
HDV therapy was limited to treatment with pegylated interferon-alpha, a regimen with
some efficacy but a rare long-term virological response [15,16]. Vaccination against HBV
also protects against HDV co-infection, but not against HDV super-infection of HBV
carriers. Furthermore, vaccination coverage gaps remain worldwide [17].

The symptoms for HDV co- or super-infection are comparable to HBV mono-infection
and can easily be missed. Therefore, international guidelines recommend follow-up testing
for HDV in HBsAg-positive individuals with CHB during their first assessment [18,19].
The direct detection of HDV in blood is performed via qRT-PCR, but the genetic diversity
of HDV can lead to false negatives [20]. Recently, a consensus commercial kit has been
described [21]. As PCR testing only detects patients with active HDV RNA replication,
which can be suppressed during therapy, more robust and cost-efficient serological tests
for anti-HDV are used for screening purposes [22]. Worldwide, 250 million people are
estimated to be HBsAg-positive and are eligible for HDV diagnostics [17]. However, several
studies suggest that only a fraction of these patients are tested for anti-HDV, such that HDV
infection remains largely underdiagnosed. Retrospective analyses in developed countries
revealed low clinical testing rates of 8% in the US [23], 35% in Greece [24], 40% in the
UK [25], and 47% in Germany [26]. In many developing countries, HBsAg-patients are not
tested for HDV at all [27,28]. Reasons for these trends are diverse and may vary across
countries with different medical systems and infrastructures. In general, the awareness
of HDV is poor compared to other hepatitis viruses, such as HBV or HCV. This applies to
both developed and developing countries and may partly be related to the lack of curative
therapy in the past. As several promising antiviral drugs are currently being evaluated in
advanced phases of clinical trials [29–31], or were recently approved (Bulevirtide), this may
soon change. Insufficient testing rates may also be linked to the extensive requirements of
the current mode of testing. Conventional anti-HDV detection assays are ELISA-, RIA-,
or CLIA-based. These tests require time-consuming experimental protocols performed
in a specialized laboratory environment with expensive equipment and trained medical
staff [32]. As these needs cannot be met in countries with poor medical infrastructure, the
establishment of routine HDV testing is hampered.

The recent developments of antiviral HDV therapies have increased the priority to
rapidly identify HDV-infected individuals and to provide access to HDV diagnostics in
countries with poor medical infrastructure. Therefore, we developed a point-of-care (POC)
device for the rapid and reliable detection of anti-HDV in serum or plasma (HDV rapid
test). The test is based on a lateral flow assay (LFA) using a novel, recombinant, and
pan-genotypic L-HDAg. The device is easy-to-use, does not require laboratory equipment,
and can be applied with minimal training. Therefore, it can be used in a de-centralized
manner in both clinical settings and epidemiological studies.

2. Materials and Methods
2.1. Preparation of Recombinant, Pan-Genotypic HDAg

The recombinant, pan-genotypic L-HDAg (rL-HDAg) was derived from the consensus
sequence of 54 published and unpublished HDAg sequences comprising all eight geno-
types. In total, seventeen genotype 1, three genotype 2, two genotype 3, two genotype
4, four genotype 5, three genotype 6, two genotype 7, three genotype 8, and eighteen
sequences of undefined genotype were aligned. The resulting sequence was manually
adjusted for non-consensus amino acids, optimized for bacterial expression, His-tagged,
and integrated into a pET construct containing an Ampicillin resistance gene (25 kDa,
pI = 9.9). rL-HDAg was expressed in pLys bacteria upon induction with 0.7 mM IPTG and
incubated for 3 h at 37 ◦C. The cells were then pelleted, washed, and resuspended in PBS
supplemented with 1:200 HaltTM protease inhibitor (Thermo Fisher Scientific, Waltham,
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MA, USA). Next, the cells were lysed, ultracentrifuged, and the pellets were resuspended
in lysis buffer (8 M urea, 50 mM Tris, 200 mM NaCl, 30 mM imidazole, 1:200 HaltTM

protease inhibitor, 5 mM DTT, pH 7.4). The resuspension was pushed through 1.1 mm
and 0.8 mm needles, ultracentrifuged, and the supernatant was filtered through a 0.45 µm
filter membrane. rL-HDAg was further purified on the Äkta Pure 25 (GE Healthcare,
Chicago, IL, USA) using a HisTrapTM HP column (GE Healthcare, Chicago, IL, USA) with
urea-containing binding buffer (5 M urea, 50 mM Tris, 200 mM NaCl, 30 mM imidazole,
pH 7.4) and elution buffer (5 M urea, 50 mM Tris, 200 mM NaCl, 500 mM imidazole,
pH 7.4). Fractions with high protein content were pooled and concentrated to the desired
volume. The protein concentration was determined via SDS-PAGE and Coomassie R-250
staining using a BSA standard. Purified rL-HDAg was stored in elution buffer for further
experiments.

2.2. Preparation of HDV Rapid Test

A sample pad, conjugate pad (Ahlstrom, Helsinki, Finland), membrane (GE Health-
care, Chicago, IL, USA), and absorbent pad (Sigma-Aldrich, Darmstadt, Germany) were cut
into pieces of 1.8 × 10 cm, 0.8 × 10 cm, 2.5 × 10 cm, and 1.7 × 10 cm, respectively. Conju-
gate pads were pre-treated with sample pad buffer (0.5% w/v casein sodium salt, 0.2% v/v
Tween® 20, 0.1% w/v sodium azide, PBS) and dried for 1.5–2 h at 40 ◦C with low humidity.
1:2 diluted gold-conjugated goat anti-human IgG OD15 (BioAssay Works, Ijamsville, MD,
USA) in conjugate pad buffer (20% w/v D(+)-saccharose, 5% w/v trehalose dihydrate,
0.1% w/v sodium azide, PBS) was added, using a total volume of 280 µL. A total of 10
µL of 2 mg/mL rL-HDAg in dilution buffer (5 M urea, 50 mM Tris pH 9.0, 200 mM NaCl,
20 mM imidazole) and 1.5 mg/mL donkey anti-goat IgG (H+L)/7S (Dianova, Hamburg,
Germany) in PBS were spotted on the membrane using an HPTLC applicator (biostep®,
Burkhardtsdorf, Germany) at a spotting rate of 1 µL per cm. For the multiplexed LFA
detecting both HBsAg and anti-HDV, an additional test line was spotted with 2 mg/mL
mouse anti-HBsAg mAb (Fitzgerald, North Acton, MA, USA). The conjugate pad for the
multiplex test was soaked with a mixture of gold-conjugated mouse anti-HBsAg (Fitzger-
ald, North Acton, MA, USA) and gold-conjugated goat anti-human IgG OD15 (BioAssay
Works, Ijamsville, MD, USA). Blocking was performed with 2% BSA in PBST for 15 min
at room temperature and 15 min at 40 ◦C. Sample pads were treated with sample pad
buffer. Membranes, sample pads, and conjugate pads were dried for 3 h at 40 ◦C with low
humidity. For test strip assembly, three 10 cm sample pads, conjugate pads, membranes,
and absorbent pads were glued on a 30 cm backing card (DCN Diagnostics, Carlsbad, CA,
USA) and 4 mm test strips were cut using an adjustable paper cutter. The test strips were
assembled into plastic cassettes (Shanghai Jieyi Biotech, Shanghai, China) and stored with
desiccant in UV-protected air-tight plastic bags at 4 ◦C.

2.3. Detection of Anti-HDV with the HDV Rapid Test

For the detection of anti-HDV in serum or plasma using the novel HDV rapid test,
samples were diluted 1:8 in running buffer (0.3% w/v casein sodium salt, 5% w/v trehalose
dihydrate, 0.1% w/v sodium azide, PBS) in a total volume of 80 µL. Diluted samples were
applied to the sample pad of the test strips and results were recorded by photo after 20 min.

2.4. Detection of Anti-HDV by Semi-Quantitative ELISA

ELISA plates were coated with 50 µL of 1 µg/mL rL-HDAg in coating buffer (13 mM
Na2CO3, 88 mM NaHCO3, pH 9.2) and blocked with 200 µL/well blocking buffer (1% w/v
casein sodium salt, 0.05% v/v Tween® 20, PBS). Patient sera were serially diluted 1:8 in
dilution buffer (0.1% w/v casein sodium salt, 0.05% v/v Tween® 20, PBS), starting at a
1:100 dilution. A total of 50 µL/well was incubated for 1 h at 37 ◦C. All washing steps were
performed with 200 µL/well washing buffer (0.05% Tween® 20 v/v, PBS). Secondary bind-
ing was performed with 1:10,000 HRP-conjugated goat anti-human IgA/IgG/IgM (Jackson
Immunoresearch, West Grove, PA, USA) in dilution buffer for 1 h at 37 ◦C. Signals were
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obtained by addition of 100 µL/well TMB substrate (Thermo Fisher Scientific, Waltham,
MA, USA) for 10 min and reactions were stopped with 100 µL/well 1 M H3PO4. The
OD450 was quantified using the EnVision HTS multilabel reader (Perkin Elmer, Waltham,
MA, USA).

2.5. Study Population

The HDV rapid test was validated on 474 patient samples, comprising 332 anti-
HDV-positive and 142 anti-HDV-negative sera or plasmas against all HDV genotypes
except genotype 4. The samples were collected from clinical and commercial vendors,
including the University Hospital Heidelberg and the Heidelberg blood bank (Heidelberg,
Germany), the Hanover Medical University (Hanover, Germany), the University of Ankara
Medical School (Ankara, Turkey), and BIOMEX (Heidelberg, Germany). All HBsAg-
positive samples were previously tested for anti-HDV in the respective facilities using
diagnostic gold-standard ELISAs (ETI-AB-DELTAK-2 anti-HDV test kit, DiaSorin, Saluggia,
Italy or HDV Ab assay, Diapro Diagnostic Bioprobes, Sesto San Giovanni, Italy). For 154
samples, the RNA status was known.

2.6. Statistics

The performance of the HDV rapid test was measured as its sensitivity and specificity
compared to a current diagnostic gold-standard ELISA. The Wilson score interval was used
to calculate 95% confidence intervals (CI).

3. Results
3.1. Development of a Recombinant, Pan-Genotypic HDAg

In this study, we show the development of an HDV rapid test. The test is based
on a lateral flow assay which uses a novel, pan-genotypic rL-HDAg for the detection of
anti-HDV in serum or plasma. The rL-HDAg was derived from a consensus sequence
of 54 published and non-published HDAg sequences to achieve pan-genotypic activity.
It codes for a 25 kDa His-tagged protein with an isoelectric point of 9.9. All known
functional elements and post-translational modification sites of the viral HDAg were
maintained (Figure 1A). The chemically synthesized sequence was expressed in E. coli,
and the rL-HDAg was purified via affinity chromatography under denaturing conditions
(Figure 1B). Using Coomassie staining and Western blotting, we confirmed that the rL-
HDAg protein is highly pure and does not contain any protein contaminations, besides
two C-terminally truncated isoforms of rL-HDAg that have lost the His-tag (Figure 1C,D).
To test the antigenicity of the novel rL-HDAg, we performed a semi-quantitative ELISA
using anti-HDV-negative and -positive patient sera at high and low titers (Figure 1E).
In a proof-of-principle experiment, we show that rL-HDAg binds to serum anti-HDV in a
concentration-dependent manner and does not cross-react with anti-HDV-negative patient
serum. Therefore, we conclude that the novel rL-HDAg is suitable for detecting anti-HDV
in serum or plasma samples.

3.2. Development of the HDV Rapid Test and Proof-of-Principle

The novel rL-HDAg was incorporated in a lateral flow assay to create a rapid point-of-
care test for the pan-genotypic detection of anti-HDV (Figure 2A). In this assay, rL-HDAg
is spotted as a test line on the membrane and binds to anti-HDV in the tested patient
sample. As anti-HDV is previously labeled with gold-conjugated goat anti-human IgG
present in the conjugate pad, a red test line appears for visual detection. On the control
line, immobilized anti-goat binds to the gold-conjugates in a sample-independent manner,
serving as an internal control for the test. The flow of the patient sample through the test
strip is ensured by capillary forces and takes 5–20 min. For proof-of-principle experiments,
the rapid test strips were assembled into plastic cassettes and anti-HDV-positive and -
negative patient sera were applied (Figure 2B). We show that the novel HDV rapid test
can effectively detect anti-HDV in patient serum and does not cross-react with negative
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serum. Strikingly, test positivity was maintained for a 1:10 and 1:100 dilution of the positive
serum, indicating that the test is highly sensitive. To evaluate this in more detail, we
complemented anti-HDV-negative patient serum with humanized mouse anti-HDAg mAb.
We found that the minimum concentration resulting in a positive HDV rapid test result
was 1.5 µg/mL, equivalent to 15 ng monoclonal antibody per test (data not shown).

Figure 1. Development of a pan-genotypic recombinant rL-HDAg. (A) Optimized consensus sequence of rL-HDAg with
a His-tag. All critical features and residues for post-translational modification were maintained. (B) Schematic of the
development of rL-HDAg. The consensus sequence was derived from a multiple sequence alignment comprising 54 HDAg
sequences of all HDV genotypes. (C) Purification of rL-HDAg and Coomassie staining. rL-HDAg was purified from
bacterial pellets under denaturing conditions using a HisTrap. (D) Detection of rL-HDAg via Western blotting. rL-HDAg
was detected by the anti-HDV-positive patient serum VUDA. (E) Antigenicity of rL-HDAg in a semi-quantitative in-house
ELISA using anti-HDV-positive (high titer, low titer) and anti-HDV-negative patient sera.

Figure 2. Principle of the HDV rapid test. (A) Schematic of the lateral flow assay for the detection of anti-HDV in patient
serum. (B) Proof-of-principle of the HDV rapid test using anti-HDV-positive and -negative patient sera.
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3.3. Test Validation

To determine the relative performance of the rapid test compared to a gold-standard
ELISA assay, we conducted a validation study using a cohort of 474 pre-characterized
patient sera or plasmas (Figure 3A). The samples were previously tested positive (332 sam-
ples) or negative (142 samples) for anti-HDV using a commercially available diagnostic
ELISA. We re-tested all samples using our novel HDV rapid test (Figure 3B). Out of
332 anti-HDV-positive patient samples in the diagnostic ELISA, 314 samples were also
positive in the HDV rapid test, while 18 samples were negative. This corresponds to a
sensitivity of 94.6% (95% CI: 91.6–96.5%). Furthermore, we found the specificity to be 100%
(95% CI: 97.4–100%), as all 142 anti-HDV-negative samples in the diagnostic ELISA were
also negative in the HDV rapid test. No cross-reaction with HBsAg was observed.

Figure 3. Test validation of the HDV rapid test. (A) Characterization of test validation sera or plasmas according to their
pre-known anti-HDV status (ETI-AB-DELTAK-2 anti-HDV ELISA, DiaSorin, Saluggia, Italy or HDV Ab assay, Diapro
Diagnostic Bioprobes, Sesto San Giovanni, Italy), HDV RNA status, and HBsAg status. Patient sera were collected from
clinical and commercial vendors, including the University Hospital Heidelberg and the Heidelberg blood bank (Heidelberg,
Germany), the Hanover Medical University (Hanover, Germany), the University of Ankara Medical School (Ankara, Turkey),
and BIOMEX (Heidelberg, Germany). (B) Sensitivity and specificity of the HDV rapid test compared to the gold-standard
ELISA. (C) Semi-quantification of anti-HDV in all 474 patient sera using an in-house ELISA. All sera were previously
tested positive or negative for anti-HDV using a commercial gold-standard ELISA. The same samples were tested for
anti-HDV using the HDV rapid test. Qualitative HDV rapid test results (positive: green; negative: red) are overlaid with the
semi-quantitative in-house ELISA results.
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To understand the performance of the HDV rapid test in more detail, we semi-
quantified the anti-HDV titers in all patient samples using an in-house ELISA and compared
them to the results of the diagnostic ELISA and the HDV rapid test (Figure 3C). Interest-
ingly, all samples that tested negative in the HDV rapid test but positive in the diagnostic
ELISA had very low anti-HDV titers that were comparable to the unspecific binding signals
in the 142 negative controls. Furthermore, all ambiguous samples were never confirmed to
be HDV RNA-positive but had either an unknown HDV RNA status (17 samples) or were
HDV RNA-negative (one sample). We also saw that HDV RNA-positive samples generally
displayed high titers of anti-HDV, while the HDV RNA-negative samples were subdivided
into three cohorts with either high, medium, or low anti-HDV titers. Our results indicate
that the HDV rapid test can successfully identify positive samples with a broad range of
anti-HDV levels but does not react to samples with low ELISA signals in the negative
control range. It currently remains unclear whether these samples are true positives that
are missed by our HDV rapid test or false positives of the diagnostic ELISA.

3.4. Pan-Genotypic Activity of the HDV Rapid Test and Multiplexing with HBsAg Detection

The rL-HDAg used in the HDV rapid test was designed to detect anti-HDV against
all HDV genotypes. To test the pan-genotypic activity, we collected sera or plasmas from
patients with known HDV genotype 1, 2, 3, 5, 6, 7, or 8 infections. By re-testing these
samples for anti-HDV using the HDV rapid test, we confirmed that the test is reactive to
all HDV genotypes (Figure 4A). Unfortunately, a genotype 4 sample was not available
for testing.

Figure 4. Pan-genotypic activity of the HDV rapid test and HBsAg multiplexing. (A) Pan-genotypic activity of the HDV
rapid test. Anti-HDV-positive samples of patients that were infected with specific HDV genotypes were run on the HDV
rapid test. Anti-HDV-negative samples of HBsAg-positive and -negative patients were used as controls. (B) Multiplexing of
the HDV rapid test with the detection of HBsAg. Anti-HBsAg was spotted as a third line on the HDV rapid test for the
detection of HBsAg in patient serum or plasma. The conjugate pad was treated with a mixture of gold-conjugated goat
anti-human IgG and gold-conjugated mouse anti-HBsAg. The result of a single proof-of-principle experiment is shown.

We already showed that anti-HDV can be successfully detected in the lateral flow
assay format of our HDV rapid test. As HDV can only occur together with HBV, we were
interested in testing whether the detection of HBsAg and anti-HDV can be multiplexed
in our assay. Therefore, we added a second HBsAg test line to the test strip containing
immobilized mouse anti-HBsAg mAb. Strikingly, this set-up was able to independently
detect anti-HDV and HBsAg in pre-characterized patient samples (Figure 4B). This proof-
of-principle experiment shows that the HDV rapid test can easily be multiplexed with the
detection of HBsAg to generate a one-step test to distinguish HBV mono- from HBV-HDV
co-infection.

4. Discussion

The rapid and reliable diagnosis of HDV infections is of high priority to make patients
eligible for therapy. However, international HDV testing guidelines are insufficiently
followed, possibly due to a lack of awareness and costly, time-consuming diagnostic
procedures requiring specialized equipment and training. Here, we developed a rapid
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HDV test for the detection of anti-HDV in serum or plasma within 20 min. The test is based
on an easy-to-use and cost-effective lateral flow assay that can be applied in decentralized
settings and regions with poor medical infrastructure [26]. Therefore, it can broaden the
access to reliable HDV diagnostics worldwide and ease the burden of this life-threatening
disease. The clinical relevance of LFA-based antibody tests was highlighted during the
SARS-CoV-2 pandemic, when conventional routine lab testing was overloaded and not
available in multiple settings and regions.

The HDV rapid test incorporates a novel pan-genotypic rL-HDAg that can bind
anti-HDV against all HDV genotypes (genotype 4 not tested) in a highly specific and
concentration-dependent manner. This is of especially high relevance in regions like Africa,
Asia, and South America, where strains of almost all HDV genotypes are spreading. Inter-
estingly, antigen-antibody binding on the rapid test was possible despite using denatured
rL-HDAg. This is in agreement with previous studies which found that large segments of
the HDAg protein sequence are intrinsically disordered but maintain the ability to form
protein-protein interactions [33–36].

The sensitivity of antibody rapid tests can be lower compared to ELISA-based assays
due to the visual detection of colloidal gold conjugates forming the test line. On the
other hand, ELISAs are more prone to lower specificity due to unspecific binding signals.
In this study, we provide a comprehensive performance evaluation of the HDV rapid
test compared to a diagnostic ELISA using a cohort of 474 pre-characterized samples.
As expected, we found that the LFA has a higher specificity (100% vs. 99.0%) but a lower
sensitivity (94.6% vs. 99.4%) compared to the diagnostic ELISA used. However, when
evaluating the samples with non-corresponding test results in more detail, we found that
they had very low anti-HDV ELISA signals closely resembling the included negative
controls. Furthermore, these samples had not tested positive for HDV RNA to confirm
HDV infection. Therefore, it currently remains unclear whether the observed differences
were due to false negative test results of the HDV rapid test, or whether these samples
were wrongfully considered positive by the diagnostic ELISA. To increase the objectivity
and readability of LFA tests, their read-out can be automated by digital instruments. These
hand-held or benchtop devices measure the colorimetric change on the test and control
lines and generate a semi-quantitative test result. Such technology can assist medical
professionals in their daily diagnostic routine, or operators of epidemiological studies.

Low HDV testing rates may have affected our understanding of the global prevalence
and distribution of HDV. The World Health Organization (WHO) estimates that 5% of all
HBsAg-positive people are infected with HDV, resulting in a total number of 15–20 million
HDV infections worldwide. HDV hotspots were recorded in Mongolia, the Amazon basin,
and the Mediterranean basin, as well as in some countries in Africa and western Asia [27,28].
However, recent meta-analyses highlighted that for many countries the HDV prevalence
remains entirely unknown, is insufficiently mapped, or only represents specific regions
or risk-groups. While one meta-analysis study concluded that the HDV prevalence may
be highly underestimated [27], another study supported the WHO numbers [28]. Hence,
the true HDV prevalence remains to be elucidated and may depend significantly on future
epidemiological studies in countries that have previously lacked access to HDV diagnostics.

5. Conclusions

The novel HDV rapid test provides us with an important tool for epidemiological
HDV research, especially in countries with poor medical infrastructure. It may also fill a
critical gap in clinical HDV diagnostics in the future.

6. Patents

The E. coli derived recombinant L-HDAg with a non-naturally occurring consensus se-
quence of all eight HDV genotypes is protected by the patent application WO2019219840A1.
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