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Understanding developmental changes in children’s use
of specific visual information for recognizing object
categories is essential for understanding how experience
shapes recognition. Research on the development of
face recognition has focused on children’s use of
low-level information (e.g. orientation sub-bands), or
high-level information. In face categorization tasks,
adults also exhibit sensitivity to intermediate complexity
features that are diagnostic of the presence of a face. Do
children also use intermediate complexity features for
categorizing faces and objects, and, if so, how does their
sensitivity to such features change during childhood?
Intermediate-complexity features bridge the gap
between low- and high-level processing: they have
computational benefits for object detection and
segmentation, and are known to drive neural responses
in the ventral visual system. Here, we have investigated
the developmental trajectory of children’s sensitivity to
diagnostic category information in
intermediate-complexity features. We presented
children (5–10 years old) and adults with image
fragments of faces (Experiment 1) and cars
(Experiment 2) varying in their mutual information,
which quantifies a fragment’s diagnosticity of a specific
category. Our goal was to determine whether children
were sensitive to the amount of mutual information in
these fragments, and if their information usage is

different from adults. We found that despite better
overall categorization performance in adults, all children
were sensitive to fragment diagnosticity in both
categories, suggesting that intermediate representations
of appearance are established early in childhood.
Moreover, children’s usage of mutual information was
not limited to face fragments, suggesting the extracting
intermediate-complexity features is a process that is not
specific only to faces. We discuss the implications of our
findings for developmental theories of face and object
recognition.

Introduction
Studyingwhen specific types of visual information are

used for recognizing different object categories across
development is an important way of understanding
how learning and experience affect high-level visual
representations (Nelson, 2001). Faces, as a category,
are particularly interesting to consider both in terms
of the specialized neural systems supporting face
perception and dedicated modes of visual processing
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that are specific to faces (Chung & Thomson, 1995;
McKone, Crookes, & Kanwisher, 2009). Examining
how representations supporting face categorization
change during development can, thus, provide insight
into how neural mechanisms for processing different
objects become differentiated from one another as
observers gain experience with their visual environment
(Nelson, 2001).

Our goal in the present study was to examine
developmental changes in the information used to
distinguish faces from non-faces, a categorization task
we will refer to as a face detection judgment. In general,
face detection defined in this manner has not received
nearly as much attention as face individuation or
categorization tasks involving emotion recognition (see
Bindemann & Burton, 2009 and Robertson, Jenkins,
& Burton, 2017 for a discussion of this with regard to
the adult literature), but there are several important
results that suggest changes in information use for face
detection over developmental time. In infancy, newborn
infants have rudimentary face detection skills that
initially appeared to be based on a simple “top-heavy”
preference for faces that respect the crude first-order
arrangement of facial features (Simion et al., 2002),
but more recent work suggests that even at the ages
of 3 to 5 months, infants may have a more refined
representation of what faces look like (Chien, 2011).
This is further supported by recent studies using a
rapid-presentation electroencephalogram (EEG) design
that yielded clear distinctions between face and object
responses over right occipitotemporal recording sites
(De Heering & Rossion, 2015). In childhood, there
is far less data describing how representations of
facial appearance for detection and face/non-face
categorization may change, but there is some evidence
that specific kinds of information use may require
continued development during middle childhood. Using
the Thatcher Illusion, Donnelly and Hadwin (2003),
demonstrated that 6-year-old children were not sensitive
to the illusion, but that 8-year-old children were. This
result suggests that between ages 6 and 8, children’s
representations of the typical configuration of faces
may be changing. This is supported by results using
Mooney faces (Carbon, Gruter, & Gruter, 2013) and
pareidolic faces (Guillon et al., 2016; Ryan, Stafford,
& King, 2016), both of which depend on mature
spatial integration abilities that children seem to lack
early in childhood. Further, although de Heering and
Rossion’s (2015) rapid-presentation EEG data suggests
clear distinctions between face and non-face neural
responses, event-related potential (ERP) responses
measured in childhood are not always as distinct across
face and object categories (Taylor et al., 2004, although
see Kuefner et al., 2010). Thus, the extant literature
suggests that the crude face detection abilities that
are evident in infancy may become refined during
childhood, but there is as yet little data describing the

time-course of that tuning, or the link between face
detection abilities and the use of specific visual features.

Face recognition differs from other object recognition
tasks in terms of the visual information that best
supports performance in different face recognition
tasks, with some visual features being more useful than
others. Therefore, understanding how mechanisms for
face recognition depend on different visual features is
an important way to characterize how face recognition
develops, as it describes its unique properties in
terms of specific computations. Because faces are
complex, natural stimuli, there are many candidate
features to consider. In large part, the developmental
face recognition literature has focused on feature
vocabularies that we will refer to as high-level and
low-level visual features. By high-level visual features,
we refer broadly to presumed mechanisms for face
detection and recognition that use global features,
and are typically described as reflecting “holistic” or
“configural” face processing (Maurer, Le Grand, &
Mondloch, 2002). Developmentally, there is substantial
evidence that children’s use of holistic or configural
features for recognition develops during childhood (de
Heering et al., 2007; Mondloch et al., 2007; Pellicano
& Rhodes, 2003; Schwarzer, 2000; Sangrigoli & de
Schonen, 2004). By low-level features, we refer to
visual features that typically involve local processing
of the image, and reflect basic image properties
measured at early stages of the visual system (e.g.
spatial frequency or orientation). In adults, there are
measurable information biases favoring intermediate
spatial frequencies (Nasanen, 1999) and horizontal
orientation energy (Dakin & Watt, 2009) for various
face recognition tasks. Developmentally, there is
again substantial evidence that these biases change
during infancy, middle childhood, and beyond
(Leonard, Karmiloff-Smith, & Johnson, 2010; Gao
& Maurer, 2011; De Heering et al., 2016; Balas,
Schmidt, & Saville, 2015; Balas et al., 2015; Goffaux,
Poncin, & Schiltz, 2015; Obermeyer et al., 2012).
Although both of these bodies of research are
intriguing in their own right, it remains difficult to
understand how low-level information is integrated
into high-level representations of face appearance,
and how development proceeds at multiple scales of
feature complexity. Without more ideas about how to
build a bridge between low-level and high-level visual
information, a comprehensive description of how
information use changes developmentally in the context
of face recognition will likely remain elusive.

Presently, we adopt a third approach to characterizing
the features used for face recognition, one that relies on
applying tools for identifying meaningful intermediate-
level features for face detection (determining that an
image depicts a face rather than another object class)
that are on the one hand category-specific (unlike
low-level features), and at the same time are easy to
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describe computationally (unlike high-level features). By
an intermediate-level feature, we refer to a description
of the object that relies neither on purely local nor
purely global information. There are several reasons to
consider the contribution that such features make to
face recognition. First, intermediate-scale features are
capable of capturing global-scale information about
object appearance (Peterson, 1996), and may be a more
flexible means of measuring larger image structures.
Second, for more complex objects, intermediate features
offer distinct computational advantages in multiple
tasks. Intermediate-level image fragments are more
useful than global views for face classification (Ullman
& Sali, 2000) and segmentation (Ullman, 2007), both
of which are challenging computational tasks. Finally,
physiological studies of the ventral visual system have
demonstrated that some cortical areas are comprised of
cells that appear to be sensitive to intermediate-level
visual features (Tanaka, 1996), suggesting a neural code
for objects in terms of intermediate-level descriptors.
Intermediate-level visual features are, thus, of clear
computational value, appear to be measured in the
ventral visual stream, and make contributions to
behavioral visual recognition tasks, yet have not been
used in developmental studies of face detection or
recognition.

Our goal, therefore, in the current study is to begin
to build a bridge between low- and high-level features
by investigating developmental changes in sensitivity to
visual features of intermediate complexity. Specifically,
we use a computational measure first proposed by
Ullman, Vidal-Naquet, and Sali (2002) to classify
image fragments of face and other object categories
as a function of the mutual information they provide
about their category (see Figure 1 for example of face
fragments). Mutual information can be used to index
the diagnosticity of an image fragment for basic-level
categorization (i.e. determining that an image contains
a face) by measuring the probability of how likely we
are to find that pattern of intensity values in other face
images and how likely we are to find that pattern in
non-face images. A fragment will have high mutual
information (or diagnosticity) if it is both highly
likely to be found in a face image and unlikely to be
found in non-face images, thus balancing the need
for specificity and generalization. Mutual information
values vary a great deal across different face fragments
(Figure 1), indicating that some portions of a face are
better indicators of category than others. Notably,
fragments with high mutual information tend to be of
intermediate complexity: They are neither very large
or highly detailed fragments, nor are they very small
and generic. In terms of behavioral responses, adult
observers are faster and more accurate to categorize
face fragments the higher mutual information they
carry (Harel et al., 2007, Harel et al., 2011) indicating
that this computational index is a perceptually

Figure 1. Examples of face and car fragments with varying levels
of mutual information. We have included fragments of different
sizes from all three levels of mutual information (MI) to
demonstrate the variability within our stimulus set.

meaningful characterization of how diagnostic a
fragment is. In terms of their neural correlates, face
fragments with high mutual information also elicit
more robust face-sensitive cortical responses then low
mutual information face fragments (ERP: Harel et al.,
2007; functional magnetic resonance imaging [fMRI]:
Lerner et al., 2008), which further suggests that mutual
information can serve as a useful means to characterize
diagnostic face information at an intermediate level of
representation.

Our investigation of intermediate representations
supporting face categorization relies on an a priori
definition of mutual information that we use to
quantify how useful particular image fragments should
be for signaling the presence of a face. This differs
from other techniques for examining intermediate-level
representations of faces that empirically determine
what facial features observers rely upon to carry out
specific recognition tasks. The “Bubbles” methodology,
for example, is a form of reverse correlation in which
a random mask of bubble-like apertures is applied to
the face images used in a categorization task, allowing
the experimenter to determine which parts of the face
tended to be visible when the task was carried out
correctly (Gosselin & Schyns, 2001). This methodology
can be elaborated upon to investigate the use of specific
spatial-frequency sub-bands (Willenbockel et al., 2010)
to yield a “Bubbles” image that can be interpreted in
terms of intermediate-level feature use. This technique
is challenging to use with children, however, due to
its dependence on a relatively large number of trials
(though see Humphreys et al., 2006 and Ewing et al.,
2018 for a discussion of applying the “Bubbles”
technique in developmental populations). Moreover,
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although the resulting Bubbles images yield insights
into diagnostic parts of the face for a given task, it
is a non-trivial problem to use those images to make
strong inferences about the underlying vocabulary of
recognition at a specific level of the visual system. We
suggest that our use of image fragments as a tool for
studying intermediate level representations of faces
is a useful complement to the Bubbles technique and
offers an important and different perspective on the
features that may contribute to face recognition tasks at
intermediate stages.

Thus, our goal in the current study was to examine
children’s sensitivity to mutual information level
in face fragments and non-face object fragments
(Experiment 1 and Experiment 2, respectively) in an
object categorization task. To do so we asked children
between the ages of 5 and 10 years of age to carry out
a simple detection task (a go/no-go judgment for each
target category) using fragments that varied according
to the mutual information (MI) they provided regarding
target category. This detection task was used in a
previous study examining the contribution of different
orientation sub-bands to face recognition (Balas et al.,
2015), as it is easier and more intuitive for young
children than the standard 2AFC categorization task
(see methods below). We predicted that sensitivity
to the mutual information level might be evident
already during childhood, reflecting ongoing tuning
of mid-level representations for facial appearance
during this age range. Further, we hypothesized that the
developmental trajectory associated with the mutual
information level in face fragments might differ from
that of non-face fragments, mirroring the emergence
of other face-selective behavioral signatures during
development (Balas et al., 2015; Balas et al., 2016; Gao
& Maurer, 2011; Goffaux, Poncin, & Schiltz, 2015;
Mondloch et al., 2004).

Experiment 1
In our first task, we examined children’s and

adult’s sensitivity to mutual information level in a face
detection task. In particular, we investigated whether or
not children were sensitive to the higher diagnosticity
of face fragments with a higher mutual information
level, and if the degree of that sensitivity changed with
age during middle childhood (5–10 years).

Methods

Participants
We recruited a total of 61 participants from the

Fargo-Moorhead community to take part in this study.

Because we did not have clear a priori predictions
regarding the specific time point in which sensitivity
to mutual information will emerge, we divided our
child participants into two groups based on age: 5 to
7-year-old children (N = 19; 12 girls; mean age = 6
years, 2 mos.) and 8 to 10-year-old children (N = 22; 10
girls; mean age = 8). Adult participants (N = 20; 12
women) were recruited from the NDSU Undergraduate
Psychology study pool. This sample size was chosen
based on a power analysis we conducted using estimated
effect sizes derived from the results reported in Harel
et al. (2007), which used an expanded set of MI levels
in a categorization task. Based on the differences they
reported between the levels of MI we used in this task
(their lowest, mid-range, and highest MI levels), we
estimated that a minimum sample size of 18 participants
per age group would be adequate to detect the critical
interactions between factors in our design assuming
medium-size effects (consistent with the results reported
in their manuscript). Children and their caregivers
received compensation for their participation, whereas
adult participants received course credit. Informed
consent was obtained from adult participants and the
legal guardians of child participants. Children 7 years
and older also provided written assent to participate.
All participants (or their caregivers) reported either
normal or corrected-to-normal vision.

Stimuli
We presented our participants with gray-scale

images of face and non-face (car) fragments. Both
classes of fragments were previously used in behavioral
and electrophysiological (Harel et al., 2007; Harel
et al., 2011) studies designed to reveal how adult face
processing is impacted by the extent to which image
fragments are diagnostic of face/non-face categories.
The most important feature of this stimulus set is that
for each fragment, the mutual information provided
by that fragment for category membership has been
calculated. Briefly, this is measure is a way to quantify
how informative a given fragment is regarding the
presence of a category (e.g. “face”). The mutual
information associated with each fragment is calculated
by determining how likely one is to find the fragment in
images containing a face and how likely one is to find
the fragment in images that do not contain faces. A
high value implies that the fragment is very diagnostic:
it appears frequently in images containing a face,
and appears rarely in images containing non-faces.
A detailed description of how mutual information is
calculated can be found in (Ullman, Vidal-Naquet, &
Sali, 2002), but for our purposes, the critical property of
the stimuli is that we know how this value varies across
our stimulus set. Critically, all of the fragments in our
stimulus set are intermediate complexity fragments, but
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they vary in their mutual information level, and, thus,
their diagnosticity.

We selected 96 non-face fragments depicting portions
of cars and 96 face fragments. All car fragments used in
Experiment 1 had a “medium” level of diagnosticity for
their category. Face fragments were selected to include
32 “low” mutual information fragments, 32 “medium”
mutual information fragments, and 32 “high” mutual
information fragments. Within each of these three
levels, fragment size varied, and the regions of the face
depicted within each fragment also varied. Low MI
face fragments had a mean width of 26.25 units (SD =
4.64), medium MI face fragments had a mean width
of 28.0 units (SD = 5.7), and high MI face fragments
had a mean width of 38 units (SD = 15.3). “Units”
here refers to the square root of image area in pixels
in the raw images, but all images were scaled up by a
uniform factor for presentation during the task. This
yielded average sizes of approximately 3.5 degrees of
visual angle for low and medium MI face fragments
and approximately 4.75 degrees of visual angle for
high MI face fragments. We emphasize, however, that
within each MI level, fragments differed in size and
aspect ratio, and also that participants of different ages
likely also varied in terms of the visual angle subtended
by each stimulus due to variation in the comfortable
placement of the monitor and chair during the testing
session. Examples of fragment stimuli can be found
in Figure 1.

Procedure
We asked participants to complete a “go/no-go”

judgment using the full set of face and non-face
fragments, similar to prior work examining the
contribution of different orientation sub-bands to
face recognition (Balas et al., 2015). We chose this
task primarily because it is easier for our youngest
participants to understand and execute than a 2AFC
categorization task. Young children do not need to
remember which button goes with which response, for
example, nor do they have to provide a response to
stimuli that they have difficulty identifying as a member
of either category.

Stimuli were presented in a pseudo-randomized
order for 3 seconds each, (see Balas et al., 2015) and
participants were instructed to press a large red button
as quickly as possible if and only if the fragment
depicted part of a face. Otherwise, participants were
asked to withhold making a response and wait until
the image disappeared. We included a 1-second
inter-stimulus interval between trials and presented
each image once.

Participants completed the task seated approximately
60 cm away from a 1200 × 800 MacBook Pro
laptop, although this distance differed across different
participants depending on what was required for

Figure 2. Average hit rate as a function of diagnosticity (mutual
information) and age (5–7 years old, 8–10 years old, and adults)
for face detection. Error bars indicate +/− 1 SEM.

comfortable seating during the task. All stimulus
display and response collection routines were
written using the Psychtoolbox extensions for
Matlab (Brainard, 1997; Pelli, 1997). The task was
administered in a dark, sound-attenuated room, and
most participants completed the task in approximately
20 minutes.

Results

We examined three aspects of participants’
performance: Their hit rate for correctly labeling face
fragments as faces (Figure 2), their response latency for
correctly labeled face stimuli (Figure 3), and their false
alarm rate for incorrectly labeling non-face fragments
as faces. We analyzed the hit rate and response latency
data using a 3 × 3 mixed-design analysis of variance
(ANOVA) with participant age (5–7 years old, 8–10
years old, and adults) as a between-subjects factor
and face diagnosticity (low, medium, or high) as a
within-subjects factor. To analyze false alarm rates,
we carried out a 3 × 1 ANOVA with participant age
as a between-subjects factor. We did not combine hit
rates and false alarm rates into a composite accuracy
score because the false alarm rate for each observer is
shared across all three hit rates, making it not especially
useful for converting these values to d’ or other
signal detection theory descriptors of performance.
Specifically, differences in d’ and response bias across
conditions within one participant can only reflect hit
rate differences given that there is only one source of
false alarms.
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Figure 3. Average response latency for correctly labeled faces
as a function of diagnosticity (mutual information) and age
(5–7 years old, 8–10 years old, and adults). Error bars indicate
+/− 1 SEM.

Hit rates
Our analysis of participant hit rates revealed a

main effect of diagnosticity (F (2, 116) = 99.66, p
< 0.001, partial η2 = 0.63), and a main effect of
age group (F (2, 58) = 9.39, p < 0.001, partial η2 =
0.98). The interaction between diagnosticity and age
group did not reach significance (F (4, 116) = 1.18,
p = 0.325, partial η2 = 0.049). The main effect of
diagnosticity was the result of significant differences
between all three levels of mutual information: hit
rates to high MI fragments differed from medium
MI fragments (95% confidence interval [CI] of the
difference = 0.15–0.23) and low MI fragments (95%
CI of the difference = 0.22–0.34), and performance
with medium MI fragments also differed from low MI
fragments (95% CI of the difference = 0.036–0.13).
The main effect of age was the result of a significant
difference between 5 to 7-year-old performance (M =
0.68, 95% CI = 0.62–0.74) and both 8 to 10-year-old
performance (M = 0.85, 95% CI = 0.80–0.91) and adult
performance (M = 0.82, 95% CI = 0.76–0.87). No other
pairwise comparisons between age groups reached
significance.

Response latency
Our analysis of response latency to correctly

detected face images revealed significant main effects
of diagnosticity (F (2, 116) = 54.23, p < 0.001, partial
η2 = 0.48) and age (F (2, 58) = 43.55, p < 0.001,
partial η2 = 0.60). The main effect of diagnosticity
was the result of significant differences between

the response latency to images with “high” mutual
information (M = 0.77, 95% CI = 0.74–0.81) and
images with both “low” mutual information (M =
0.95, 95% CI = 0.89–1.00) and “medium” mutual
information (M = 0.92, 95% CI = 0.88–0.96).
The comparison between “low” and “medium”
mutual information did not reach significance. The
main effect of age was the result of significant
differences in performance between all three age
groups.

Besides these main effects, we also observed
a significant quadratic contrast between face
diagnosticity and age (F (2, 58) = 3.62, p = 0.033,
partial η2 = 0.11). To examine the nature of this
interaction, we carried out follow-up tests to determine
how adjacent levels of mutual information affected
performance within each group. Specifically, within
each age category, we determined whether “low”
and “medium” response latency differed significantly,
and whether “medium” and “high” response latency
differed significantly using one-tailed, paired-samples
t-tests (a directional test is appropriate here due to the
expectation that higher mutual information should lead
to faster response latencies). We found that although
all three age groups exhibited a significant difference
between “medium” and “high” latencies (5–7-year-olds:
p < 0.001; 8–10-year-olds, p < 0.001; adults, p < 0.001),
only adults exhibited a significant difference between
“low” and “medium” response latencies (5–7-year-olds,
p = 0.71; 8–10-year-olds, p = 0.55; and adults, p =
0.043). We note that this latter result for adult observers
does not survive a Bonferroni correction for multiple
comparisons, but nonetheless that it provides some
insight into what drives this relatively small interaction
effect.

False alarms
Finally, our analysis of false alarm rates to non-faces

revealed a significant effect of age group (F (2,
58) = 4.27, p = 0.019, partial η2 = 0.13). Pairwise
comparisons revealed that this main effect was the result
of a lower false alarm rate in adults (M = 0.079, 95%
CI = 0.03–0.12) relative to 5 to 7-year-olds (M = 0.18,
95% CI = 0.13–0.23). The false alarm rate observed in
8 to 10-year-olds (M = 0.16, 95% CI = 0.11–0.20) did
not significantly differ from either age group.

Discussion

The goal of Experiment 1 was to examine how
children’s sensitivity to the information contained in
intermediate-level visual features of faces changes
during middle childhood. Starting with our results
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from adult observers, we replicated and extended
previous results obtained using mutual information as
a criterion for defining face fragments that are more
or less category-diagnostic (Harel et al., 2007; Harel
et al., 2011). Specifically, face fragments with higher
mutual information were more reliably categorized as
faces in our go/no-go task by adults, and they were also
categorized as such with a shorter response latency. This
further demonstrates the utility of mutual information
as a useful computational tool for identifying diagnostic
face fragments.

Developmentally, our data demonstrates that both
young children and older children are sensitive to
mutual information contained in face fragments. In
all age groups, hit rates were larger for high mutual
information face fragments, and response latencies
shorter. This suggests sensitivity to MI in mid-level face
features may be relatively mature early in childhood,
although we note that young children also tended
to label low-MI fragments as faces at a much lower
level than adults. This outcome differs from results
examining low-level biases for face categorization in
a similar go/no-go task, which indicated that biases
for horizontal orientation information in face images
develop relatively slowly during childhood (Balas,
Schmidt, & Saville, 2015). Another important point to
consider is that we did not find an interaction between
age group and mutual information in our hit rate data,
which could be interpreted as evidence supporting
general cognitive improvement during childhood in the
extraction of intermediate-level diagnostic information,
that is, an improvement that perhaps does not reflect
any face-specific mechanisms (Crookes & McKone,
2009). Besides the different conclusions that can
be drawn from examining the hit rate data and the
response latency data, we also cannot argue that these
effects do or do not reflect face-specific aspects of
visual development without examining how children’s
sensitivity to mutual information level changes for
a non-face category. To address this question, we
conducted Experiment 2, in which we examined the
extent to which children of the same age range as in
Experiment 1 are sensitive to the mutual information
level contained in car fragments of varying levels of
mutual information.

Experiment 2
In our second study, we examined the development

of sensitivity to mutual information level in a
non-face category (cars). Using the same methods as
Experiment 1, we investigated how performance in
car detection varied with age and mutual information
level when face fragments were used as the distractor
category.

Methods

Participants
We recruited a sample of 56 participants from

the Fargo-Moorhead community to take part in
Experiment 2. As in Experiment 1, the sample was
comprised of three groups: 5 to 7-year-old children
(N = 20, 13 girls, mean age = 6 years, 4 mos.), 8 to
10-year-old children (N = 20, 11 girls, mean age =
9 years, 1 month) and adults (N = 16, 10 women).
Recruitment and consent procedures were identical
to those reported in Experiment 1, and none of the
participants included in this sample had taken part in
the first experiment.

Stimuli
The stimulus set used in this experiment was drawn

from the same larger set of images used to select stimuli
for Experiment 1. The key difference between this
stimulus set and the previously described images is
that, in this case, we selected car fragments that varied
according to the mutual information level provided by
each image regarding the target category and chose face
fragments from a fixed, intermediate, level of mutual
information. Specifically, we selected 96 car fragments
and 96 non-car (face) fragments for use in this task. The
set of car fragments was comprised of 32 “low mutual
information” car fragments, 32 “medium” fragments,
and 32 “high” fragments. The set of face fragments was
comprised of 96 face fragments all with a “medium”
level of mutual information. Within each MI category,
image size was variable: low MI car fragments had a
mean width of 19 units (SD = 6.97), medium MI car
fragments had a mean width of 32 units (SD =16.5),
and high MI car fragments had a mean width of 32
units (SD = 21.6). “Units” here refers to the square root
of image area in pixels in the raw images, but all images
were scaled up by a uniform factor for presentation
during the task. In terms of visual angle measurements,
this led to approximate sizes of 2.5 degrees of visual
angle for low MI car fragments and approximately
3.75 degrees of visual angle for medium and high MI
car fragments. As we described in Experiment 1, these
values must be considered in the context of the variable
size and aspect ratio within each MI level and the
varying position of the display and chair for child and
adult participants. As such, these values of visual angle
should be considered as estimates rather than as values
that were strictly maintained for all participants during
testing.

Procedure
We administered the same go/no-go task described

in Experiment 1 to participants in this task. The only
critical difference between tasks was that, in this case,
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participants were instructed to press the response
button only in response to car fragments and withhold
responding if a face fragment was presented. Otherwise,
all stimulus presentation, response collection, and
display parameters were identical to those described in
Experiment 1.

Results

As in Experiment 1, we examined participants’ hit
rate for responding correctly to car fragments, their
response latency for correct responses to car fragments,
and their false alarm rate in response to face fragments.
We submitted the hit rate and response latency values to
a 3 × 3 mixed-design ANOVA with age (5–7 years old,
8–10 years old, and adults) as a between-subjects factor
and mutual information level (low, medium, and high)
as a within-subjects factor. We analyzed false alarm
rates using a one-way ANOVA with participant age as a
between-subjects factor.

Hit rates
This analysis revealed only a main effect of mutual

information level (F (2, 106) = 121.5, p < 0.001, partial
η2 = 0.70). Neither the main effect of age (F (2, 53) =
2.23, p = 0.12, partial η2 = 0.08), nor the interaction
between these factors (F <1) reached significance.
The main effect of mutual information level was the
result of lower hit rates in response to low information
fragments relative to medium (mean difference = 0.28,
95% CI of the difference between means = 0.22–0.34]
and high information fragments (mean difference
= 0.30, 95% CI of the difference between means =
0.23–0.36). The average hit rates as a function of age
and car diagnosticity are presented in Figure 4.

Response latencies
This analysis revealed main effects of age (F (2,

53) = 5.19, p = 0.009, partial η2 = 0.94) and mutual
information level (F (2, 106) = 32.47, p < 0.001, partial
η2 = 0.38). The interaction between these factors did
not reach significance (F <1). The main effect of age
group was the result of a significant difference between
the performance of children in our youngest age group
and adults (mean difference = 0.25, 95% CI of the
difference between means = 0.06–0.45). Neither the
difference between adults and older children, nor the
difference between younger children and older children
reached significance. The main effect of the mutual
information level was the result of slower response
latencies in response to low information fragments
relative to medium (mean difference = 0.21, 95% CI of
the difference between means = 0.11–0.30) and high
information fragments (mean difference = 0.22, 95%

Figure 4. Average hit rate as a function of diagnosticity (mutual
information level) and age for car detection. Error bars indicate
+/− 1 SEM.

Figure 5. Average response latency for correctly labeled cars as
a function of diagnosticity (mutual information) and age
(5–7 years old, 8–10 years old, and adults). Error bars indicate
+/− 1 SEM.

CI of the difference between means = 0.14–0.31). The
average response latencies as a function of age and car
diagnosticity are presented in Figure 5.

False alarms
Finally, our analysis of false alarm rates (response

errors made to face fragments) revealed a marginally
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significant effect of participant age (F (2, 53) = 2.71,
p = 0.076, partial η2 = 0.093). Although the average
proportion of false alarms did appear to decrease
(5–7-year-olds: M = 0.17, 8–10-year-olds: M =
0.10, and adults, M = 0.049) with age, no pairwise
comparisons among age groups reached significance.

Discussion

Experiment 2 was conducted to assess the extent
to which children in the middle childhood range
are sensitive to the mutual information contained
in a non-face category (cars) and not only to the
face fragments. We found that participants across all
age groups were sensitive to the diagnosticity of car
fragments, as indicated by a main effect of MI level in
both hit rate and response latency. Thus, children as
early as the age of 5 years old can distinguish more
diagnostic object features than less diagnostic object
features in this task. Note that although this may
suggest at first that the sensitivity to mutual information
is not face-specific, the patterns of information usage
in the two experiments are not identical, suggesting
a more complex pattern of results. We discuss this
below.

General discussion
The present study sought to determine how sensitivity

to varying diagnosticity in intermediate complexity
features for face and non-face categorization changes
during middle childhood. We tested this question in
two separate experiments, using the objective and
quantifiable measure of mutual information. In both
of our experiments, we have found evidence that
children as young as 5 to 7 years old are sensitive to
category diagnosticity in image fragments of complex
objects (faces and cars). Like adults, children in both
of our target age groups showed better accuracy
and faster response latencies when categorizing
fragments with high mutual information levels. This
basic effect applied to both face and car categories,
so this observation could be interpreted in terms of
general visual development rather than any face-specific
developmental trajectory that governs the recruitment
of intermediate complexity features to support
basic-level recognition. The present findings provide a
first indication that children as young as 5 years of age
(and perhaps even younger) are capable of extracting
diagnostic features for categorization at an intermediate
complexity level and not only at low- or high-level levels
of visual representation.

Notably, in addition to the general effects of
age and feature informativeness, we also observed

critical differences in how participant age and mutual
information level contributed to performance in our
face and non-face detection tasks. In particular, the
interaction we observed between age and mutual
information level in the response latency data from
Experiment 1 was not present in Experiment 2. This
outcome could be interpreted to mean that for face
recognition, there is ongoing development during
middle childhood that leads to graded sensitivity to
mutual information level in adulthood as opposed to
the more nonlinear pattern of results we observed in
our younger age groups. To put this more simply, middle
childhood could be a period during which children are
still learning how to use less diagnostic information for
recognition, which means that the difference between
“low” and “medium” amounts of mutual information
is not meaningful to them. Adults, on the other hand,
who have acquired the ability to make use of weakly
diagnostic facial features, differ in that the increase in
mutual information level from low to medium confers
additional visual information that their visual system is
capable of using for modest gains in recognition ability.
This outcome does resemble recent results describing
the development of low-level orientation biases for
emotion recognition in faces (Balas et al., 2015) and
bodies (Balas et al., 2016), in that young children
in both of these studies demonstrated particularly
poor abilities with suboptimal visual features. That is,
although young children exhibited similar biases for
orientation features in these emotion recognition tasks
in terms of the direction of the effects, their absolute
performance when the preferred features were not
available was far worse than adults (in some cases,
not different from chance). The current finding of
lack of an Response time (RT) difference between low
and medium levels of mutual information in children
but not in adults may reflect a similar developmental
trajectory whereby optimal features are identified early
in development and contribute to face representations
quickly, but less optimal features are uniformly “bad”
at early stages of development and only gradually
become useful. We suggest that this is also consistent
with the poor performance of young children with
regard to labeling low MI face fragments as faces in
Experiment 1, which indicates that children in the 5 to
7 year age range may struggle to determine that weak
indicators of the presence of a face may be useful for
assigning the category label. Further, the fact that we
observed this effect for faces and not for cars may mean
that this is a unique feature of how face recognition
develops, either because children’s exposure to faces
relative to cars differs across middle childhood (Sugden,
Mohamed-Ali, & Moulson, 2014), or because there
are differences in how cortical areas that support face
and object recognition mature during this time period
(Grill-Spector, Golarai, & Gabrieli, 2008).
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We emphasize, however, that the critical interaction
supporting this account is associated with a rather small
effect size, and is only evident in response latencies
and not in accuracy of performance. We also must be
careful with regard to the comparison between faces
and cars in this study. We opted here to match these two
categories according to the range of MI values obtained
for face and car fragments across a large number of
images. That choice allows us to make clear statements
about mutual information and category diagnosticity,
but does not provide guarantees regarding low-level
image properties like contrast, orientation energy, or
even simpler properties like image size. To the extent
that we have measured some differences across tasks
when face and non-face fragments were used, we
acknowledge that these differences may be attributable
to image properties other than MI that have not been
explicitly matched in these tasks, and would be very
difficult to match while also being careful about the
values of MI that we are interested in. On balance, we,
therefore, suggest that both the hit rate data and the
response latency data suggest that information biases
favoring higher amounts of mutual information in face
fragments show similar gradients from low-to-high
at the earliest ages we tested, differing primarily in
overall performance across levels with increasing age
(younger children perform substantially worse). While
the potential for face-specific development is interesting
to consider in light of other recent results, the current
data does not make a strong case for this conclusion at
this moment.

An important avenue of research to consider to help
clarify the extent to which the current findings may
reflect face-specific effects is the measurement of neural
sensitivity to mid-level visual features during childhood.
Adult observers’ ERP responses are sensitive to mutual
information in face and car fragments (Harel et al.,
2007; Harel et al., 2011), but little is known about how
either low-level or mid-level information biases for face
recognition develop. An investigation of how ERP
components like the P100 and the N170/N290 respond
to varying levels of mutual information in face and
non-face fragments would be an important step toward
linking the computational and behavioral evidence for
fragments of intermediate complexity as a mid-level
representation of face appearance to real neural
outcomes. Recent results examining the sensitivity of
these components to the low-level visual information
in faces (horizontal versus vertical orientation energy)
has revealed that face-sensitive ERP components
change their tuning to orientation sub-bands during
middle childhood in a category-selective way (Balas
et al., 2017), supporting behavioral work indicating
similar outcomes for response latencies (Balas et al.,
2015). Applying these same methods to intermediate
complexity features in faces and non-faces would,
thus, provide an important complementary look at

the development of visual recognition during this age
range.

In summary, the present findings provide important
and novel data demonstrating sensitivity to mid-level
features for face and object recognition emerges as
early as 5 years old of age. Complementing prior
results examining children’s use of visual information
at low-level and high-level stages of face procession,
the current study demonstrates near-adult utilization
of information contained in intermediate complexity
level features. Our findings are significant not only in
establishing the feasibility of intermediate-level features
as a “third way” for object representations, but also in
providing explicit, objective, and quantitative means
to describe what it means for a mid-level feature to
be diagnostic. This will allow future investigations of
how children develop “vocabularies” of intermediate
complexity visual features to form different object
categories, while avoiding previous dichotomies
between low and high accounts of face and object
categorization. Deeper insights into how the content of
face representations changes during development will
depend on identifying and testing quantitative models
like the current one, and our results offer a compelling
example of how such computational models can be
adapted for use with developmental populations.

Keywords: face detection, visual development, object
recognition
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