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There is a strong negative correlation between the polyglutamine (polyQ) domain

length (Q-length) in the intrinsically disordered Huntingtin protein (Htt) exon-1 and the

age of onset of Huntington’s disease (HD). PolyQ of Q-length longer than 40 has

the propensity of forming very compact aggregate structures, leading to HD at full

penetrance. Recent advances in nanobiotechnology provided a new platform for the

development of novel diagnosis and therapeutics. Here, we explore the possibility of

utilizing 2D-nanomaterials to inhibit the formation of supercompact polyQ structures

through the so-called “folding-upon-binding” where the protein structure is dependent on

the binding substrate. Using molecular dynamics simulations, we characterize two polyQ

peptides with Q-length of 22 (Q22, normal length) and 46 (Q46, typical length causing

HD) binding to both graphene and molybdenum disulfide (MoS2) nanosheets, which

have been applied as antibacterial or anticancer agents. Upon binding, Q22 unfolds and

elongates on both grapheme and MoS2 surfaces, regardless of its initial conformation,

with graphene showing slightly stronger effect. In contrast, initially collapsed Q46 remains

mostly collapsed within our simulation time on both nanosheets even though they do

provide some “stretching” to Q46 as well. Further analyses indicate that the hydrophobic

nature of graphene/MoS2 promotes the stretching of polyQ on nanosheets. However,

there is strong competition with the intra-polyQ interactions (mainly internal hydrogen

bonds) leading to the disparate folding/binding behaviors of Q22 and Q46. Our results

present distinct Q-length specific behavior of the polyQ domain upon binding to two

types of 2D-nanomaterials which holds clinical relevance for Huntington’s disease.

Keywords: MD simulation, polyQ, graphene, MoS2 nanosheet, Huntington’s disease (HD)

INTRODUCTION

Neurodegenerative Huntington’s disease (HD) is caused by expansion of the trinucleotide CAG
repeats in exon-1 of the HD gene, the mutation that encodes an extended polyglutamine (polyQ)
tract within the N-terminal exon-1 of the Huntingtin protein (Htt) (Macdonald et al., 1993).
There is a strong negative correlation between polyQ length (Q-length) and the age of onset
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of HD (Saudou et al., 1998; Wexler and Res, 2004; Gray et al.,
2008). Expanded polyQ regions form oligomers that aggregate
into large, insoluble protein complexes, which may subsequently
mature to observable fibrils (Perutz et al., 1994). PolyQ length
and structure are critical for posited neurotoxicity mechanisms
caused by oligomers and larger aggregates (Miller et al., 2011).
Recent work from our group has found that at longer Q-lengths,
increased β-sheet content seems to promote the formation
of supercompact structures (Kang et al., 2017). The increased
compactness at long Q-lengths indicates that the polyQ domain
may result in increased neural toxicity by inducing distinct
morphological changes throughout the entire Htt exon-1 protein
(Kang et al., 2017).

It is nontrivial to structurally characterize the Httexon-1
protein due to its inherently disordered nature. It is also known
that when the other two domains of Htt exon-1 protein, N17
(the first 17 residues of the Htt N-terminal region) and C38
(38 residues near the Httexon-1 C-terminus, polyproline-rich
segment), are absent and the Q-length is 20 or greater, polyQ
collapses into a disordered but compact globule (Perutz et al.,
1994; Chen et al., 2002; Crick et al., 2006; Miettinen et al., 2012;
Heck et al., 2014; Hoop et al., 2016). The supercompact structures
of polyQ (not found in other globular proteins) are mainly owing
to the “glue-like” propensity of glutamine sidechains to form
many hydrogen bonds (Kang et al., 2017). The sidechains tend
to be “buried” inside the protein so that the polyQ domains
themselves are insoluble.

Meanwhile, there is a growing interest in applying
nanobiotechnology for biomedical applications. For example,
biocompatible two-dimensional (2D) nanomaterials with unique
compositional, structural and physicochemical features, such
as graphene and MoS2, have gained increased attention in the
biomedical field as potential antibacterial and antitumor agents.
In this study, we explore the possibility of interrupting the
formation of a supercompact polyQ using novel engineered
nanomaterials like graphene or MoS2. Some intrinsically
disordered proteins (Arai et al., 2015; Shammas et al., 2016;
Bonetti et al., 2018) and switch sequences (Chen and Elber,
2014; Chen et al., 2016; Porter and Looger, 2018) are thought
to utilize the folding-upon-binding mechanism where the
protein structure is dependent on the binding substrate. Both
graphene and MoS2 nanosheets have a highly hydrophobic
surface with large water contact angles (despite that MoS2 has
partial charges on Mo and S atoms), offering a biomimetic
environment for protein binding when interfaced with
water (Mathesh et al., 2016; Gu et al., 2017; Zhang et al.,
2017). Previous studies have observed a variety of effects
of graphene on proteins, including disruption of protein
structures (Zuo et al., 2011; Chong et al., 2015; Wang et al.,
2015), enhancement of enzymatic activity (Mathesh et al.,
2016), and potential interference of protein-protein interactions
(Luan et al., 2015, 2016a; Feng et al., 2016). Comparatively,
there are less studies on MoS2’s effect on proteins partly
due to the lack of appropriate potential function parameters
for MoS2 simulation. The recently developed MoS2 force
field parameters that are compatible with the TIP3P water
model (Luan and Zhou, 2016) might help facilitate a wider

application of computer simulations on the interaction of MoS2
with biomolecules.

Herein, we use all-atom molecular dynamics (MD)
simulations to study Htt-polyQ adsorption onto graphene
and MoS2 nanosheet. We investigate two poly glutamine-
lengths, 22 (Q22, healthy Q-length) and 46 (Q46, typical
Q-length associated with HD at full penetrance) to determine
if the binding mechanism of the polyQ on these nanosheets is
Q-length dependent. We find that Q22 exhibits a similar binding
mode on both graphene and MoS2 surfaces (with graphene
showing a slightly stronger effect) regardless of its initial
configuration - the final conformation of Q22 is fully extended.
On the other hand, the initially collapsed Q46 remains mostly
collapsed when adsorbing onto graphene or MoS2 nanosheet,
indicating that neither graphene nor MoS2 is sufficient to fully
stretch the supercompact Q46 structure (again with graphene
showing slightly stronger effect). Further energetic and hydrogen
bonding analyses indicate that the difference in Q22 vs. Q46
binding conformations is determined by the competition
between polyQ internal interactions (mainly intra-hydrogen-
bonds) and polyQ-nanosheet interactions. Insights derived
from our simulations of polyQ interaction with these novel
2D-nanomaterials may lead to future potential applications in
diagnoses and therapeutics for Huntington’s disease (HD).

SIMULATION METHODS

In this work, we study two poly glutamine peptides of
length 22 (Q22) and 46 (Q46) adsorbing onto graphene and
MoS2 nanosheets. Figure 1 illustrates the initial configurations
of polyQ on the graphene surface simulation systems: fully
extendedQ22 at the graphene interface (Figure 1A), collapsed
Q22 at the graphene interface (Figure 1B), fully extended Q46
at the graphene interface (Figure 1C), and collapsed Q46 at
the graphene interface (Figure 1D). The equivalent simulation
systems of polyQ on the MoS2 surface are shown in Figure S1.
In each initial configuration, the polyQ was separated from the
graphene/MoS2 nanosheet by 0.75 nm to prevent large initial
interactions. The OPLS-AA force field (MacKerell et al., 1998)
was used for the polyQ. The force fields for graphene and MoS2
nanosheets are the same as in our previous MD studies (Tu et al.,
2013; Luan and Zhou, 2016; Luan et al., 2016b). Sodium and
chlorine ions were added in each system to yield an electrolyte
concentration of 100mM. The TIP3P model (Jorgensen et al.,
1983; Neria et al., 1996) was used for water and the standard force
field was used for ions (Beglov and Roux, 1994).

All MD simulations were performed with GROMACS (Hess
et al., 2008). To investigate both adsorption of Q22 and Q46
on the nanosheets as well as to capture protein conformational
changes, each simulation was run for 600 ns for Q22 and 1000
ns for Q46 under the NVT (T = 300K) ensemble. Following
similar protocols used in our previous studies (Zhou et al., 2001,
2004; Zhou, 2003, 2004; Li et al., 2005; Das et al., 2009; Xia et al.,
2012), we first performed energy minimization and 100 ps MD
equilibration under the NPT ensemble (pressure = 1 bar) prior
to production runs with the positions of protein and nanosheets
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FIGURE 1 | MD simulation systems of a fully extended (A) and collapsed (B) Q22 peptide near the water–graphene interface, and a fully extended (C) and collapsed

(D) Q46 near the water–graphene interface. Atoms in graphene and PolyQ are shown as spheres and cartoon, respectively. Water molecules and ions are not shown.

Graphene is colored in cyan; the Q22 is colored in blue; and the Q46 is colored in red. The equivalent simulation systems of polyQ on the MoS2 surface are shown in

Figure S1.

restrained to relax the solvent. A smooth cutoff (cutoff distance of
12 Å) was used to calculate the van derWaals (vdW) interactions.
The particle-mesh Ewald method (with the grid size ∼1 Å) was
applied for the electrostatic interactions. The motion equation
was integrated using the Verlet algorithm, with a time step of 2
fs. The v-rescale temperature coupling method was employed in
our simulations (Bussi et al., 2007).

RESULTS

To investigate the influence of graphene and MoS2 nanosheets
on the polyQ structure, we calculated the radius of gyration (Rg)
and root-mean-square deviation (RMSD) of Q22 and Q46 as a
function of time (Figure 2). For comparison, we also analyzed the
trajectories of the control systems containing either Q22 or Q46
alone in aqueous solution. For the control systems, the polyQ
peptide starts from an initially fully extended configuration with
the Rg value of 2.76 nm for Q22 and 5.91 nm for Q46. As
the polyQ peptides collapse in solution, the Rg decreases to
stabilize at 0.76 nm for Q22 and 1.05 nm for Q46 (black in
Figures 2E,F). In the polyQ + graphene and polyQ + MoS2
systems, the initially fully extended Q22 remains extended with
the Rg fluctuates around 1.52 nm (red and purple in Figure 2E).
However, the initially collapsed Q22 unfolds and extends across
the nanosheet surfaces, as also evidenced by the jump in Rg from
∼0.90 to 1.25 nm, with graphene showing slightly larger Rg than
MoS2 (green and blue in Figure 2E). In contrast, the collapsed
Q46 peptide does not unfold when it binds to the nanosheets.
Rather, the Rg of the initially collapsed Q46 increases somewhat
and fluctuates around 1.36 nm when bound to graphene and
around 1.22 nm when bound to MoS2 (the Rg of the equivalent
control system is 1.05 nm), again indicating graphene has slightly
stronger denaturing capability toward Q46 than MoS2. The Rg
of the initially fully extended Q46 is 1.94 nm on graphene and
2.67 nm on MoS2. The smaller Rg of the initially fully extended
Q46 on graphene is a result of the extended peptide “winding

back” toward itself, which should not be over-read in terms of
significance, but rather as an indication of non-convergence in
our simulations for the fully extended case. The collapsed case,
on the other hand, should be more indicative. Collectively, these
results indicate that the 2D-nanosheets can induce unfolding of
the Q22 structure, but not Q46, with graphene showing slightly
stronger capacity, which is consistent with previous studies
where graphene displays stronger interaction with biomolecules
than MoS2 (Tu et al., 2013; Luan and Zhou, 2018; Wu et al.,
2018).

The RMSD “trajectories” largely mimic the Rg results,
namely there are RMSD jumps for the Q22 collapsed systems
indicating unfolding (again with graphene showing somewhat
larger jumps), while the rest of the systems fluctuates mostly
randomly. The exception is when the initially fully extended Q22
and Q46 systems bind to graphene, their RMSDs fluctuate more
widely when compared to the control systems, indicating large
configurational diversity.

Figures 2A–D show the representative final configurations
of Q22 and Q46 on the graphene and MoS2 surfaces. Both
the initially fully stretched and collapsed Q22 adsorbed onto
the hydrophobic graphene and MoS2 nanosheets in a similar
stretchedmanner, while the initially collapsedQ46 did not stretch
out on either of the nanosheets like the collapsed Q22 did. For
the graphene system, the collapsed Q22 starts to unfold and
spread out on the surface of the graphene after 236 ns (Figure 2I).
This transition process corresponds to the increase of Rg shown
in Figure 2E at ∼236 ns. At 244 ns, the Rg reaches 1.27 nm,
which is correlated with Q22 achieving a stretched configuration
on graphene. Note that this configuration is not fully stretched
but maintains some kinks and turns and remains stable for
over 50 ns. The collapsed Q22 on MoS2 nanosheet exhibits
similar behavior to that of graphene except the unfolding is
not as extended. However, the collapsed Q46 does not unfold
on either the graphene or MoS2 nanosheet (Figures 2C,D,
bottom panel).
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FIGURE 2 | (A,B) The final conformations of the initially fully extended (top) and collapsed (bottom) Q22 on graphene (A) and MoS2 (B) nanosheets. (C,D) the final

conformations of initially fully extended (top) and collapsed (bottom) Q46 on graphene (C) and MoS2 (D) nanosheets. (E,F) The radius of gyration (Rg) of Q22 (E) and

Q46 (F). (G,H) The root-mean-square deviation of atomic positions (RMSD) of Q22 (G) and Q46 (H). Data were obtained from the following trajectories: initially fully

extended Q22/Q46 alone in water (black), initially fully extended Q22/Q46 on graphene (red), initially collapsed Q22/Q46 on graphene (green), initially fully extended

Q22/Q46 on MoS2 (purple), and initially collapsed Q22 on MoS2 (blue). (I) Snapshots of initially collapsed Q22 binding and extension onto graphene from the

simulation trajectory.

In order to further characterize the structure of polyQ on
the surface of nanosheets, we analyzed the contacts between the
polyQ peptides and the nanosheets. This involved: (1) calculating
the number of heavy atoms in contact with graphene and MoS2
nanosheets (Figures S2A,B), (2) computing the average center of
mass (COM) distances between polyQ sidechains and graphene,
and between polyQ sidechains and the upper sulfur atoms in
the MoS2 sheet (Figures S2C,D), as a function of simulation
time. Here, a contact between polyQ and nanosheets was defined
if the distance between any polyQ heavy atoms is within a
distance of 4.5 Å of any graphene/MoS2 atoms. In both the
graphene and MoS2 systems, the atom contact number (ACN)
and the COM distance of the initially fully extended Q22 show
that Q22 quickly binds the nanosheets (<20 ns). The ACN and
COM distance of the initially collapsed Q22 reveal more gradual,
detailed binding and unfolding behavior. The initially collapsed
Q22 systems exhibit two distinct binding stages: (i) In the early
binding stage (0–236 ns in graphene, and 0–40 ns in MoS2), a
portion of the Q22 atoms are in direct contact with the graphene
and MoS2 nanosheets. The binding is not strong enough to
restrain the Q22 motion, so the Q22 still diffuses along the
graphene/MoS2 surface, while the number of contacting atoms
slowly increases. (ii) This is the stable binding stage (after 244
ns in graphene, and after 136 ns in MoS2) where the ACN

reaches the maximum, which is very close to the stable binding
stage of the fully extended Q22. For the Q46 system, the final
ACN of the initially collapsed Q46 are far less than the initially
fully extended Q46, and the COM distances with the graphene
(0.67 nm) and MoS2 (0.92 nm) surface are far away from the
initially fully extended Q46 (0.42 nm on graphene and 0.33 nm
on MoS2), indicating different nanosheet binding structures of
Q46 based on different initial conformations or non-convergence
in simulations (unfortunately, a fully convergent simulation is
beyond our current reach with limited computational resources.
Nevertheless, we believe the Q-length dependent behavior is clear
even with the current simulation lengths).

The binding behavior of polyQ on 2D-nanosheetsis further
characterized by monitoring the residue contacts and contact
ratio of polyQ with nanosheets (Figure 3). The contact ratio is
defined as the number of residues in contact with the nanosheet
to the total number of residues. A residue is in contact with the
nanosheet if any heavy atom is within 4.5 Å of the nanosheet. In
the graphene system, the average residue contact number (RCN)
of the initially collapsed Q22 in contact with the nanosheetis
∼16 with a contact ratio of 73%, close to the initially fully
extended Q22 system with ∼19 contacting residues and 86%
contact ratio (average of the last 300 ns of trajectory). The RCN
of the initially collapsed Q46 on graphene is ∼25 with a contact
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ratio of 54%, far less than the initially fully extended Q46 system
with∼34 contacting residues and 74% contact ratio. In the MoS2
systems, the RCN of the initially collapsed Q22 in contact with
the nanosheet is ∼18 and the contact ratio is 82%, similar to
the initial fully extended Q22 system. The RCN and contact
ratio of the initially collapsed Q46 on MoS2 is ∼21 and 46%,
far less than the initially fully extended Q46 values of ∼38 and

83%. The residue contact and contact ratio analyses indicate that
when polyQ binds to the graphene/MoS2 surface, most of the
Q22 residues are in contact with the 2D-nanomaterials, typical
of an unfolded, extended structure. In contrast, only part of
the collapsed Q46 is in contact with the 2D-nanomaterials, so
although the nanosheets induce an unfolding of Q22, they do not
cause a full unfolding of Q46 within our simulation time.

FIGURE 3 | (A) Residue contact number between Q22 and graphene nanosheet, and between Q22 and the upper S layer in the MoS2 sheet. (B) Residue contact

number between Q46 and graphene nanosheet, and between Q46 and the upper S layer in the MoS2 sheet. (C) The contact ratio of Q22 (blue) and Q46 (red) with

graphene and MoS2 nanosheets.

FIGURE 4 | Interaction energy analyses of initially collapsed Q22 and Q46 on graphene and MoS2 nanosheet. (A,B) Q22 self vdW interaction energy compared to

Q22-nanosheet vdW interaction energy for graphene (A) and MoS2 (B). (C,D) Q46 self vdW interaction energy compared to Q46-nanosheet vdW interaction energy

for graphene (C) and MoS2 (D).
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Next, we performed energetic analyses to gain a deeper
understanding on the interactions between polyQ and
nanosheets as well as among polyQ atoms (self-interaction).
Although glutamine is normally a hydrophilic residue, isolated
polyQ in water shows strong hydrophobic protein properties,
including the propensity of forming a supercompact structure
and self-aggregation. Therefore, polyQ adsorption onto
the graphene/MoS2 nanosheet should be favorable due to
hydrophobic forces. This favorable binding is also clearly
indicated in the time-dependent van der Waals (vdW)
interaction energies between polyQ and graphene/MoS2
nanosheets (Figure 4; here we used vdW energy for comparison
as graphene has no partial charges on C atoms and the
electrostatic energy is actually very small compared to vdW for
MoS2 due to its symmetry even though both Mo and S have
partial charges; The electrostatic interaction energy between Qs
is shown in Figure S3). For example, as shown in Figure 4A,
when the collapsed Q22 unfolds and extends on the graphene
nanosheet, there is a significant loss of the self vdW energy and
a larger gain in the Q22-graphene interaction energy. Same for
the Q22 on MoS2 nanosheet (Figure 4B). On the other hand,
for the collapsed Q46, the self vdW energy remains strong
without any significant loss, indicating no meaningful unfolding
on either graphene or MoS2. Again, these results indicate that
the hydrophobic nature of graphene and MoS2 is energetically
favorable for the unfolding of Q22 on the nanosheet surface, but
probably not strong enough to unfold Q46.

PolyQ peptides are known to form hydrogen bonds using
both the glutamine backbone and sidechain which is the
main cause of the formation of polyQ supercompact structures
(Perutz et al., 1994; Chen et al., 2002; Crick et al., 2006;
Miettinen et al., 2012; Heck et al., 2014; Hoop et al., 2016;
Kang et al., 2017). Here, we analyze the time evolution of
polyQ hydrogen bonds and find interesting competition behavior
between the intra-polyQ interactions (mainly hydrogen bonds)
and polyQ sidechain-nanosheet interactions. Figures S4, S5

show the number of all hydrogen bonds (A and B) and
sidechain-sidechain hydrogen bonds (C and D) of Q22 and
Q46 for the graphene and MoS2 simulations. The polyQ
sidechain-nanosheet interaction is sufficiently strong in the
Q22 systems to not only prevent the collapse of Q22 but
also to unfold collapsed Q22, reducing the number of intra-
chain hydrogen bonds. However, the polyQ sidechain-nanosheet
interaction is not strong enough to unfold the collapsed Q46
though it can prevent the collapse of initially extended Q46 on
graphene and MoS2. Therefore, from our work, we find that
the two-dimensional nanomaterial graphene and MoS2 have the
potential to inhibit the collapse of polyQ, but not for Q-lengths
up to Q46.

CONCLUSION

To summarize, we have investigated polyQ peptides of two
lengths (22 and 46) binding to both graphene and MoS2
nanosheets using atomistic molecular dynamics simulations.
Two different initial polyQ configurations, fully extended and
collapsed, were employed to identify structure dependent
folding/binding behavior. Our simulations reveal that both
Q22 and Q46 bind to graphene and MoS2 nanosheets
effectively, but in a Q-length dependent manner. Upon
binding, Q22 unfolds and elongates onto both 2D-nanomaterial
surfaces, regardless of the initial conformation, with graphene
displaying slightly stronger effect. In contrast, Q46 does not
spontaneously stretch out onto the graphene/MoS2 surfaces
within our simulation time if starting from an initially collapsed
structure. Detailed analyses indicate that the differential binding
behavior of Q22 and Q46 is due to competition between
the hydrophobic polyQ-nanosheet interactions and internal
polyQ-polyQ self-interactions (mostly intra-hydrogen-bonds).
We believe our current work reveals important polyQ length-
dependent folding/binding behavior upon binding to novel
2D-nanomaterials, which might have implications for future
potential clinical applications to Huntington’s disease.
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