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The metabolic behavior of cancer cells is adapted to meet their proliferative needs, with
notable changes such as enhanced lactate secretion and glucose uptake rates. In this work,
we use the Ensemble Modeling (EM) framework to gain insight and predict potential drug
targets for tumor cells. EM generates a set of models which span the space of kinetic
parameters that are constrained by thermodynamics. Perturbation data based on known
targets are used to screen the entire ensemble of models to obtain a sub-set, which is
increasingly predictive. EM allows for incorporation of regulatory information and captures
the behavior of enzymatic reactions at the molecular level by representing reactions in the
elementary reaction form. In this study, a metabolic network consisting of 58 reactions is
considered and accounts for glycolysis, the pentose phosphate pathway, lipid metabolism,
amino acid metabolism, and includes allosteric regulation of key enzymes. Experimentally
measured intracellular and extracellular metabolite concentrations are used for developing
the ensemble of models along with information on established drug targets. The resulting
models predicted transaldolase (TALA) and succinyl-CoA ligase (SUCOAS1m) to cause a
significant reduction in growth rate when repressed, relative to currently known drug tar-
gets. Furthermore, the results suggest that the synergistic repression of transaldolase and
glycine hydroxymethyltransferase (GHMT2r) will lead to a threefold decrease in growth
rate compared to the repression of single enzyme targets.
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INTRODUCTION
Metabolic regulation plays a key role in fulfilling the metabolic
demands of proliferative vs. quiescent tissue. While differentiated
tissue catabolize nutrients to meet bioenergetic needs (i.e., ATP
synthesis), proliferating cells channel much of the glucose derived
carbon to anabolic pathways to meet biosynthetic needs (i.e., lipid,
protein, and nucleic acids synthesis; Christofk et al., 2008). The
distinguished metabolism of cancer cells compared to differenti-
ated tissue was first observed by Otto Warburg in the 1920s where
he noted high rates of glucose consumption and lactate secretion,
regardless of oxygen availability. This metabolic behavior in cancer
cells is termed aerobic glycolysis or the “Warburg effect.” (Vander
Heiden et al., 2009). Thus, the problem remains is that how aero-
bic glycolysis affects the cancer cell phenotype and how knowledge
of this differed metabolism can be used to target cancer cells for
therapeutic purpose.

In the presence of oxygen, differentiated cells (non-
proliferating cells) metabolize glucose through glycolysis to pyru-
vate (Figure 1). Pyruvate subsequently enters the TCA cycle in
the mitochondria and is oxidized to produce carbon dioxide. This
oxidation in the TCA cycle generates NADH, which fuels oxidative
phosphorylation for the maximal production of ATP with minimal
lactate production. Oxygen is essential for the complete oxidiza-
tion of glucose as it is the final electron acceptor during oxidative
phosphorylation. In the absence of oxygen, however, differenti-
ated cells produce minimal ATP through the process of anaerobic
glycolysis. During anaerobic glycolysis pyruvate is channeled away

from the TCA cycle and is used for lactate production. Genera-
tion of lactate allows for glycolysis to continue (by cycling NADH
back to NAD+). Cancer cells display “aerobic glycolysis” and con-
vert most of the glucose into lactate regardless of the presence of
oxygen (Vander Heiden et al., 2009).

The importance of aerobic glycolysis for cancer cell growth has
been proven experimentally (Schulz et al., 2006) and this meta-
bolic adaptation has been thought to facilitate the incorporation
of nutrients into the biomass necessary to produce new cells (Van-
der Heiden et al., 2009) as many of the glycolytic intermediates
(e.g., PEP) are precursors for biomass production. However, the
biosynthetic benefits obtained through high glycolytic fluxes do
not explain why such high lactate production rates are observed
when more pyruvate could be more efficiently utilized for ATP pro-
duction through oxidative phosphorylation (DeBerardinis et al.,
2008). Otto Warburg proposed that damage in oxidative metab-
olism caused the high rates of glycolysis, however later studies
have proven otherwise and revealed the mitochondria to be func-
tional (Moreno-Sánchez et al., 2007). It has been suggested that
there is a limitation in the maximal velocity of pyruvate oxidation
and hence cells must eliminate pyruvate by conversion to lac-
tate (Curi et al., 1988). In terms of control, it has been suggested
that the high glycolytic flux allows the biosynthetic pathways,
which stem from glycolytic intermediates, to be fine tuned and
thereby, high lactate production rates compensate for the main-
tenance of biosynthetic fluxes during proliferation (Newsholme
et al., 1985).
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FIGURE 1 | Metabolic network considered. Metabolic reactions are show in black arrows, transport reactions between compartments are shown in red.
Selected enzymes are shown in blue.

The metabolic switch that occurs in cancer cells suggests that
computational modeling approaches could provide insight and
further understanding of the complex metabolic interactions.
Previous computational work on cancer metabolism has demon-
strated that aerobic glycolysis enables the maximal production of
the biomass precursor palmitate considering the stoichiometry of
only a few central metabolic pathways (Vander Heiden et al., 2009).
Another study considering two lumped reactions representing aer-
obic glycolysis and oxidative phosphorylation constrained by the
cell’s glucose uptake capacity and solvent capacity showed that
at high glucose uptake rates, aerobic glycolysis provides the cell
with the highest rate of ATP production (Vazquez et al., 2010).
Recently, Folger et al. developed the first genome-scale model of
cancer metabolism based on the genome-scale human metabolic
network (Duarte et al., 2007). This model was used to predict
cytostatic drug targets, of which 40% were known targets and
60% new targets. In addition, combinations of synthetic legal drug
targets were identified (Folger et al., 2011). More recently, Frezza
et al. (2011) used the genome-scale model of cancer metabolism to

identify a synergistic interaction between fumarate hydratase (Fh)
and haem oxygenase, which was verified experimentally. Genome-
scale flux balance based models, however, have the limitation of
only capturing steady state metabolic behavior. In addition, key
features of metabolic regulation due to allosteric control of enzy-
matic activity cannot be represented in the steady state flux balance
framework. In this work, we aim to develop the first dynamic
model of cancer metabolism in order to gain further insight
into their metabolism and determine potential enzymatic drug
targets.

To develop the kinetic models we used an ensemble mod-
eling (EM) approach, which has been successfully used in the
past to improve l-lysine production in E. coli (Contador et al.,
2009) and identify regulatory mechanisms in hepatic cells (Dean
et al., 2010). EM generates kinetic models while bypassing the
need for detailed kinetic parameters (Tan et al., 2011) which
are often unknown or difficult to determine experimentally (Lee
et al., 2006). EM generates an ensemble of models by sampling
for kinetic parameters under thermodynamic and steady state
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constraints. Each model that is generated has a unique set of
kinetic parameters and displays unique dynamic behavior; how-
ever, all models are anchored to the same steady state. The models
in the ensemble are computationally perturbed and the model-
predicted steady state fluxes are compared to experimental per-
turbation results. Models that capture the experimental results
are retained. Continual screening of the models as further exper-
imental data becomes available allows for the convergence to an
increasingly realistic and predictive sub-set of models (Contador
et al., 2009). In EM, the reactions in the network are formulated
in the elementary reaction form, which allows the true mech-
anism of the enzymatic reactions to be captured. Furthermore,
because of the elementary reaction formulation, regulatory infor-
mation can also be incorporated in the models (Dean et al.,
2010).

MATERIALS AND METHODS
CELL CULTURE
We used the colo205 (human colorectal adenocarcinoma) cell line
(ATCC, Cat. #CCL222) between passages 9 and 10. Cells were cul-
tured in RPMI-1640 medium (Sigma-Aldrich) supplemented with
10% FBS (Sigma-Aldrich) and 1% Penicillin/Streptomycin (Invit-
rogen) and maintained in an incubator at 5% CO2. Cells were
sub-cultured whenever they reached 80% confluence.

METABOLITE QUANTIFICATION
Both intracellular and extracellular metabolites were quantified.
In brief, colo205 cells were placed in spinner flasks at a concentra-
tion of 2× 105 cells/mL containing 150 mL of Minimum Essential
Medium Eagle Spinner Modification (SMEM) supplemented with
0.292 g/L l-glutamine, 10% FBS, and 1% Penicillin/Streptomycin.
For extracellular metabolite measurements, 1.1 mL samples were
collected every 12 h and centrifuged at 0˚C. The supernatant
was collected and carbohydrate metabolites were quantified using
high-performance liquid chromatography (HPLC), while amino
acid metabolites were quantified using nuclear magnetic resonance
(NMR) spectroscopy (Chenomx Inc., Edmonton, Canada). While
NMR is perhaps not as sensitive as other metabolomics methods,
it is valuable for identifying and quantifying the absolute con-
centrations. For intracellular metabolite measurements, 40 mL of
cell solution (∼15 million cells) was collected at the 72nd hour
(during growth phase) and centrifuged at 0˚C. The supernatant
was removed and the cells were resuspended in 1 mL of super-
natant solution. Cells were lysed and intracellular metabolites were
quantified using NMR spectroscopy (Chenomx Inc., Edmonton,
Canada).

CELL GROWTH KINETICS
To determine the growth kinetics of the cells we quantified cell
numbers in our cultures over time by manual counting. About
0.3 mL samples were collected in triplets every 12 h from each spin-
ner flask and were well mixed by pipetting. Ninety microliters of
the cell suspension solution was then removed, mixed with 10 μL
of trypan blue, and cell counts were made by counting manually
using a hemocytometer. Only non-blue (live) cells were counted
to give a measure of changes in the number of viable cells in the
culture over time.

ENSEMBLE MODELING
The theory of EM is described previously (Tran et al., 2008) and
is briefly summarized in this section. The goal of EM is to gen-
erate a set of kinetic models whereby each model is described
by different kinetic parameters but all models retain the same
mathematical structure and are anchored to the same steady state
reference state. If each enzymatic reaction in the model is rep-
resented as a non-linear ordinary differential equation with the
following mathematical representation:

dxi

dt
=

∑
vi (x , k)−

∑
vj (x , k) (1)

where xi represents the concentration of species/metabolites in
the model, and vi and vj are the enzyme kinetic functions for the
production and consumption of species xi respectively, then the
EM problem is stated mathematically as sampling and obtaining
all the different sets of kinetic parameters such that,

v (xss, k) = vref
net (2)

where vref
net is the known steady state flux, xss is the steady state con-

centration of the metabolites in the model, and k is the kinetic rate
constant (Dean et al., 2010). In this study vref

net is obtained from the
steady state fluxes calculated through flux balance analysis (FBA),
and xss is obtained from the experimentally measured metabolite
concentrations.

DETERMINING STEADY STATE FLUXES
The internal steady state fluxes of the system are calculated
using FBA. In FBA the metabolic reactions are represented by
an m× n stoichiometric matrix, S, of m metabolites and n reac-
tions (Schilling et al., 1999). The flux through the reactions in the
network are represented by the n× 1 vector, v. The internal fluxes
are calculated by solving the system of mass balance equations at
steady state:

Sv = 0 (3)

The solution space is constrained by upper and lower flux bounds,
vub and vlb. Moreover, through optimization of an objective func-
tion, c, FBA identifies a single optimal flux distribution amongst
the many flux distributions within the solution space. These con-
straints are mathematically represented as follows (Orth et al.,
2010):

max cT v (4)

s.t . Sv = 0 (5)

vlb ≤ v ≤ vub (6)

CONSTRUCTING THE INITIAL ENSEMBLE OF MODELS
The first step in EM involves breaking down each enzymatic reac-
tion into its corresponding set of elementary reactions. Elementary
reactions are the most fundamental form of an enzymatic reac-
tion and represent events at the molecular level. This formulism,
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gives the enzymatic reaction saturable behavior and allows for the
inclusion of regulatory steps such as inhibition and activation. For
a simple enzymatic reaction, where metabolite Xi is converted by
enzyme Ei to metabolite X i+1,

Xi
Ei←→Xi+1, (7)

the reactions is broken down to six elementary reactions illus-
trated by:

Xi + Ei

vi,1

�
vi,2

step 1

XiEi

vi,3

�
vi,4

step 2

Xi+1Ei

vi,5

�
vi,6

step 3

Xi+1Ei (8)

Each elementary reaction, vi,k, follows mass action kinetics,

vi,1 = ki,1 [Xi] [Ei] , (9)

where ki,1 is the rate constant for the first elementary reaction,
[Xi] is the concentration of metabolite i, and [Ei] is the concen-
tration of enzyme i (Dean et al., 2010). Equation 9 is normalized
by scaling the concentration of metabolites with the steady state

metabolite concentration, X ss,ref
i , and by scaling the concentration

of the free enzyme and enzyme complexes with the total enzyme
concentration at steady state, Eref

i,total (Tran et al., 2008). Equation
9 then becomes

vi,1 =
(

ki,1Eref
i,totalX

ss,ref
i

)
· [Xi]

X ss,ref
i

· [Ei]

X ref
i,total

= K̃ ref
i,1 · X̌i · ei,1 (10)

which in the log-linear form is

ln vi,1 = ln K̃ ref
i,1 + ln X̌i + ln ěi,1. (11)

At reference steady state, [Xi] = X ss,ref
i and therefore X̌i = 1; Eq.

11 then simplifies to (Tran et al., 2008)

ln vref
i,1 = ln K̃ ref

i,1 + ln ěref
i,1 . (12)

The kinetic parameters are obtained by sampling for reversibilities
and enzyme fractions. A Monte Carlo algorithm is used to sam-
ple reversibilities which range from 0, a completely irreversible
reaction, to 1, a completely reversible reaction at equilibrium. The
reversibility is defined as the ratio of the smaller value for the
forward and reverse reaction rates over the larger value,

Ri,j = min
(
vi,2j−1,vi,2j

)
max

(
vi,2j−1,vi,2j

) (13)

where, vi,2j−1 and vi,2j are the forward and backward rates of step
j in reaction i. From the reversibilities, the forward and backward
elementary reaction rates can be calculated using the additional
constraint,

vref
i,2j−1 − vref

i,2j = V ref
i,net, (14)

where V ref
i,net is the net flux of reaction i at reference steady state

(Tran et al., 2008). The reversibilities are constrained by Gibbs
free energy to ensure that the steady state is thermodynamically
feasible,

∑ni

j=1
ln Ri,j = sign

(
Vi,net

) ΔGi

RT
, (15)

where ni represents the number of elementary steps present in
the enzymatic reaction i and sign(Vi,net ) is the direction of the
reaction: +1 for forward reactions and −1 for reverse reactions.
Equation 17 ensures that for each reaction, the net flux is positive
if ΔG < 0 and is negative if ΔG > 0. Since the value for the Gibbs
free energy depends on the metabolite concentrations, an exact
value cannot be calculated and a range is used (Dean et al., 2010),

(
ΔGi

RT

)
lower bound

≤ sign
(

V ref
i,net

)
·
∑

j
ln Rref

i,j

≤
(

ΔGi

RT

)
upper bound

. (16)

The enzyme fractions are sampled using a Monte Carlo algorithm
with the constraint that the total enzyme amount is conserved. In
other words, the sum of the enzyme fractions of the elementary
reactions for each enzymatic reaction must equal one (Contador
et al., 2009),

nj∑
j=1

ẽref
i,j = 1. (17)

Once the reversibilities and enzyme fractions are sampled, the
kinetic parameters, K̃ ref

i,k , can be determined. The rates of ele-
mentary reactions are computed from the reversibilities as fol-
lows:

vref
i,2j−1 =

V ref
i,net

1− R
sign

(
V ref

i,net

)
i,j

(18)

vref
i,2j =

V ref
i,net · R

sign
(

V ref
i,net

)
i,j

1− R
sign

(
V ref

i,net

)
i,j

. (19)

Finally K̃ ref
i,k is calculated from Eq. 12 based on the ele-

mentary reaction rates and enzyme fractions (Tran et al.,
2008).

The process of calculating kinetic variables based on sampled
reversibilities and enzyme fractions can be repeated thousands of
times to obtain thousands of models. Once the kinetic parame-
ters are calculated, the net steady state fluxes are calculated. To
calculate the net steady state flux, the metabolic network is first
described as a system of ordinary differential equations, with the
metabolite concentrations, X̃i , and the enzyme fractions, ẽ i,j, as
the ODE variables:
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dX̃i

dt
= 1

X ss,ref
i

(∑
vgenereation −

∑
vconsumption

)
(20)

dẽi

dt
= 1

Eref
i,total

(∑
vgenereation −

∑
vconsumption

)
(21)

The ODEs are solved using ode15s solver in MATLAB and the con-
centrations obtained are input into Eq. 10 to calculate the steady
state fluxes (Contador et al., 2009).

IN SILICO ENZYME TUNING
After generating the ensemble of models, the models are perturbed
to study the behavior of each model under the perturbations. Per-
turbations involved overexpressing or repressing specific enzymes
in the network by a factor of n. In this study the enzymes of interest
are cancer drug targets and are therefore repressed with an n value
of 0.1 to study their respective effects on the growth rate of cancer
cells. The models which display a reduction in growth rate after
enzymatic repression are retained and as such the ensemble of
models are screened. For the perturbation case Eq. 11 is rewritten
as follows:

ln vi,1 = ln K̃ ref
i,1 + ln X̃i + ln ẽi,1 + ln Ei,r . (22)

where Ei,r represents the fold change in the total enzyme con-
centration over the reference steady state value (Ei,r = 0.1 for this
study). Furthermore, for the perturbation studies, if the meta-
bolic network contains moiety conservation relationships such as

cofactors, the initial conditions are set such that the sum of the
cofactors and their intermediates are conserved before and after
the perturbation (Contador et al., 2009).

RESULTS
GROWTH RATE AND METABOLITE MEASUREMENTS
The experimental growth rate for the colo205 cells was used as bio-
mass production rate in the FBA model (Figure 2A). The shape
of the growth curve obtained agrees with the sigmoidal behavior
for growth of mammalian cells cultured in suspension previously
reported in the literature (Jakoby, 1979). Assuming an average
colorectal adenocarcinoma cell density of 1.15 ng/cell during the
growth phase (Park et al., 2010) the growth rate was determined
to be 0.0224 gDWhr−1.

Extracellular and intracellular measurements of metabolites
were made in triplicates. The values for the extracellular metabo-
lites concentrations are presented in Figure 2. Notable trends
include the high rates of glutamine and glucose uptake, con-
sistent with the idea that these are the main source of nutrient
uptake in cancer cells (DeBerardinis et al., 2008). Glucose is the
major lipogenic substrate in cancer cells and therefore high uptake
rates are essential (DeBerardinis et al., 2008). Glutamine is an
anaplerotic source during cell proliferation, replenishing the TCA
cycle carbon that is used for biosynthesis, and therefore is proposed
to be an essential nutrient for cancer metabolism (DeBerardinis
et al., 2008). In addition, the high secretion rate of lactate, the
prominent indicator of the Warburg effect, was also observed in

FIGURE 2 | Growth rate and extracellular metabolite profiles. (A) The growth curve showing cell counts made every 12 h. (B) Extracellular amino acid
metabolite profiles measured at three time points in the medium. (C,D) Extracellular carbohydrate concentration profiles. Error bars represent the standard
deviation between triplicate samples.

www.frontiersin.org May 2012 | Volume 3 | Article 135 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Khazaei et al. Modeling of cancer metabolism

our experiments. Another interesting finding was the accumula-
tion of pyruvate in the medium. The high rates of glycolysis in
cancer cells result in high pyruvate production. However, para-
doxically, most of the pyruvate does not enter the TCA cycle for
ATP production, but is converted to lactate by the highly expressed
enzyme LDH-A which is induced by oncogenes during prolifera-
tion (Vander Heiden et al., 2009). The experimentally observed
pyruvate secretion rate out of the cell further strengthens the
hypothesis made by Curi et al. (1988) that there is a limitation
to the maximum rate of pyruvate oxidation. However, in terms of
LDH-A activity the question of whether there is a limitation also
in the maximum rate of lactate production from pyruvate could
be addressed, and further experiments conducted to verify this
model-predicted observation.

The intracellular metabolites used in the study were measured
by NMR spectroscopy (Chenomx Inc., Edmonton, Canada). The
metabolite concentrations used in this study for developing the
model include pyruvate, glutamine, malate, lactate, glucose, cit-
rate, fumarate, succinate, alanine, and glutamate (Figure 3). The
standard deviation associated with the metabolite measurements
(error bars in Figure 3) was less than 18% suggesting that there is
significant consistency among biological replicates.

MODEL CONSTRUCTION AND STEADY STATE FLUXES
A metabolic network for cancer is reconstructed based on the
previously developed genome-scale human metabolic network

(Duarte et al., 2007). The network includes 58 reactions and 57
metabolites, representing the major metabolic pathways essen-
tial for growth and cell maintenance. These pathways include
glycolysis,TCA cycle,pentose phosphate pathway,pyruvate metab-
olism, amino acid metabolism for selective amino acids, lipid
biosynthesis, and nucleotide biosynthesis. The model is compart-
mentalized to account for the extracellular, cytosolic, and mito-
chondrial compartments (Figure 1). Metabolites are exchanged
between compartments through exchange reactions. However
in this model cofactors are assumed to be freely transported
between compartments and no exchange reactions are consid-
ered for them. Furthermore, balancing of cofactors (ATP/ADP,
NADH/NAD, NADPH/NADP, GTP/GDP, and FADH2/FAD) is
taken into account.

The internal fluxes were calculated using the COBRA toolbox
in the MATLAB programming environment. These fluxes were
calculated such that the simulated values for the biomass, uptake,
and secretion fluxes met the experimentally measured vales. This
was done by selecting biomass, as well as the uptake and secretion
reactions as the objective function and maximizing the objective
fluxes while constraining the upper bounds to the experimentally
measured values. The steady state fluxes of the reference state are
reported in Figure 4.

As demonstrated in Figure 4, the highest numerical flux val-
ues in the metabolic network are observed in glycolysis, and agree
with the aerobic glycolysis metabolism seen in cancer cells. The

FIGURE 3 | Intracellular metabolite profiles. Metabolites were measured using NMR spectroscopy during the growth phase at the 72nd hours of growth.
Error bars represent standard deviation between triplicate samples.
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FIGURE 4 |The flux map at reference steady state for the colo205 cells. Black arrows show metabolic reactions and red arrows show transport reactions
between compartments. Flux values are reported in units of mmol/gDWhr.

pyruvate produced through glycolysis can enter many pathways:
lactate production, amino acid synthesis, TCA cycle, and secretion
out of the cell. The numerical results demonstrate this split quan-
titatively and suggest that 19.3% of the pyruvate enters the TCA
cycle, 9.4% is used for synthesis of the amino acid alanine, 66.1%
of the pyruvate is converted to lactate, and 5.2% is secreted out of
the cell. It is clear that most of the pyruvate is converted to lactate
as described by the Warburg effect.

CONSTRUCTION OF THE INITIAL ENSEMBLE
An ensemble of 1000 models was constructed as described in
the Section “Materials and Methods.” In addition to the steady
state input obtained through FBA, other input include Gibbs
free energies for each net reaction that were collected form
literature (Jankowski et al., 2008) as well as experimentally

measured intracellular metabolite concentrations at reference state
(Figure 3). Allosteric regulation is also included in the model, a
list of which is presented in Table 1. When all the allosteric reg-
ulations in Table 1 were initially included, the models did not
describe the cancer phenotype and did not converge to the steady
state reference flux values. Each of the regulatory components
was then examined individually and we found that the models
would not converge when the activation of pyruvate kinase by
fructose-1,6-bisphosphate was included. In mathematical terms,
none of the kinetic parameter sets generated using the Monte
Carlo algorithm would result in steady state flux distribution val-
ues similar to experimental results when the ordinary differential
equations were solved. Indeed studies have shown that in cancer
cells the growth factor signaling pathway activates the protein tyro-
sine kinases which bind to pyruvate kinase and result in the release
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Table 1 | Allosteric regulation considered in the cancer metabolic network.

Enzyme Regulatory metabolite Activator (+)/inhibitor (−) Source

Hexokinase Glucose-6-phosphate − Michal (1999)

Phosphofructokinase ATP − Elliott et al. (2009)

Citrate − Elliott et al. (2009)

Phosphoenolpyruvate − Michal (1999)

Pyruvate kinase Fructose-1,6-bisphosphate + Elliott et al. (2009)

ATP − Elliott et al. (2009)

Alanine − Michal (1999)

Acetyl-CoA − Elliott et al. (2009)

Pyruvate dehydrogenase Acetyl-CoA − Elliott et al. (2009)

NADH − Elliott et al. (2009)

ATP − Elliott et al. (2009)

Citrate synthase Citrate − Michal (1999)

Succinyl-CoA − Michal (1999)

NADH − Michal (1999)

ATP − Michal (1999)

ADP + Michal (1999)

Isocitrate dehydrogenase ATP − Michal (1999)

NADH − Michal (1999)

ADP + Michal (1999)

α-Ketoglutarate dehydrogenase NADH − Michal (1999)

Succinyl-CoA − Michal (1999)

of the otherwise tightly bound fructose-1,6-bisphosphate. The low
activity form of pyruvate kinase has shown to be essential for aero-
bic glycolysis (Christofk et al., 2008). The ensemble of models were
then generated with the allosteric regulators listed in Table 1 except
for activation of pyruvate kinase by fructose-1,6-bisphosphate.

PERTURBATION AND SCREENING OF THE ENSEMBLE
The ensemble of models is screened based on experimental drug
target data (Table 2) available in the literature (Wishart et al.,
2008). The models are perturbed by under-expressing each of the
enzymes listed in Table 2 by a factor of 0.1. As demonstrated
by Figure 5 the ensemble of 1000 models converges to a set of
4 models capable of describing the perturbation phenotypes. It
should be noted that the perturbation data used are experimental
drug targets and are not yet approved drug targets. As targeting
the enzymes listed in Figure 2 would reduce the tumor size it is
assumed that targeting the enzymes in this study reduces biomass
production.

PREDICTING CANCER DRUG TARGETS
The models obtained through screening of the ensemble were
used to identify potential drug targets. This step was accom-
plished by perturbing every enzyme in the network and identifying
enzymes that showed a greater decrease in biomass production
rate compared to the previously identified drug targets used
for screening the models (Table 2). Two enzymes were iden-
tified to cause a greater decrease in biomass production, when
their enzyme activity was repressed, compared to glycine hydrox-
ymethyltransferase (GHMT2r). Transaldolase (TALA) was the
enzyme target predicted to cause the greatest reduction in growth
rate (Figure 6A). The gene encoding transaldolase, Taldo1, has

Table 2 | Perturbations used for screening (experimental drug targets).

Gene Enzyme Source

Hk1 Hexokinase (HEX1) Wishart et al. (2008)

LdhA Lactate dehydrogenase (LDH) Wishart et al. (2008)

Shmt1 Glycine hydroxymethyltransferase (GHMT2r) Wishart et al. (2008)

Nme1 Nucleoside-diphosphate kinase (NDPK1) Wishart et al. (2008)

not been previously reported as a known, approved, or exper-
imental anticancer drug target. Transaldolase is a key enzyme
in the non-oxidative pentose phosphate pathway that provides
ribose-5-phosphate for nucleic acid synthesis and NADPH for
lipid biosynthesis (Ma et al., 2009). In addition, the product
of the transaldolase reaction, erythrose-4-phosphate, is used for
the synthesis of the three amino acids, tyrosine, phenylalanine,
and tryptophan (Samland and Sprenger, 2009). Furthermore, this
enzyme has been found to be overexpressed in all cancer cells (Lee
et al., 2006) and has been suggested as a cancer biomarker specifi-
cally for colon cancer (Ma et al., 2009). These results highlight the
potential of transaldolase as a cancer target. Further experimen-
tal studies are required to evaluate the impact of repressing the
enzyme in normal proliferating cells in vivo.

The enzyme that showed the second highest decrease in
biomass production is succinyl-CoA ligase (SUCOAS1m). Like
transaldolase, succinyl-CoA ligase has not been reported as a
known, approved, or experimental drug target (Wishart et al.,
2008) however the gene associated with the enzyme has been
shown to be overexpressed in cancer cells (Lee et al., 2006).
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FIGURE 5 | Screening of the ensemble of models. The 1000 models
were screened by repressing each of the enzymes hexokinase (HEX1),
lactate dehydrogenase (LDH), glycine hydroxymethyltransferase
(GHMT2r), and nucleoside-diphosphate kinase (NDPK1) by a factor of 0.01.

The models which remained after screening by each enzyme are shown in
black. The corresponding models which are common between multiple
perturbations are shown in red. The four perturbations resulted in four
remaining models.

The effect of a simultaneous repression of enzymes was stud-
ied by repressing two enzymes at a time. The effect of TALA–
SUCOAS1m repression and TALA–GHMT2r repression was stud-
ied (Figure 6B). It was found that the TALA–SUCOAS1m combi-
nation did not result in a much greater decrease in growth rate
compared to TALA alone. However the combination of TALA
and GHMT2r showed about a three time greater decrease in
growth rate.

DISCUSSION
In this work intracellular and extracellular metabolite concen-
trations were experimentally measured along with the growth
rate of colo205 cells to develop a kinetic model of cancer
metabolism using the EM computational approach. An ensem-
ble of 1000 models was initially generated, whereby each of
the models in the ensemble consisted of different kinetic para-
meters, but all models were anchored to the same steady state
flux. The steady state reference flux values were computed by
FBA using experimentally measured uptake and secretion rates.
The ensemble of 1000 models was then screened for models,
which more accurately represented the system under study, using
perturbation data. Four enzymes (LDH, GHMT2r, HEX1, and
NDPK1) have previously been noted in literature to show a
reduction in cancer cell proliferation rate when their activity
was repressed (Wishart et al., 2008). In this work, we computa-
tionally reduced the activity for each of these enzymes to ana-
lyze the effect of this repression on growth rate. Four models
out of the 1000 initial models were able to accurately display a
reduction in growth rate when the aforementioned enzymes were
repressed.

The four models that remained after screening and determined
to be most representative of the actual metabolic behavior in can-
cer cells were used for predictive studies. These models predicted
that repressing the activity of the transaldolase enzyme would

result in the greatest reduction in growth rate. Transaldolase is
a key enzyme in the pentose phosphate pathway and takes part in
nucleotide, lipid, and amino acid synthesis. As biomass production
is also a function of nucleotide, amino acid, and lipid production
rates, it seems reasonable that transaldolase has a substantial role
in biosynthesis. Transaldolase has not previously been reported as
an experimental or approved drug target (Wishart et al., 2008).
Previous computational studies on cancer metabolism using FBA
alone have also not identified transaldolase as a potential drug tar-
get (Folger et al., 2011). Interestingly, the gene associated with the
transaldolase enzyme is overexpressed in all cancer cell lines (Lee
et al., 2006) and has been established as a cancer biomarker for
colon cancer patients (Ma et al., 2009).

The four remaining kinetic models differ from each other in
the values for their kinetic rate constants (Table A1 in Appendix).
This variation was quite large for some of the reactions in the
models, while some reactions displayed similar kinetics. Ideally,
only one unique set of kinetic parameters would most accurately
capture the “true” dynamics of the system. In this study the kinetic
parameters of the four models differ due to many factors: (1)
the model developed is a quite simplistic model accounting for
only 58 reactions, therefore not enough constraints are imposed
on the system and many sets of kinetic parameters could cap-
ture this simplistic system (2) the starting number of models
in the ensemble is 1000 models. As kinetic parameters are sam-
pled using a Monte Carlo algorithm, increasing the number of
initial models generated would introduce kinetic parameter sets
which could more accurately match the experimentally observed
cancer cell phenotypes (3) the criteria used to screen the models
was only concerned with relative changes such as an increase or
decrease in growth rate. Increasing the stringency of the criteria
(e.g., quantitative values for the percent change in growth rate)
could further screen the ensemble to a smaller more accurate set
of models.
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FIGURE 6 |Targets identified showing reduction in cell growth rate.

(A) Each of the enzymes in the remaining models were individually perturbed
and enzyme targets with higher reductions in growth rate relative to the

previously known experimental drug targets are presented. (B) Effect of
simultaneously repressing two enzyme targets on growth rate. Error bars
represent standard deviation between the four perturbed models.

To enhance the predictive capability of the models developed in
our study, the most significant improvement would be to measure
the steady state fluxes using 13C labeling. As the ensemble of
models that is initially generated is anchored to the steady state
fluxes, it is critical that these fluxes be as close to their real val-
ues as possible. The assumptions inherent in FBA are responsible
for the greatest fraction of uncertainty in the overall uncertainty
present in the methodology used in this study. FBA is based on
mass balance constraints and does not account for regulatory
constraints (Shlomi et al., 2011). In addition, enzyme capacity
constraints are usually unknown. Moreover, there is a possi-
bility that due to the redundancies in the metabolic pathways,
multiple optimal steady states could exist. However, when exper-
iments are conducted, the steady state fluxes measured would
capture the metabolic behavior of the cells most accurately. In
this study, the models generated were used to predict potential
enzymatic drug targets. There are many other studies that can
be conducted using these models. For example, kinetic models
can be used for understanding the mode of action of a drug
under study. If the mode of action of a drug is unknown, or the
exact target of the drug is unknown, EM could predict which
perturbations would result in the experimentally observed phe-
notype. Furthermore, if the target of the drug is known the
efficacy of the drug can be determined by comparing the steady
state fluxes observed after perturbing the enzyme target com-
putationally to the steady state fluxes observed experimentally.
This could then give insight into possible side effects by show-
ing what other pathways are affected. Finally, the extension of
such modeling approaches to analyze the metabolism of normal
proliferating cells will provide an opportunity to compare and
contrast their metabolism with cancer cells and could provide
valuable insights on potential metabolic differences between these
cell types.

CONCLUSION
Metabolic profiling provides information on the end results of
the transcriptional and enzymatic changes that occur in the cell
(Boros et al., 2002). In this study, we used experimentally measured

metabolomic data obtained from a colon cancer cell line to con-
struct a kinetic model of cancer metabolism using the EM method-
ology. The kinetic models were used to predict potential enzymatic
drug targets to target cancer metabolism. Two enzymatic targets,
transaldolase and succinate-CoA ligase, computationally showed
a greater potential decrease in growth rate compared to cur-
rent experimental or approve enzymatic drug targets (Wishart
et al., 2008). Furthermore, we studied the effect of simultane-
ous targeting of the enzymes identified and found a threefold
increase in effectiveness when transaldolase and glycine hydrox-
ymethyltransferase were synergistically repressed but no difference
when transaldolase and succinate-CoA ligase were synergistically
repressed. This suggests that transaldolase and succinate-CoA lig-
ase do not interact significantly within the metabolic network in
the cancer cell.

We have demonstrated that the EM methodology is suitable
for studying metabolic perturbations such as repression targets
for drug discovery. Further experimental work is necessary to
determine the accuracy of our approach and to complement the
computational predictions made in this study. The greatest sen-
sitivity in the computational predictions lies in the steady state
fluxes that are input to the EM algorithm (Tran et al., 2008).
The 1000 models generated are anchored to this set of fluxes and
therefore any discrepancy between the actual flux values and the
values input would reduce the predictive ability of the resulting
ensemble of models. In this work, FBA was used to determine
the steady state fluxes. FBA has many assumptions inherent in
the methodology that introduce uncertainty to the values it cal-
culates. FBA is based on mass balance constraints and does not
account for regulatory constraints. In addition, enzyme capacity
constraints are usually unknown. Moreover, there is a possibility
that due to the redundancies in the metabolic pathways, multi-
ple optimal steady states exist (Mahadevan and Schilling, 2003).
Experimentally measured steady state fluxes could overcome these
uncertainties. Current methodologies for experimentally measur-
ing internal reaction fluxes involve 13C labeling. Furthermore,
expansion of the metabolic and regulatory network considered
would allow for a more precise representation of the metabolic
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system of interest and hence increasingly realistic model predic-
tions. However, this expansion highlights the limitation in the
EM methodology in terms of the computation time (hours to
days) that is involved due to the large parameter spaces involved.
This limitation could be overcome by improvements in the EM
algorithm and enhanced computing capabilities (Dean et al.,
2010).

Notwithstanding this limitation, the model presented here
provides the first step toward the development of detailed mod-
els that account not only for the stoichiometry but also the
effect of metabolite concentrations and the associated concen-
tration dependent regulation of the enzymes in the metabolic
network. We anticipate that in the future, such an approach
could be extended to represent large-scale models of cancer
metabolism, which will be valuable for the improved under-
standing of the metabolic dysregulation in cancers and suggest
strategies for targeting these metabolic changes while maintain-
ing homeostasis in normal proliferating cells. Finally, another
important component of metabolism in higher level organisms
is the 3-D organization of cells into tissues and the inherent

spatio-temporal heterogeneity in the local environment, partic-
ularly in the tumor. Hence, the extension of these kinetic models
of cellular metabolism to represent metabolism in such 3-D envi-
ronments will be critical to further our understanding of the role
of microenvironment in tumor metabolism and the efficacy of
chemotherapy in solid tumors. We believe that our work pre-
sented here represents the first step toward achieving an improved
understanding of the kinetics of cancer metabolism and consti-
tutes an important advance to the field of systems biology of cancer
metabolism.
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APPENDIX

Table A1 |The overall lumped kinetic parameter values for the 4 models remaining after screening of the ensemble. Detailed steps for the

calculation of the overall lumped kinetic parameter values from the kinetic rate constants for the elementary reactions are outlined in Tran et al. (2008).

Name Stoichiometry K1 (model 1) K2 (model 2) K3 (model 3) K4 (model 4)

Glycolysis HEX1 [c]: atp+glc-d→ adp+g6p 6.46E+01 8.46E+00 1.78E+00 1.37E+00

PGI [c]: g6p↔ f6p 2.56E−02 2.75E−04 3.73E−04 1.71E−01

PFK [c]: atp+ f6p→ adp+ fdp 5.17E+00 1.52E−02 1.21E−01 7.79E+00

FBA [c]: fdp↔dhap+g3p 3.72E+02 1.76E+03 5.20E+04 8.63E+01

GAPD [c]: g3p+nad↔13dpg+nadh 4.39E+01 6.51E+02 1.32E+03 4.78E+01

PGK [c]: 3pg+ atp↔13dpg+ adp 2.63E+02 1.93E+03 8.56E+03 2.23E−01

PGM [c]: 2pg↔3pg 2.57E−01 2.38E−01 1.09E−02 1.10E+02

ENO [c]: 2pg↔pep 7.15E−04 2.28E−04 3.10E−06 2.17E−03

PYK [c]: adp+pep→ atp+pyr 2.47E+02 1.45E+03 3.78E+00 1.58E+01

TPI [c]: dhap↔g3p 2.39E+02 6.39E+02 4.49E+03 5.40E+00

Cytoplasmic MDH [c]: mal-l+nad↔oaa+nadh 2.97E+01 4.56E+01 2.07E+01 6.02E+00

ACITL [c]: atp+ cit+ coa→ accoa+ adp+oaa 0.00E+00 5.00E−02 3.46E+00 2.00E−02

LDH_L [c]: lac-l+nad↔nadh+pyr 1.43E−01 1.37E+01 4.72E−01 1.26E−01

ALATA_L [c]: akg+ ala-l↔glu-l+pyr 1.20E+00 4.62E−01 2.57E−04 3.21E−01

ASPTA [c]: akg+ asp-l↔glu-l+ oaa 9.76E−02 1.22E−01 4.49E−02 1.48E−01

PGCD [c]: 3pg+nad→3php+nadh 5.68E+00 2.64E+02 8.63E+01 9.51E−02

PSERT [c]: 3php+glu-l→ akg+pser-l 9.44E+02 2.33E+03 2.82E+03 2.00E+01

PSP_L [c]: pser-l→ ser-l 2.33E−04 6.22E−05 3.77E−05 8.96E−04

GHMT2r [c]: ser-l↔gly 3.98E−03 5.24E−04 1.95E−03 3.86E−03

GLNS [c]: glu_l+ atp+nh4→gln_l+ adp 1.33E+00 4.98E+00 1.25E+01 1.90E+00

glu_rec [c]: akg→glu_l 9.62E−02 9.93E−03 1.03E−02 2.94E−02

NDPK1 [c]: atp+gdp↔ adp+gtp 4.55E+00 2.48E+00 4.71E+00 4.81E−01

Pentose phosphate combPP [c]: g6p+2 nadp→2 nadph+ ru5p-d 1.01E−02 2.21E−02 1.52E−03 8.85E−01

TALA [c]: g3p+ s7p↔e4p+ f6p 2.82E−05 1.93E−03 3.77E−06 6.90E−03

TKT1 [c]: r5p+ xu5p-d↔g3p+ s7p 1.21E+03 4.89E+02 8.28E+04 2.39E+00

TKT2 [c]: e4p+ xu5p-d↔ f6p+g3p 1.44E−05 1.26E−03 3.06E−05 2.17E−01

RPI [c]: r5p+ xu5p-d↔g3p+ s7p 1.60E+01 3.41E−02 1.06E+02 9.70E−01

RPE [c]: ru5p-d↔ xu5p-d 9.27E−01 1.62E+01 2.34E−02 1.53E+00

TCA cycle and

mitochondrial reactions

PDHm [m]: coa+nad+pyr→ accoa+nadh 1.50E−01 1.62E+01 2.04E+01 3.30E−02
CSm [m]: accoa+oaa→ cit+ coa 7.90E+02 5.54E+03 2.48E+05 2.09E+02

ACONTm [m]: cit↔ icit 1.48E+03 3.10E+03 1.15E+00 2.51E+02

ICDHxm [m]: icit+nad→ akg+nadh 8.95E−02 3.37E−02 2.86E−01 1.84E+00

AKGDm [m]: akg+ coa+nad→nadh+ succoa 1.50E−01 4.00E−02 4.00E−02 5.00E−02

SUCOAS1m [m]: coa+gtp+ succ↔gdp+ succoa 5.01E+04 2.51E+03 1.22E+07 3.88E+02

SUCD1m [m]: fad+ succ↔ fadh2+ fum 4.14E−03 1.37E+00 2.84E−04 3.89E+00

FUMm [m]: fum↔mal-l 4.92E−04 6.13E−04 1.83E−05 3.44E−03

MDHm [m]: mal-l+nad↔nadh+oaa 4.41E−02 3.73E−02 5.26E−02 2.78E−01

GLUDxm [m]:glu-l+nad↔ akg+nadh+nh4 1.10E−01 1.00E−02 6.90E−02 1.60E−01

GLUNm [m]: gln-l→glu-l+nh4 3.32E−01 5.54E−01 2.42E+00 3.20E+00

ATPprod_nadh [c]: nadh+2 adp↔2 atp+nad 2.47E+00 7.27E−01 5.30E−01 1.19E+01

ATPprod_fadh2 [c]: fadh2+ adp↔ atp+ fad 1.07E+00 5.83E−02 9.03E−01 1.80E+00

PCm [m]: pyr+ atp↔oaa+ adp 3.47E−01 1.91E+00 1.44E+00 4.84E−01

Cytoplasmic/transport MALEXm mal-l[c]↔mal-l[m]

PYREXm pyr [c]↔pyr [m]

CITEXm cit [c]↔ cit [m]

COAEXm coa [c]↔ coa [m]

NH4EXm nh4[m]→nh4[c]

AKGEXm akg[m]↔ akg[c]

ASPEXm asp-l[c]↔ asp-l[m]

(Continued)
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Table A1 | Continued

Name Stoichiometry K1 (model 1) K2 (model 2) K3 (model 3) K4 (model 4)

GLNEXm gln-l[c]→gln-l[m]

GLUEXm glu-l[c]↔glu-l[m]

Exchange reactions EX_glc [e]:↔glc-d

EX_pyr [e]: pyr↔
EX_cit [e]: cit↔
EX_lac [e]: lac-l↔
EX_glu [e]: glu-l↔
EX_ala [e]: ala-l↔
EX_gln [e]:↔gln-d

Biomass composition: biomass (1.326)nadph+ (0.7956)accoa+ (0.536)ala-l+ (5.2134)asp-l+ (3.2687)gln-l+ (0.6282)gly+ (0.1675)ser-l+ (9.9384)atp+ (0.6416)nh4+
(0.0285)nadh+ (0.4812)gtp+ (1.6040)r5p+ (0.2542)dhap→Biomass+ (1.326)nadp+ (0.7956)coa+ (1.648)glu-l+ (0.0285)nad+ (9.9384)adp+ (0.4812)gdp.
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