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Abstract

We present an interpretable machine learning algorithm called ‘eARDS’ for predicting

ARDS in an ICU population comprising COVID-19 patients, up to 12-hours before satisfying

the Berlin clinical criteria. The analysis was conducted on data collected from the Intensive

care units (ICU) at Emory Healthcare, Atlanta, GA and University of Tennessee Health Sci-

ence Center, Memphis, TN and the Cerner® Health Facts Deidentified Database, a multi-

site COVID-19 EMR database. The participants in the analysis consisted of adults over 18

years of age. Clinical data from 35,804 patients who developed ARDS and controls were

used to generate predictive models that identify risk for ARDS onset up to 12-hours before

satisfying the Berlin criteria. We identified salient features from the electronic medical record

that predicted respiratory failure among this population. The machine learning algorithm

which provided the best performance exhibited AUROC of 0.89 (95% CI = 0.88–0.90), sen-

sitivity of 0.77 (95% CI = 0.75–0.78), specificity 0.85 (95% CI = 085–0.86). Validation perfor-

mance across two separate health systems (comprising 899 COVID-19 patients) exhibited

AUROC of 0.82 (0.81–0.83) and 0.89 (0.87, 0.90). Important features for prediction of

ARDS included minimum oxygen saturation (SpO2), standard deviation of the systolic blood

pressure (SBP), O2 flow, and maximum respiratory rate over an observational window of

16-hours. Analyzing the performance of the model across various cohorts indicates that the

model performed best among a younger age group (18–40) (AUROC = 0.93 [0.92–0.94]),

compared to an older age group (80+) (AUROC = 0.81 [0.81–0.82]). The model
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performance was comparable on both male and female groups, but performed significantly

better on the severe ARDS group compared to the mild and moderate groups. The eARDS

system demonstrated robust performance for predicting COVID19 patients who developed

ARDS at least 12-hours before the Berlin clinical criteria, across two independent health

systems.

Introduction

The novel coronavirus-2019 disease (COVID-19) pandemic has led to a disruptive global

health crisis with significant morbidity and mortality. It has placed a significant burden on the

healthcare system, with about 15–29% of COVID-19 cases requiring hospitalization, and

about 17–35% of inpatients requiring critical care [1–4]. The morbidity and mortality among

the critically ill patients with COVID-19 is particularly high, especially related to respiratory

failure and acute respiratory distress syndrome (ARDS). Some prior studies have suggested

that the risk of ARDS in mechanically ventilated patients with COVID-19 ranges 40–100% [5–

7], and the mortality in those requiring mechanical ventilation is reported to be as high as 50–

97%—higher than the mortality rates from other causes of ARDS, including H1N1 influenza

[5, 6, 8].

Although ARDS secondary to COVID-19 may satisfy the Berlin definition of ARDS, some

features that appear distinct from “classic” ARDS have also been suggested [9, 10]. Such differ-

ences include preservation of the respiratory system compliance despite severe hypoxemia in

some patients [9, 11], as well as relatively delayed timing of onset compared to the 7-day period

included in the Berlin definition [12]. Based on the differences in respiratory system compli-

ance and hypothesized mechanisms of hypoxemia, some studies have proposed subphenotypes

of COVID-19 induced ARDS that may behave differently from “classic” ARDS, such as the

high- and low-elastance phenotypes [9, 13]. The differences between the subphenotypes were

also corroborated by a study of computed tomographic examinations of the lungs in COVID-

19 and non-COVID-19 ARDS patients [14]. Although the validity and the clinical significance

of these differences between COVID-19 ARDS and “classic” ARDS is uncertain and debatable

[15], they nonetheless highlight the heterogeneity in COVID-19 induced respiratory failure

and ARDS. The heterogeneity and potentially distinct features of COVID-19 ARDS, combined

with the aforementioned high mortality, present unique challenges for its diagnosis, risk-strati-

fication, and management. These new challenges are also applicable for predictive modeling in

ARDS. While several prior studies have utilized machine learning models to identify and/or

predict general ARDS [16–19], these models have not been trained or validated on populations

containing patients with COVID-19.

The high incidence of and mortality from ARDS in COVID-19 highlights an important

need for early prediction and recognition of ARDS in this population. Machine learning mod-

els for predicting ARDS that are validated in COVID-19 patients have the potential to improve

early identification of patients who are at high risk of disease progression and promote timely

implementation of indicated treatments. The objective of this study was to address this need

by developing and validating a machine learning model for early prediction of ARDS develop-

ment and its severity in COVID-19 patients before they satisfy the clinical definition of ARDS.

In this paper, we introduce a machine learning model called eARDS, which predicts the

onset of ARDS in critically ill COVID-19 patients up to 48 hours before meeting the Berlin

definition.
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Materials and methods

This study was approved by the Institutional Review Board at Emory University, Atlanta GA

(#IRB00033069), and The University of Tennessee Health Science Center, Memphis TN (#20-

07294-XP).

Description of the datasets

The model was derived from the Cerner Real-World Data, consisting of de-identified informa-

tion from hospitals within the Cerner environment, and was evaluated on patients who devel-

oped ARDS during hospitalization at the Emory Healthcare and the UTHSC-Methodist

LeBonheur Healthcare systems for patients with a positive SARS-CoV-2 result by qRT-PCR.

The eARDS model was trained using the de-identified Cerner Real-World Data™ (CRD),

which consists of both COVID19 and non-COVID19 patients from hospitals across various

geographic regions and demographics. Data was captured between January till April 2020, and

did not include any patients from the Emory healthcare or UTHSC-MLH system.

For validation of the eARDS, we derived data from 767 COVID-19 patients admitted across

4 hospitals within the Emory Healthcare system, Atlanta, GA, and 132 COVID-19 patients

admitted across 5 hospitals within the Methodist LeBonheur Healthcare (MLH) system, Mem-

phis TN. Demographic information, medical comorbidities, vital signs, laboratory data, and

other clinical information abstracted from the electronic health records (EHR) (S1 Table) were

selected from admission till the onset of ARDS from the ICU. These variables were selected

based on the literature pertaining to the prediction of ARDS. We extracted data for patients

from February to June 1, 2020.

Selection criteria

All patients above 18 years of age who were admitted to the ICU diagnosed with SARS-CoV-2

with at least 48 hours of data were included in the study. Where we observed multiple encoun-

ters for the same patient, we treated each encounter as independent if the admissions were at

least 30 days apart, and used the first admission. We used Current Procedural Terminology

(CPT) and International Classification of Diseases (ICD-10) to identify mechanical ventilation

and oxygen therapy. The onset time of ARDS is measured using the Berlin criteria [20], in

which we identify tOnset as when the patient requires positive end-expiratory pressure (PEEP)

of at least 5 cmH2O and a ratio of arterial partial pressure oxygen to fraction of inspired oxygen

(P/F) ratio < = 300, within 1 week of initial oxygen support. We further exclude patients based

on the percentage missing data i.e., if the percentage null value is greater than 90%. We further

segregate ARDS patients by severity, using the worst P/F during an encounter, specifically the

severity classes were: mild (P/F ratio > = 200 and<300), moderate (P/F ratio > = 100 and

<200), and severe (P/F ratio < 100).

Missing data and class imbalanced

All the missing values of laboratory and vital sign measurements were filled using last-one

carry forward imputation and remaining missing values were imputed by the global median of

the associated variable in the training dataset (CRD dataset) and validation dataset (Emory

and UTHSC-MLH dataset). Separate binary variables were generated to indicate a positive

binary value during their oxygen therapy, mechanical ventilation, vasoactive status and for

their comorbidities. Class imbalance was addressed through balanced micro batching, in

which we balance ARDS patients with an equal random set of Non-ARDS patients.
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Data preprocessing

The data of each patient was segmented and resampled at an evenly sampled 2-hour interval.

Their median value replaced the multiple measures available for a single variable within the

2-hour interval. Leaving an interval of 12-hours before ARDS onset as the prediction window,

we further segment data in 16-hour observational windows to extract statistical features. From

continuous variables, we extracted features including, minimum, maximum, standard devia-

tion, median, and skewness. For categorical variables, such as the presence of therapies or

medication, we generated a binary flag to indicate the presence of the variable at the appropri-

ate time intervals. In this manner, we obtained 148 statistical features that are provided as

inputs to our model.

Model development and evaluation

We developed our machine learning models on Python using the Scikit-Learn [21] and the

XGBoost package [22]. Data management was performed using the Pandas library [23]. Dur-

ing the course of the machine learning pipeline, we evaluated a number of machine learning

methods including, Neural Networks [24], Support Vector Machines [25], Random Forests

[26], Logistic Regression [27], and eXtreme Gradient Boosting (XGBoost) [28]. We then

selected the XGBoost model due to the robust and superior performance across the internal

and external validations. In the derivation of eARDS was performed in two steps, first, a model

was trained on 80% of the CRD database (training set) which consisted of ARDS in patients

positive for SARS-CoV-2. The remaining 20% were preserved as a hold-out dataset, this pro-

cess was repeated with a random selection of patients and repeated 10 times with replacement

to generate average training performance. Prior to training a model, we used a subset of the

training data (30%) for hyperparameter selection using Bayesian optimization.

We then validated the model on retrospective data collected on COVID-19 patients from

Emory and UTHSC-MLH datasets. We selected a random 80% of the dataset and repeatedly

sampled from this dataset 10 times with replacement to generate confidence intervals of the

performance statistics.

Feature importance and model interpretability

A popular recent method for explaining machine learning is by the use of SHapley Additive

exPlanations (SHAP) [29], which uses optimal credit allocations among entities to derive their

contributions, a game theory centric method for feature importance at the prediction level.

We used SHAP to extract prediction level explanations along with mean SHAP values gener-

ated across predictions to develop interpretations of important predictors.

Results

Clinical characteristics

Table 1 shows the clinical characteristics of the study population. In the training dataset,

35,804 patients were available, of which 14,097 met inclusion criteria. 1,890 patients (13.4%)

met ARDS criteria, and of that 964 were positive for SARS-CoV-2. Among the 12,207 patients

who did not meet ARDS criteria, 4,712 were positive for SARS-CoV-2. The median age of

ARDS patients was 66 [54, 77] while for Non-ARDS, it was 60 [44, 73], the number of males

(%) for ARDS is 1049 (56%) and for Non-ARDS is 5,966 (49%). Statistically significant differ-

ences (P < 0.05) were found among gender, race, and ethnicity in the training dataset.

In the validation datasets, a total of 767 COVID-19 patients were available from Emory

Healthcare, and 611 met the inclusion criteria and were included in the analysis. Of these, 145
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were ARDS patients and 466 were Non-ARDS patients. There were 132 COVID-19 patients

available from the UTHSC-MLH dataset, and 77 patients met inclusion criteria and were

included in the analysis. Of these, 17 patients met the ARDS criteria. The average age among

patients across both datasets was similar, with the UTHSC-MLH patients being a year older on

average in both groups. Comparing ARDS and non-ARDS patients did not show statistical sig-

nificance differences (P< 0.05) in age, gender, race, or ethnicity. Among the Emory dataset,

however, we observed statistically significant differences in age and ethnicity (P< 0.05).

Data preprocessing

There were a number of challenges in the preprocessing of the CRD dataset. The most promi-

nent of which were discrepancies among units in similar measures, for instance, FiO2 values

were present in both fractional and percentage forms at various periods, which required stan-

dardization, and temperature appeared in both Celsius and Fahrenheit. We further observed

variable contamination, for e.g. heart rate with a unit of beats/min appeared labeled as ‘mean

arterial pressure’, which required explicit unit validation. Some measures were erroneously

high in this dataset which were categorized as values greater than 99 percentile value for that

variable, these were imputed with the global median.

Table 1. Characteristics of patients in the datasets.

Emory UTHSC-MLH Cerner Real-World Data

ARDS NON-ARDS ARDS NON-ARDS ARDS NON-ARDS

Patients, n 145 466 17 60 1890 12207

COVID-19, n (column %) 145 (100) 466 (100) 17 (100) 60 (100) 964 (51%) 4712 (39%)

Age, mean [IQR] +67 [58, 77] +61 [50, 73] 68 [59, 80] 62 [52, 73] 66 [54, 77] 60 [44, 73]

Age Groups, n (column %)

18 yrs. to 40 yrs. #10 (7%) 56 (12%) 0 (0%) 1 (2%) #148 (8%) 2342 (19%)

41 yrs. - 60 yrs. 30 (21%) 155 (33%) 6 (35%) 26 (43%) 536 (28%) 3754 (31%)

61 yrs. - 80 yrs. 75 (51%) 194 (42%) 6 (35%) 24 (40%) 828 (44%) 4188 (34%)

81+ yrs. 30 (21%) 61 (13%) 5 (30%) 9 (15%) 378 (20%) 1923 (16%)

Male, number (column %) 82 (57%) 223 (48%) 8(47%) 30(50%) #1,049 (56%) 5,966 (49%)

First Day Apache II Score�, mean [IQR] 19 [13, 26] 15 [12, 20] 19 [13, 26] 12 [8, 15] 19 [11, 34] 16 [8, 28]

Mechanical Ventilation, n (column %) #94 (65%) 34 (7%) #7 (41%) 5 (8%) #889 (47%) 755 (6%)

P/F Ratio, mean (IQR) +215 [158, 328] 341 [207, 341] +200 [145, 340] 340 [272, 340] +161 [107, 231] 312 [170, 393]

Race, n (column %)

African American 94 (65%) 313 (68%) 15 (88%) 49 (82%) #518 (27%) 3,100 (25%)

Caucasian 40 (28%) 92 (20%) 0 (0%) 7 (12%) 916 (49%) 6,407 (53%)

American Indian 0 (0%) 1 (0%) 0 (0%) 0 (0%) 31 (2%) 226 (2%)

Asian 2 (1%) 9 (2%) 0 (0%) 1 (2%) 59 (3%) 356 (3%)

Mixed Race 1 (0%) 0 (0%) 1 (6%) 1 (2%) 1 (0%) 0 (0%)

Unknown Race 8 (6%) 51 (10%) 1 (6%) 2 (3%) 365 (19%) 2117 (17%)

Ethnicity, n (column %)

Not Hispanic or Latino #134 (92%) 386 (83%) 16 (94%) 59 (98%) #1,323 (70%) 8,461 (69%)

Hispanic or Latino 4 (3%) 22 (5%) 1 (6%) 1 (2%) 330 (17%) 2,518 (21%)

Unknown 7 (5%) 58 (12%) - - 237 (13%) 1228 (10%)

�Excludes Chronic Health Points due to lack of data availability.
+statistical significance by Wilcoxon Rank-Sum test (P < 0.05).
#statistical significance by Chi-square test (P < 0.05).

https://doi.org/10.1371/journal.pone.0257056.t001

PLOS ONE eARDS a multi-site validation

PLOS ONE | https://doi.org/10.1371/journal.pone.0257056 September 24, 2021 5 / 17

https://doi.org/10.1371/journal.pone.0257056.t001
https://doi.org/10.1371/journal.pone.0257056


From validation datasets, we observed some challenges in preprocessing the UTHSC-MLH

dataset, particularly as some structured data fields contained text data and/or comments rele-

vant for clinical interpretations. Negative values were observed in fields, which were flagged as

erroneous by clinical experts. In the Emory dataset, we observed inconsistencies in some val-

ues being present in fractional and percentage forms, which required standardization. Fig 1(A)

illustrates the tSNE plot of ARDS vs Non-ARDS patients using the preprocessed data. Signifi-

cant clustering around the center was observed for the ARDS patients (in yellow), while Non-

ARDS (in purple) are clustered around the periphery. Fig 1(B) represents the tSNE plot

between Non-ARDS and ARDS severity. A summary of the normalized preprocessed data

across each of the three datasets are illustrated in box-plots in Fig 1(C), statistical differences

were observed in all variables between the three groups, except for PaO2 and Chloride. S1 Fig

illustrates a box-plot figure of missingness, i.e. the percentage of missing values that existed for

each variable across the different datasets.

Training and validation model performance

Performance measures derived from evaluating eARDS on the 20% CRD hold-out, and the

validation results (UTHSC-MLH and Emory) are summarized in Table 2. As illustrated in Fig

2(A), at 12-hours before ARDS onset, the training model achieved an AUC [95% CI] of 0.89

Fig 1. Characteristic analysis of the data. A. Illustrates a t-SNE plot of ARDS vs non-ARDS comparing across all predictors, two localised clusters

emerge consisting of ARDS (yellow) patients; B. t-SNE plot of ARDS Severity, classified as mild, moderate and severe, significant convergence can be

observed among the moderate and severe groups with non-ARDS and mild groups similarly forming a separate cluster. C. A box-plot of data density is

illustrated, with each of the variables compared across the three data sources. Statistical significance is observed in all variables except PaO2 and

Chloride.

https://doi.org/10.1371/journal.pone.0257056.g001
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[0.88, 0.90] averaged over 10 iterations of bootstrap. The sensitivity, specificity and positive

predictive value (PPV), of the hold-out CRD dataset were 0.77 [0.75, 0.78], 0.85 [0.85, 0.86]

and 0.53 [0.52, 0.54], respectively.

For the same time period, among the validation datasets, we observed an AUC for Emory

and UTHSC-MLH of 0.82 [0.81, 0.83] and 0.89 [0.87, 0.90], respectively, the sensitivity, speci-

ficity, and PPV are included in Table 2. At 6-hours before onset, AUC across the CRD (hold-

out), Emory and UTHSC-MLH were, 0.90 [0.89, 0.90], 0.85 [0.85, 0.86], and 0.88 [0.86, 0.90]

respectively (Table 2).

Fig 2(B) illustrates the temporal performance of the model tuned to different prediction

horizons ranging from tonset to 36 hrs prior. The retrospective temporal performance across

Emory and UTHSC-MLH was observed to be different, with the Emory dataset suggesting a

lower AUC in the hours preceding tonset when compared to UTHSC-MLH which displays a

better averaged performance. The aggregated performance on the UTHSC-MLH data was

found to be highly variant, as illustrated with a broader 95% CI when compared to the Emory

dataset.

Model interpretability

Some features and clinical information showed more significant importance than others for

prediction of ARDS. Using mean SHAP values generated from the training data, we generated

a ranked list of the top 20 important features (S3 Fig). Among the top 20, the top 8 features

contributed more to the generation of an alert for ARDS than the next 12. The top feature for

prediction of ARDS was SpO2 (minimum), followed by SBP (standard deviation), younger age

group (18–40), FiO2 (max), respiratory rate (max), O2 flow (max and standard deviation) and

platelet count (min) in descending order.

Fig 3(A) illustrates an example patient who develops ARDS over a 48 hour period, SpO2

(minimum), SBP (standard deviation), respiratory rate (maximum), O2 flow (standard devia-

tion) and heart rate (maximum) cause the probability to increase beyond the alert threshold

up to 42 hours before the patient meets the severe ARDS criteria (t = 0). Resuscitative

Table 2. Analysis of model performance over 6-hour and 12-hour prediction horizon.

COVID-19 Positives (6 hours)

Dataset CRW Emory MLH

AUC 0.90 [0.889, 0.90] 0.85 [0.85, 0.86] 0.88 [0.86, 0.90]

Specificity 0.86 [0.86, 0.86] 0.81 [0.80,0.82] 0.82 [0.80, 0.84]

Sensitivity 0.77 [0.76,0.78] 0.74 [0.73, 0.76] 0.77 [0.74, 0.78]

PPV 0.54 [0.53, 0.54] 0.55 [0.54, 0.59] 0.56 [0.53, 0.59]

COVID-19 Positives (12 Hours)

Dataset CRW Emory MLH

AUC 0.89 [0.88, 0.90] 0.82 [0.81, 0.83] 0.89 [0.87, 0.90]

Specificity 0.85 [0.85 0.86] 0.80 [0.79, 0.82] 0.81 [0.79, 0.84]

Sensitivity 0.77 [0.75, 0.78] 0.70 [0.69, 0.71] 0.77 [0.74, 0.80]

PPV 0.53 [0.52, 0.54] 0.54 [0.52, 0.55] 0.55 [0.52, 0.59]

All-cause ARDS (12 Hours)

Dataset CRW Emory MLH

AUC 0.86 [0.85, 0.86] 0.80 [0.79, 0.81] 0.86 [0.84, 0.87]

Specificity 0.79 [0.79, 0.80] 0.77 [0.76, 0.78] 0.79 [0.76, 0.81]

Sensitivity 0.77 [0.76, 0.77] 0.70 [0.69, 0.71] 0.75 [0.72, 0.78]

PPV 0.45 [0.44, 0.45] 0.49 [0.48, 0.51] 0.51 [0.48, 0.55]

https://doi.org/10.1371/journal.pone.0257056.t002
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interventions were observed in the hours leading to tOnset. As illustrated in the figure, a series

of interpretable readings, by the way of ‘important features’ are generated throughout the time

period.

Fig 3(B) illustrates the clustered heatmap of the top 20 features among ARDS patients

derived using the aggregated SHAP values for each prediction at six hours prior to tOnset. The

heatmap is clustered on disease severity, namely, mild, moderate and severe. Patients are enu-

merated column-wise, and as illustrated in the figure, more severe patients are grouped

towards the right side of the heatmap while moderate and less severe are grouped in the left.

Among the less severe cluster (left side, Fig 3(B)), minimum values of the SpO2 and the stan-

dard deviation of SBP suppressed the probabilistic value (orange shade indicates suppression)

as opposed to the severe patients group (right side, Fig 3(B)). Values of O2 flow (both maxi-

mum and standard deviation) contributed positively to the alert in more severe ARDS. Among

the less severe cohort (left side, middle, Fig 3(B)), Age of 18–40 contributes positively to the

probabilistic value, in contrast to the more severe cohort. Minimum of PaO2 and FiO2 values

in the observational window were particularly important among the severe cohort. Beyond the

Fig 2. Model performance and feature importance. A. The AUROC performance of the eARDS model over hold-out and validation datasets, 95% CI,

are illustrated as shaded bands for each model. B. Temporal performance of the model over different prediction horizons ranging from tonset to 36 hours

before, MLH is shown to have the highest performance over the time periods, while Emory data has the lowest AUC consistently. C. Depicts the

performance measures of the algorithm across the three datasets at 12-hours before ARDS onset.

https://doi.org/10.1371/journal.pone.0257056.g002
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top 10 features (SpO2 (min) till platelet count (min)), the remaining features add incremental

value to the overall prediction.

Cohort analysis of performance

Table 3 describes the comparisons among disease severity, which revealed statistical signifi-

cance (P<0.001) among the classes, with the model performing better in severe ARDS (P/

Fig 3. A. Example patient who develops an increased risk for ARDS over 48 hours before meeting the Berlin Criteria, the top panel illustrates

probability and the second panel illustrates the PaO2/FiO2 ratio, while the third through last panels illustrate the top features identified in the model.

Note that P/F ratio was not included in the model input, and illustrated for demonstration purposes. B. Illustrates the cluster heatmap of 20 most

significant features derived by aggregating SHAP values for each prediction at six hours prior to tonset. Patients are enumerated column-wise, and

clustered on disease severity, namely, mild, moderate and severe. Two groups are observed, the left consisting of the mild and moderate groups, while

the right consists more of the severe (yellow) group.

https://doi.org/10.1371/journal.pone.0257056.g003

Table 3. Analysis of model performance on the hold-out dataset against ARDS severity.

ARDS Severity

Severity� AUC Sensitivity Specificity PPV P-Value

Mild 0.83 [0.83, 0.84] 0.75 [0.74, 0.76] 0.78 [0.78, 0.79] 0.11 [0.11, 0.11] p<0.001

Moderate 0.87 [0.87, 0.88] 0.79 [0.79, 0.80] 0.79 [0.78, 0.79] 0.27 [0.27, 0.27]

Severe 0.91� [0.90, 0.91] 0.86 [0.85, 0.87] 0.79 [0.79, 0.80] 0.29 [0.28, 0.29]

�statistical significance (P<0.05) by one-way ANOVA row-wise.

https://doi.org/10.1371/journal.pone.0257056.t003
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F< 100) than in mild ARDS. Table 4 describes the performance of our model when controlled

against gender, age, ethnicity, and race in the CRD hold-out dataset at least 12-hours before

tOnset. We report the average [95% CI] values of AUC, sensitivity, specificity, and PPV. Perfor-

mance across age was statistically significant (P<0.001), with eARDS reporting the highest

AUC of 0.93 [0.92, 0.94] for the age group of 18–40, patients over 80-years of age had the low-

est AUC of 0.81 [0.81, 0.82]. Statistical significance (P<0.001) was also observed in severity,

age, ethnicity and race in hold-out data of the training dataset, with the lowest performance on

average among American Indian 0.85 [0.83, 0.88] and the highest performance among

‘Unknowns’ with an average AUC of 0.92 [0.91, 0.92]. A moderate statistical significance

(P<0.05) was observed in sex, with females on average having an AUC greater than males.

Comparison to the lung injury prediction score

We compared the performance of the eARDS model to that of the Lung Injury Prediction

Score (LIPS) for predicting ARDS (Table 5). The eARDS model performed better than

Table 4. Analysis of model performance on the hold-out CRD dataset across demographics.

AUC Sensitivity Specificity PPV P-Value

Gender

Male 0.89 [0.89, 0.89] 0.85 [0.84, 0.85] 0.76 [0.76, 0.77] 0.46 [0.45, 0.46] p>0.05

Female 0.89 [0.89, 0.89] 0.77 [0.76, 0.78] 0.84 [0.84, 0.84] 0.49 [0.48, 0.50]

Age Groups�

18–40 0.93 [0.92, 0.94] 0.81 [0.79, 0.82] 0.93 [0.93, 0.93] 0.51 [0.50, 0.52] p<0.001

40–60 0.89 [0.89, 0.90] 0.82 [0.81, 0.82] 0.81 [0.81, 0.82] 0.48 [0.47, 0.49]

60–80 0.89 [0.89, 0.89] 0.81 [0.80, 0.81] 0.78 [0.78, 0.79] 0.48 [0.48, 0.49]

80+ 0.81 [0.81, 0.82] 0.82 [0.81, 0.83] 0.68 [0.68, 0.69] 0.42 [0.42, 0.43]

Ethnicity�

Not Hispanic or Latino 0.88 [0.88, 0.88] 0.80 [0.80, 0.81] 0.79 [0.78, 0.79] 0.46 [0.45, 0.46] p<0.001

Ethnic group unknown 0.91 [0.90, 0.91] 0.87 [0.86 0.88] 0.79 [0.78, 0.80] 0.47 [0.46, 0.48]

Hispanic or Latino 0.91 [0.91 0.91] 0.81 [0.80, 0.82] 0.87 [0.86, 0.87] 0.55 [0.54, 0.56]

Race�

Black or African American 0.91 [0.90, 0.91] 0.81 [0.80, 0.82] 0.83 [0.82, 0.83] 0.52 [0.51, 0.52] p<0.001

White 0.87 [0.86, 0.87] 0.80 [0.79, 0.81] 0.78 [0.77, 0.78] 0.44 [0.43, 0.44]

American Indian or Alaska Native 0.85 [0.83, 0.88] 0.71 [0.66, 0.75] 0.82 [0.79, 0.84] 0.57 [0.52, 0.63]

Asian or Pacific islander 0.86 [0.84, 0.88] 0.86 [0.84, 0.87] 0.74 [0.73, 0.75] 0.32 [0.31, 0.34]

Unknown Race 0.92 [0.91, 0.92] 0.88 [0.87, 0.88] 0.82 [0.81, 0.82] 0.50 [0.48, 0.52]

�statistical significance (P<0.05) by one-way ANOVA row-wise.

https://doi.org/10.1371/journal.pone.0257056.t004

Table 5. Analysis of the clinical LIPS benchmark across the three datasets.

Prediction using LIPS (COVID-19 positives)

Dataset AUC Sensitivity Specificity PPV LIPS(ARDS) LIPS(Non-ARDS)

CRW 0.80 0.61 0.84 0.53 2.94 [2.85, 3.04] 0.95 [0.92, 0.99]

Emory 0.79 0.53 0.56 0.15 3.74 [3.39, 4.1] 1.75 [1.64, 1.87]

MLH 0.63 0.12 0.96 0.64 0.88 [0.42, 1.33] 0.42 [0.16, 0.67]

Prediction using LIPS (All-cause)

Dataset AUC Sensitivity Specificity PPV LIPS(ARDS) LIPS(Non-ARDS)

CRW 0.80 0.63 0.83 0.38 3.00 [2.93, 3.07] 1.01 [0.99, 1.03]

Emory 0.81 0.73 0.81 0.36 3.74 [3.39, 4.09] 1.75 [1.64, 1.87]

MLH 0.61 0.10 0.96 0.60 0.88 [0.42, 1.33] 0.42 [0.16, 0.67]

https://doi.org/10.1371/journal.pone.0257056.t005
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LIPS for predicting ARDS in COVID-19 patients, with eARDS demonstrating higher AUC

across all three datasets. The eARDS model also demonstrated higher AUC than LIPS for pre-

dicting ARDS in all patients, with the exception of the Emory dataset in which the AUC was

comparable.

Discussion

In this study, we derived and validated a supervised machine learning model called eARDS for

predicting the onset of ARDS in critically ill COVID-19 patients up to 36 hours before meeting

the clinical criteria. In our validation, the eARDS model performed well in predicting ARDS in

critically ill COVID-19 patients with an optimal prediction horizon of 12 hours before the

onset of ARDS according to the Berlin definition. The high AUC and other performance char-

acteristics of the model demonstrate the utility of the eARDS model in identifying a subset of

critically ill COVID-19 patients who were at increased risk of developing ARDS. Common

errors, such as missingness and incorrect data points were frequently observed among the lab-

oratory values. These are consistent with findings from the literature [30].

The results of our study have important clinical implications, particularly from the perfor-

mance of our machine learning model in early prediction of ARDS. The PPV of 0.59 and 0.48

for Emory and UTHSC-MLH validation cohorts, respectively, indicate that 48–59% of patients

who were predicted to have ARDS by our model did, in fact, develop ARDS at a later time.

Considering that the incidence of ARDS was 13.4% in the overall study population and 17.0%

in the COVID-19 population, the PPV of 0.48–0.59 represents a significantly higher incidence

of ARDS than baseline in those who were predicted by our model to develop ARDS. Our

model also showed better performance in predicting severe ARDS with AUC of 0.91 compared

to mild ARDS with AUC of 0.83. These characteristics may allow clinicians to promptly iden-

tify a subset of patients who are at high risk of developing ARDS, especially the severe forms of

ARDS that would likely require mechanical ventilation and other advanced treatments. This

early risk-stratification can inform decisions regarding various interventions, such as the tim-

ing of intubation for critically ill COVID-19 patients. While early intubation was not associated

with differences in clinical outcomes or mortality in COVID-19 in one single center study, it

does appear to correlate with the severity of illness and the rate of progression of disease [31,

32] [references]. Our machine learning model can predict ARDS development well before the

actual disease onset, thereby alerting the clinicians of high-risk patients who may soon develop

ARDS and prompting an earlier assessment of the need for intubation. In addition, early iden-

tification of high-risk patients could allow timely implementation of evidence-based treat-

ments and strategies to prevent further lung injury. Such treatment strategies include low-tidal

volume and lung protective ventilation strategies in those already receiving mechanical ventila-

tion [33, 34], conservative fluid management and early utilization of diuretics to optimize fluid

balance [35, 36]. Early prediction with our model can also prompt early corticosteroid treat-

ment for those with severe COVID-19 who will require oxygen support or mechanical ventila-

tion, which could mitigate the development of ARDS and improve outcomes [37–39]. Our

prediction model can allow additional time for preemptive implementation of these proven

strategies to attenuate lung injury in patients with progressively worsening hypoxia.

Prediction of ARDS can also improve compliance with proven ARDS management strate-

gies such as lung-protective ventilation and prone positioning once a diagnosis is made. In a

large international cohort of patients with ARDS, the diagnosis of ARDS was missed entirely

in 40% of patients, with ARDS recognition ranging from only 51% in mild ARDS to 79% in

severe ARDS [40]. The poor rate of recognition may be related to the complexity of the Berlin

definition that utilizes both structured data and unstructured elements, such as interpretation
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of chest imaging that are not always definitive [18, 41]. Clinician recognition of ARDS was

associated with the use of higher PEEP levels and with greater use of prone positioning, neuro-

muscular blockade and extracorporeal membrane oxygenation. It has also been reported that

patients receiving higher tidal volumes shortly after ARDS onset have a higher mortality [42].

These findings highlight the importance of early prediction and recognition of ARDS in

improving the management of ARDS, and the same principles apply to COVID-19 induced

ARDS as well. Our present machine learning model and similar models can help clinicians

with prediction, early recognition, and prognostication of patients at high risk of developing

severe respiratory failure and ARDS. This, in turn, would allow more time for implementing

strategies to avoid further lung injury, improve adherence to evidence-based therapies, and

guide clinical decisions regarding treatments for severe COVID-19 and ARDS.

The example patient in Fig 3A illustrates the utility of the model in predicting ARDS onset

earlier, through analysis and integration of various hemodynamic and oxygenation support var-

iables. The initial prediction for ARDS was driven primarily by a slew of vital sign abnormali-

ties, including the very first signs of tachycardia, tachypnea, hypoxia, and fluctuations in blood

pressure. Our model was able to promptly capture the changes in these variables that suggested

hemodynamic instability, and generated the initial prediction for ARDS. This alert generation

was well in advance of the O2 flow rate adjustment [10], which can be a surrogate for the clini-

cian’s recognition of a deteriorating patient with worsening respiratory failure. Subsequently,

the standard deviation of the O2 flow rate sustained the ARDS prediction probability above the

threshold, until the clinical criteria for ARDS was finally met. As demonstrated by this example,

our model was able to integrate the earliest signs of clinical deterioration and successfully pre-

dict an increased risk of ARDS, predating the clinical suspicion or the actual onset of ARDS by

several hours. Therefore, understanding the clinical context through such surrogate informa-

tion may be a means by which the model recognizes worsening severity of illness.

Prior to the utilization of machine learning in predictive modeling for ARDS, a widely used

clinical prediction tool for ARDS was the Lung Injury Prediction Score (LIPS) [43]. However,

many of the variables used in LIPS required manual chart abstraction, and the model did not

perform well when applied to settings that were different from the original validation study

[44]. Machine learning models such as eARDS can automate the analysis of relevant clinical

variables, and expedite the prediction of ARDS at an earlier time point than would be feasible

with traditional predictive modeling. Furthermore, machine learning models can fit the data

more precisely than the traditional models and result in more accurate predictions of ARDS.

We demonstrate that eARDS utilized machine learning techniques to successfully analyze a

complex combination of structured clinical variables that can be automatically abstracted from

the EHR. Consequently, our eARDS model showed better performance for early prediction of

ARDS in COVID-19 patients compared to LIPS.

The feature importance heatmaps from our model provide an indication for the most

important clinical features for predicting ARDS onset in our model. Not surprisingly, features

that are directly related to the patients’ respiratory status, including the minimum SpO2, respi-

ratory rate, and O2 flow rate, were ranked among the five most important features for predict-

ing ARDS development. The standard deviation of SBP, which is also ranked among the top

five most important features for predicting ARDS, may be a surrogate of hemodynamic insta-

bility and overall clinical deterioration related to impending respiratory failure. In the clus-

tered heatmap based on disease severity, the maximum and the standard deviation of O2 flow

rates contributed positively to the alert in more severe ARDS, again highlighting that the fea-

tures associated with the patients’ respiratory status were important in predicting ARDS devel-

opment. The fact that our model placed relative importance on these factors related to vital

signs and noninvasive measurements adds strength to our model. Our model could predict
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ARDS development without heavy reliance on invasive tests or lab values (e.g. PaO2), which

are more likely to be obtained in patients who are already demonstrating signs of clinical dete-

rioration and/or worsening respiratory failure. This suggests that our model can utilize vital

signs and other readily available measurements to predict ARDS development before the

onset of overt clinical deterioration, without heavy reliance on potentially biased availability of

information.

The performance of our model with regard to age, especially the younger age group of 18–

40, is also noteworthy. This may have been attributed to the lower prevalence of ARDS within

this cohort, with 6% of the patients 18–40 years of age meeting ARDS criteria, while 20% met

criteria within the 81+ years group. Prior literature reported that younger patients are less

likely to develop ARDS and tend to suffer less severe illness from COVID-19 [45, 46]. From

this, one can anticipate that younger age would not be an important feature in predicting

ARDS development, but the age group 18–40 was actually one of the most important features

in our model. This finding may be related to the fact that this age group contributed positively

to the prediction of mild ARDS in the clustered analysis by disease severity, thus indicating an

association between younger age and mild severity of ARDS.

Limitations

There are several limitations to this study. First, we identify a select number of variables from

the EMR, driven by a review of existing literature. Expanded coverage of the EMR, including

deriving variables from natural language processing of the unstructured data, such as clinical

notes and chest imaging studies, may improve the model’s performance and specificity. Sec-

ondly, we developed our model using a popular state-of-the-art machine learning method.

However, we have not demonstrated the performance across more recent deep learning meth-

ods. Incorporating such architectures may further improve our model performance. Third,

we noted that there was a high degree of missingness of variables within all three datasets; this

has frequently been observed when using EMR data [30], arising from the dynamic array of

possible care patterns that each patient may receive. In order to address this limitation, we

incorporated methods within our pipeline that indicated missingness of a variable at each

opportunity, while this effort may provide the model with some context to the nature of miss-

ingness, it is still unable to discern whether the missingness was at random or not-at-random.

Further studies to this effect, particularly from prospective validation may be necessary to truly

discern whether particular variables are missing or were not entered into the EMR. Finally, we

developed our model and validated it using only retrospective data. A prospective validation

will be essential not only for identifying potential errors and improving the performance of

our model, but also to be able to implement it in clinical practice.

In conclusion, we demonstrate that machine learning methods can be applied to predictions

of ARDS in patients with COVID-19. We further evaluate the performance of a general ARDS

prediction model in critically ill COVID-19 patients and find that our model achieves optimal

and statistically significant performance in the severe ARDS group than the mild ARDS group.

Further research including the addition of blood-based biomarkers [47, 48], radiographic

images, unstructured notes and high-frequency bedside monitoring data streams [49–51] may

further improve the performance of the model for bedside clinical decision support.
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